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Abstract: Treated domestic sewage (TDS) can contribute to plant nutrition and improve crop pro-
duction. However, there are no data for its use in coloured cotton under a deficit or excess irrigation
in combination with potassium fertilization rates (KRs), mainly under semiarid tropical condi-
tions. The research was conducted using a randomized complete block design in a factorial scheme
(5 × 5, irrigation regimes vs. potassium rates), plus an additional treatment as the control ((5 × 5)
+ 1). The treatments consisted of five TDS irrigation regimes (50, 75, 100, 125, and 150% of crop
evapotranspiration—ETc) and five KRs (0, 50, 100, 150, and 200% of the local crop recommendation),
plus a control—CT— (irrigated with fresh water at 100% ETc and fertilized according to the local crop
recommendation) and four replications. The optimal crop yield, water use efficiency, and potassium
use efficiency were obtained when TDS was applied as a deficit irrigation treatment of 75% of ETc or
as full irrigation (100% of ETc) and when associated with moderate increases in K fertilization. These
treatments also resulted in a better fibre quality when compared to the CT, meeting or exceeding
the requirements of the textile industry. Therefore, moderate deficit irrigation with TDS is indicated
as an important strategy to save fresh water and to reduce the use of fertilizers, while having the
potential to increase profit margins for cotton production in tropical semiarid regions.

Keywords: Gossypium hirsutum L.; textile industry; domestic sewage; recycled water; water use
efficiency

1. Introduction

Cotton (Gossypium hirsutum L.) is the most important natural fibre in the world,
constituting the main raw material for the international textile industry [1–3]. Currently,
cotton is cultivated in more than 80 countries and the world consumption of lint exceeds
24 million tons, with China ranking as the major producer, followed by India, the United
States, Pakistan, and Brazil [4].

The current modernization of the textile industries includes new spinning technologies
and the production of new fibres, which must meet the technical standards that require
long, uniform, mature, thin, and resistant fibres [5]. In this context, the cultivation of
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cotton cultivars with naturally coloured fibres has been gaining prominence in the Brazilian
agricultural sector [6], especially due to the environmentally benign nature of its cultivation.
Coloured cotton does not require any type of chemical dyeing and prevents the use of
additional water that would be required for the conventional fabric dyeing process [6,7].
Additionally, coloured fibre varieties are resistant to drought and may improve the income
of small farmers, who have few crop options that can grow under a semiarid tropical
climate [8,9].

Cotton provides the raw material for 40% of the clothing industry and is the third
largest global consumer of irrigation water, requiring approximately 2700 L of water to
produce cotton fibres for one shirt [10] and almost 10,000 L of water to produce 1.0 kg of
cotton fabric [11] or 8000 L for a pair of cotton jeans. These circumstances led fabric manu-
facturers to adopt alternative and environmentally sustainable production technologies to
minimize the use of water resources and reduce environmental pollution [12]. Recently, the
possibility of reusing wastewater for the irrigation of high water-demanding crops, such
as cotton, was evaluated as a viable alternative to preserve natural water resources, while
mitigating the effects of water shortage [13] and climate change. Recurring droughts in
semiarid regions of the planet and the excessive pumping of groundwater to meet water
demands for irrigated agriculture are leading to the drying of millions of wells world-
wide [14]. Considering this gloomy scenario and the fact that an estimated 380 billion m3

of wastewater are produced annually worldwide [15], these authors highlight the value
of wastewater as a rich source of the macronutrients N, P, and K, and as an alternative to
mitigate the water scarcity on Earth.

Wastewater use allows for the recycling of nutrients such as N, P, and K, leading to the
reduced use of chemical fertilizers [15,16]. However, the total of nutrients supplied by the
wastewater may not be enough to meet the crop demand in terms of high productivity and
quality. For example, some reports state that irrigation with wastewaters and K fertilization
improves the quality of white-cotton fibre [17–20]. However, there is no evidence of these
beneficial effects for coloured cotton cultivars. Therefore, this study explores the interaction
between the agricultural use of treated domestic sewage, irrigation regimes, and K rates
on a cultivar of coloured cotton grown under a semiarid tropical climate. The objectives
of this work are to find the management that results in greater seed cotton productivity,
higher boll density, better fibre quality, and higher water use efficiency.

2. Materials and Methods
2.1. Study Area Location and Characteristics

The study was carried out from 15 April to 30 August 2016 in a semiarid tropical
region located at the Hydro-Agricultural Reuse Pilot Unit of the Agricultural Engineering
Department of the Federal Rural University of Pernambuco in Ibimirim, Brazil (8◦32′05′′ S;
37◦41′50′′ W; average altitude of 408 m) (Figure 1a–c).

The climate of the region is classified as BSh (hot semiarid climate) according to Köp-
pen’s classification adapted to Brazil [21], with an average annual precipitation of 454 mm.
During the 4.5-month experimental period, the accumulated precipitation was 122 mm,
with average air temperature and relative humidity of 24.6 ◦C and 63%, respectively, with
approximately 80% of the precipitation occurring in May (Figure 2).

The experiment was set up in an Arenosol (Entisol Quartzipsamments) [22] of sandy-
loam texture, with 760, 80, and 160 g kg−1 of sand, silt, and clay, respectively. The soil
had the following chemical characteristics: (at 0–20 cm), pH = 4.6, P = 25 mg dm−3, and
(in cmolc dm−3): 1.25 (Ca2+), 0.75 (Mg2+), 0.03 (Na+), 0.19 (K+), 0.15 (Al3+), and 1.56 (H+

+ Al3+); (at 20–40 cm), pH = 4.3, P = 19 mg dm−3, and (in cmolc dm−3): 1.40 (Ca2+),
0.70 (Mg2+), 0.04 (Na+), 0.24 (K+) or 187 kg ha−1, 0.40 (Al3+), 2.14 (H+ + Al3+). Further
information on soil analysis was published elsewhere [23].
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Figure 1. Study area located in Ibimirim, state of Pernambuco, Brazil (a), Hydro-Agricultural Reuse Pilot Unit (b), front 
view of Hydro-Agricultural Reuse Pilot Unit (c), cotton plants at development stage II—flower buds; (d) cotton plants at 
development stage IV—boll maturation (e). 

The climate of the region is classified as BSh (hot semiarid climate) according to 
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Figure 1. Study area located in Ibimirim, state of Pernambuco, Brazil (a), Hydro-Agricultural Reuse Pilot Unit (b), front
view of Hydro-Agricultural Reuse Pilot Unit (c), cotton plants at development stage II—flower buds; (d) cotton plants
at development stage IV—boll maturation (e). UASB = Upflow Anaerobic Sludge Blanket; UTM = Universal Transverse
Mercator coordinate system.

2.2. Experimental Design and Treatments

The study was carried out in a Randomized Complete Block Design (RCBD), in a
factorial arrangement plus a control treatment [(5 × 5) + 1] with four replications, totalling
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104 experimental plots. The treatments consisted of five irrigation regimes (IR) (50, 75, 100,
125, and 150% of crop evapotranspiration (ETC)), using treated domestic sewage (TDS), five
K rates (KRs) corresponding to 0, 50, 100, 150, and 200% of the local crop recommendation,
and an additional control treatment (CT) consisting of freshwater from a tubular well at
100% ETC (equivalent to 100 IR) and fertilized according to the local crop recommendation
(equivalent to 100 KR).
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2.3. Plant Material and Planting Conditions

The genetic material used was the cotton (Gossypium hirsutum L.) cultivar BRS Rubi,
recommended for cultivation in the semiarid region of northeastern Brazil, with brown–
dark-coloured fibre, cycle ranging from 120 to 140 days and tolerance to drought. Sowing
was initially performed using 25 seeds per meter, leaving 10 plants per linear meter after
thinning. The experimental plot was 15.0 m2, consisting of three single rows of cotton
5.0 m long and spaced by 1.0 m. The useful area of the plot comprised the central row,
disregarding 0.5 m on each side.

2.4. Water Source Characterization and Irrigation Management

Treated domestic sewage (TDS), processed by a UASB (Upflow Anaerobic Sludge Blanket)
reactor, had average concentrations of 3.74, 1.73, 5.78, 4.82, 2.0, and 1.12 mmolc L−1 for
Ca2+, Mg2+, Na+, Cl−, NO3

−, and K+, respectively, with an electrical conductivity (ECw)
of 2.1 dS m−1 and pH = 7.2, while freshwater from a municipal tubular well (Ibimirim,
Pernambuco, Brazil) with a depth of 105 m and a flow rate of 35 m3 h−1 had concentrations
of 2.72, 0.36, 0.82, 0.91, 0.0, and 0.27 mmolc L−1 for Ca2+, Mg2+, Na+, Cl−, NO3

−, and K+,
respectively, with an ECw of 0.3 dS m−1 and pH = 6.6 [23]. The methodology for analysing
water sources used in this study followed the recommendations of the Standard Methods
for Examination of Water and Wastewater [24].

Irrigation management was carried out by adopting a daily irrigation shift and
crop evapotranspiration was calculated according to the methodology proposed by [25]
(Equation (1)), with daily reference evapotranspiration (ET0) estimated by the Penman–
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Monteith model (Equation (2)) and crop coefficient (KC) proposed by [26] (Equation (3)).
The location coefficient (KL) was used to correct the ETC and was determined along with
the development of the cotton crop using the methodology proposed by [27] (Equation (4)).
The climatic data for ET0 determination were obtained from an automated meteorolog-
ical station (Campbell Scientific, CR1000 model, Logan, UT, USA) installed close to the
experimental area.

ETC = ET0 KC KL (1)

ETC represents crop evapotranspiration (mm day−1), ET0 is the reference evapotran-
spiration (mm day−1), KC is the crop coefficient (dimensionless), and KL is the location
coefficient (dimensionless).

ET0 = [0.408 (Rn − G) + γ(900/(T2 + 273))u2(es − ea))]/[∆ + γ(1 + 0.34u2)] (2)

ET0 represents the reference evapotranspiration (mm day−1), Rn is the net radiation
on crop surface (MJ m−2 day−1), G is the heat flux density of the soil (MJ m−2 day−1), T2 is
the air temperature at 2 m height (◦C), u2 is the wind speed at 2 m height (m s−1), es is the
saturation vapor pressure (KPa), ea is the actual vapor pressure (KPa), es − ea is the vapor
pressure deficit (KPa), ∆ is the tangent to the vapor pressure curve (KPa ◦C−1), and γ is the
psychrometric constant (KPa ◦C−1).

KC = 0.632 + 0.009DAE − 0.00006DAE2 (3)

In Equation (3), KC represents the daily crop coefficient (dimensionless) and DAE
represents the number of days after the emergence of coloured cotton plants.

KL = 0.10
√

PAS (4)

In Equation (4), KL represents the location coefficient (dimensionless) and PAS repre-
sents the percentage of area shaded by the crop (%). PAS was calculated as a function of
the shaded area (S) and crop spacing (Equation (5)), in which S represents the projection of
the shaded area for cotton at noon (m2), EP represents the spacing between plants (m) and
EL represents the spacing between lateral lines (m).

PAS = (S/EP EL) 100 (5)

The cycle and duration of each phenological stage during the development of coloured
cotton are described in Table 1. Irrigation with TDS was applied using a drip system, with
lateral lines containing pressure-compensated drip tapes (DripNet PC 16250, Netafim, Tel
Aviv, Israel) with a nominal diameter of 16 mm, and drippers spaced by 0.30 m with a flow
rate of 2.0 L h−1. A 735.5-W horizontal centrifugal pump (Schneider, Rueil-Malmaison,
France) was used for effluent suction. Irrigation depths with treated domestic sewage were
applied as a function of the irrigation time (Ti) (Equation (6)), adopting a daily interval.

Ti = [(F) (ETC) (EL ED)]/(qdEa)] 60 (6)

In Equation (6), Ti represents the irrigation time (minutes), F is the correction factor
for the irrigation regime (0.50, 0.75, 1.00, 1.25, and 1.50 for 50, 75, 100, 125, and 150% ETC,
respectively), ETC is crop evapotranspiration (mm day−1), EL is the spacing between lateral
lines (m), ED is the spacing between drippers on the lateral line (m), qd is the dripper flow
rate (L h−1), and Ea is the irrigation system efficiency (%).

At the end of the experiment, 135 DAE, the accumulated irrigation depths with treated
domestic sewage corresponded to 307.8, 461.6, 615.5, 769.4, and 923.2 mm for 50, 75, 100,
125, and 150% ETC, respectively. For the control treatment, the accumulated depth was
615.5 mm.
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Table 1. The phenological cycle of coloured cotton, cv. ‘BRS Rubi’, observed during the exper-
imental period. The developmental stages were based on field observations. DAE—days after
seed emergence.

Phase Developmental Stages DAE (Days) Duration (Days)

I Seed emergence up to 10% of soil cover 1–19 19

II 10% of soil cover up to onset of
flowering 20–41 22

III Onset of flowering to the onset of boll
maturation 42–89 48

IV Onset to end of boll maturation 90–135 46

Total cycle 135

2.5. Liming and Fertilization

The experimental soil had average (0–20 and 20–40 cm of depth) concentrations (in
cmolc dm−3, unless specified otherwise) of Ca2+, Mg2+, Na+, P (mg dm−3), and K+ of 1.32,
0.72, 0.03, 22 mg dm−3, and 0.22, respectively, with an average pH = 4.45. In order to
increase soil pH, liming was performed by adding 86 kg ha−1 of dolomitic limestone (25%
Ca and 17% Mg) with a 70% relative power of total neutralization, based on the method
of exchangeable aluminium neutralization. Soil tillage was carried out after limestone
was incorporated into a 0–20 cm soil layer, consisting of two crossed harrowings and a
levelling harrow.

In the control treatment, plants were fertilized with an N–P–K formulation of
90–40–40 kg ha−1, respectively, using urea (45% N), single superphosphate (20% P2O5,
20% Ca, 12% S, pH < 2.0), and potassium chloride (60% K2O, 45% Cl), according to crop
recommendation by the state of Pernambuco, Brazil [28]. For this treatment, 50% of the
KCl and urea were applied at planting, 25% as top-dressing (25 DAE), and the remaining
25% applied 20 days later. Phosphorus (P) was fully applied before planting. For the
treatments combining TDS and K rates, neither N nor P fertilization was applied because
the wastewater (TDS) already contained total N and total P in the concentrations of 126
and 13.7 mg L−1, respectively. Only potassium chloride (60% K2O and 45% Cl) was used
in these treatments, distributed as 50% of the rate of each treatment at planting, 25% after
thinning as top-dressing, and the remaining 25% applied 20 days later. The rates applied
were 0, 20, 40, 60, and 80 kg of K2O ha−1, which corresponded to 0, 50, 100, 150, and 200%
of the recommended K fertilization rate for cotton, respectively.

For irrigated herbaceous cotton, the IPA (Agronomic Research Institute of the State of
Pernambuco) [28] recommends, for an expected yield of 4000 kg ha−1 (with a density of
70,000 to 80,000 plants ha−1), the potassium fertilization (K2O) of 40 kg ha−1 when soil K+

concentration is between 0.12 and 0.23 cmolc dm−3. These concentrations correspond to
93.8 to 179.8 kg ha−1 of K, respectively. For N, the IPA does not consider N levels, recom-
mending 90 kg ha−1. In the case of P, when the levels of this element are approximately
20 mg dm−3 (40 kg ha−1), it is still recommended to apply 40 kg ha−1 of P2O5. In the
control treatment, phosphorus was fully applied before planting, and fertilization with
N and K was divided three times over the cycle, as described above for K in the other
treatments.

2.6. Harvest and Analysed Variables

Manual harvest started when 70% of the bolls were open (135 DAE) (Figure 1e).
A second harvest was performed after the remaining bolls opened and the following
parameters were determined: boll density (no. m−2), seed cotton yield (kg ha−1), lint yield
(kg ha−1), and water use efficiency (kg m−3). Additionally, we estimated the fertilizer
potassium use efficiency (FKUE, kg kg−1) by relating the increase in seed cotton yield
(kg ha−1) per unit of K2O applied (kg ha−1).

The data relative to the technological quality of the cotton fibre were obtained by
sampling 20 bolls, randomly harvested, from the middle third of plants of the useful area of
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the plot [29]. The analysed variables were: fibre length (UHM, mm), fibre uniformity (UNF,
%), short fibre index (SFI, %), and Micronaire index (MIC, µg pol−1). The UNF represents
the homogeneity in fibre length. The SFI expresses the percentage of short fibres, and this
value must be less than 10%. The MIC reflects the fibre diameter, where the textile industry
requires finer and longer fibres due to the process of modernization of textile machines.
The technological variables were determined using the HVI (High Volume Instrument)
fibre test system, model 900, from SpinLab/Zellweger Uster, belonging to the Fibre and
Yarn Laboratory of EMBRAPA Cotton, Campina Grande, PB, Brazil.

2.7. Data Analysis

Analysis of variance by the Fisher’s test at the probability level of 0.05 was performed
to evaluate the effects of the irrigation regimes (IRs) with TDS and K rates (KRs) on the
production components and fibre quality of coloured cotton, using the statistical package
SAS 9.0 for Windows [30]. Multiple regression models (response surface methodology)
were fitted to the means when the IR vs. KR interaction was significant. Polynomial
regression models were fitted to the means when there were single significant effects of IR
or KR.

3. Results
3.1. Production Components and Yield

The seed cotton yield and lint yield were significantly influenced by the TDS-IR and K
rates, as well as by the interaction between both factors. The number of cotton bolls per
area increased linearly with an increased irrigation depth but responded quadratically to
the increase in the K rate, with the maximum number of bolls (~99 bolls m−2) obtained
with the irrigation regime of 150% ETC combined with the estimated K rate of 96.3% of
the recommendation for irrigated herbaceous cotton (Figure 3). The irrigation regime
using treated domestic sewage to replace 100% ETC, and without K application, resulted in
77 bolls m−2, which was 45% higher than the average achieved by the control treatment,
53 bolls m−2.

The maximum physical yield of seed cotton (3978 kg ha−1) was achieved with the
irrigation regime of 150% of the ETC combined with the K rate of 84% of the recommenda-
tion for the crop (Figure 4). However, a KR higher than 84% of the recommendation led
to a yield reduction when the same irrigation regime (150% of the ETC) was maintained
(Figure 4), suggesting that although cotton is relatively tolerant to salinity, the salt index
(116.2) of KCl may have elevated the salinity of the soil beyond what was tolerated by
cotton. The TDS irrigation regimes of 75 and 100% of the ETC replacement, without K
application (KR = 0%), resulted in seed cotton yields of 2771 and 3156 kg ha−1, both higher
than the yield observed for the control treatment (2087 kg ha−1).

The evaluation of K rates resulted in a quadratic response for lint yield, with a
maximum of 1380 kg ha−1 obtained by the irrigation regimes of 150% of the ETC, combined
with a K rate of 77.9% of the crop recommendation (Figure 5). The application of irrigation
regimes of 50, 75, and 100% ETC, without K fertilization, resulted in lint yields of 830,
987 kg ha−1, and 1112 kg ha−1, with values similar or higher than the yield achieved by
the control treatment (812 kg ha−1).

3.2. Water Use Efficiency

The water deficit regime of 50% ETC (307.75 mm) combined with the K rate corre-
sponding to 139% of the local recommendation led to a maximum water use efficiency
(0.99 kg m−3) (Figure 6), about three times higher than the value observed in the control
treatment (0.34 kg m−3). For irrigation regimes of 75 and 100% of the ETC with TDS, with-
out K application, the WUE was 0.63 and 0.49 kg m−3, while the high irrigation regimes
(125 and 150% of ETC) showed the lowest values of WUE.
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correlation coefficient (r) between seedcotton yield and both treatments had a significance level of 0.01, represented by **.
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3.3. Fertilizer Potassium Use Efficiency

The maximum fertilizer potassium use efficiency was 2.02 kg kg−1 for an irrigation
regime with a TDS of 94.5% ETC combined with the K dose of 97.6% of that recommended
for cotton (Figure 7). For the irrigation regime of 75% ETC combined with the same dose of
K, the FKUE value was 1.90 kg kg−1, only 6% lower than the maximum observed value.
However, the FKUE values decreased in treatments with the smallest and largest irrigation
regimes with TDS, regardless of the dose of potassium fertilizer applied.
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3.4. Fibre Technological Quality

The effects of interaction were not significant for all variables of fibre quality (p > 0.05),
and no isolated effects of water regime and K rates were observed for the fibre uniformity
(UNF) and Micronaire index (MIC). The value of fibre uniformity (82%) was the same for all
treatments and 2.0% higher than the control (80%) (Figure 8a), while the mean value of MIC
was 3.90 µg pol−1 for all combinations of water regimes and K rates (Figure 8b), and lower
than that observed for control plants (4.80 µg pol−1). On the other hand, the irrigation
regimes with treated domestic sewage (TDS) caused a significantly affected (p < 0.05) fibre
length (UHM) and a short fibre index (SFI).

The fibre length (UHM) responded quadratically to the irrigation regime with TDS
(Figure 8c), with a maximum length of 23.71 mm under an irrigation depth of 98.7% of
the ETC, but higher irrigation regimes reduced the fibre length. The TDS irrigation regime
that resulted in the maximum UHM was lower than 100% of the ETC and was 4% higher
than that obtained from control plants (22.78 mm). Differently, the short fibre index (SFI)
increased linearly as a function of the increase in water availability with TDS. However,
the means observed for each irrigation regime with TDS did not differ from those observed
for control plants (Figure 8d).
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4. Discussion

TDS and deficit irrigation are crucial alternatives to optimize the production of irri-
gated coloured cotton in semiarid tropical regions, saving water and fertilizers, and leading
to a more sustainable irrigated agriculture [31–33]. Our results showed that the use of
TDS in a full irrigation regime (100% ETC) and at a deficit irrigation regime (75% ETC),
even without K fertilization, increased seed cotton productivity by 51 and 32%, and the
lint cotton yield by 37 and 21%, respectively (Figures 4 and 5), compared to the control
treatment (100% ETC with freshwater plus mineral fertilization). The higher availability
of TDS in the soil probably allowed for greater absorption of water and nutrients by the
roots, promoting better photosynthetic efficiency and increased crop yield [32,34,35]. It is
important to emphasize that the application of fertilizers with nitrogen and phosphorus
was carried out only in the control treatment as TDS water already contained 126 and
13.7 mg L−1 of total N and total P, respectively, further evidencing the beneficial effect of
cotton irrigation with TDS, which had 1.4-fold more Ca+2, 5-fold more Mg+2, 4-fold more
K+, and 2 mmolc L−1 of NO3

− more than freshwater [23,35].
The highest values of seed cotton and lint yield were obtained with the highest

TDS depth (150% ETC), but this treatment showed a low water use efficiency (0.38), a
value similar to that observed in the control treatment (0.34 kg m−3), and low values of
fertilizer potassium use efficiency (FKUE). This reduction in FKUE in this treatment can be
explained, at least in part, by the increase in K loss by leaching associated with excess water
in the soil profile [36]. On the contrary, for irrigation regimes of 75 and 100% of the ETC
with TDS, and without K application, the WUE was 84% and 44% higher than in control
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plants, respectively. These treatments with TDS also showed high values of potassium use
efficiency. These results corroborate those obtained by [29,37], who reported that although
higher water availability promoted a higher yield of herbaceous cotton, it leads to a lower
water use efficiency. According to [38], some factors may influence water use efficiency,
such as the increased vegetative/reproductive structures ratio and, consequently, increased
losses through evapotranspiration.

Potassium rates (KR) above 84% of the recommendation for cotton resulted in a
decreased yield when the TDS irrigation regime was maintained at 150% of the ETC. On
the other hand, for the treatments of deficit irrigation (75% of ETC) and full irrigation
with TDS, the optimal K rates were 129 and 114% of that recommended for the crop, with
yields of 3602 and 3804 kg ha−1 of seed cotton, respectively. These values of crop yield
were 72 and 82% higher than those observed in the control treatment. For the maximum
lint yield, when maintaining the same irrigation regimes (75 and 100% of the ETC with
TDS), the optimal levels of K were 115 and 103% of the recommendation for the irrigated
herbaceous cotton in the Brazilian semiarid climate, obtaining yields 1240 and 1313 kg ha−1,
respectively. Similar results were observed for WUE, for both deficit and full irrigation
treatments, showing values 126 and 79% higher than those of the control treatment, when
K recommendations were 128 and 117%, respectively. The irrigation regimes using TDS
provided a daily application of K at 1.12 mmolc L−1 throughout the different stages of crop
development, which probably led to a more efficient K absorption by cotton plants than the
scattered application of a slow-release mineral fertilizer applied in the control treatment.
However, our results suggest that an increase of 15 and 30% in the KR can promote an
increase in the seed cotton yield and water use efficiency of cotton, even under deficit
irrigation with TDS. These results were consistent with a recent report that three cultivars
of Bt cotton produced higher seed cotton yields when extra K fertilization was provided
under deficit irrigation, mainly for the early maturing cultivar [19].

In a work evaluating the split application of potassium fertilizer, it was found [36]
that one half of the K fertilization applied at pre-planting and one half at peak flowering
improved the agronomic yield of cotton and the efficiency in the absorption of K. Based on
our results, the peak of flowering was where there was the greatest water demand for the
crop, with the highest application of TDS in this period and the highest deposition of K to
the soil. Certainly, the K concentration found in TDS (1.12 mmolc L−1) was not enough to
meet the maximum demand of the crop, which justified the application of mineral fertilizer
(including K) to obtain a high productivity, mainly under deficit irrigation when the flow
of K into the plant was reduced due to the reduced water availability. It is important
to note that the recommended dose of K for the semiarid region of Brazil is relatively
low, compared to that used in other cotton-producing regions worldwide [39–41]. Thus,
the mentioned increases of 15 to 30% in K doses for treatments with either deficit or full
irrigation resulted in doses not exceeding 60 kg ha−1 of K2O.

Our analyses indicated that there was a lower impact of TDS application and K
rates on fibre technological quality than those observed for yield and water use efficiency.
Although K fertilizers did not appear to be limiting to fibre quality, water deficit, or water
excess with TDS affected the fibre length and short fibre index. The increment in UHM
caused by the increase in water replacement up to 98.7% of the ETC (Figure 8c) indicated
that the soil could be enriched with various nutrients, including K, through the use of TDS
as irrigation water [18,42,43]. In our study, this raised soil fertility of more Mg+2, K+, and
NO3

− provided by the TDS water possibly favoured cell development and, consequently, a
greater fibre elongation, in agreement with what was previously discussed by others [1,35].

Fibre formation in cotton is the result of several biological processes initiated shortly
after flowering. Water deficit after flowering and during the fibre elongation stage can
compromise the fibre length because the physiological and mechanical processes of cell
elongation are hindered by a water shortage [44,45]. Despite the negative effect, in irri-
gation regimes of 50 and 75% of the ETC with TDS, the fibre lengths were equal to 23.13
and 23.57 mm, respectively, both longer than achieved by control plants (22.78 mm). Nev-
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ertheless, the use of TDS to irrigate coloured cotton promoted average values of UHM
within the industrial standard required for the cultivar BRS Rubi. On the other hand, the
negative effect caused by water excess on the fibre length can be explained, at least in part,
by changes in carbon partitioning in the whole plant.

The minimum standards of fibre quality for the textile industry in Brazil require
lower percentages of short fibres (<9%), with lower values of the short fibre index (SFI)
indicating a better cotton fibre quality. The application of irrigation regimes with TDS in
the cultivation of the ‘BRS Rubi’ cotton resulted in SFI varying from 9.8 to 10.6%; hence,
classified as medium quality, with a lower and more adequate value of SFI observed under
deficit irrigation with TDS. The irrigation regimes with TDS and KR also did not alter the
cotton fibre uniformity from values observed under the control treatment. The lack of
significant effect of KR or TDS on fibre uniformity was also observed by [44,46,47].

Another important characteristic of the textile industry is the requirement of increas-
ingly finer fibres. A micronaire index (MIC) from 3.5 to 4.2 µg pol−1 allows fibres to be spun
by high-speed rotors in modern spinning equipment. According to industry classification,
the MIC values (µg pol−1) can be included in the following categories: <3.0 (very fine);
3.0–3.9 (fine); 4.0–4.9 (medium); 5.0–5.9 (coarse); >6 (very coarse) [48]. The results obtained
in this study were consistent with the standards required by the textile industry, and
treatment with TDS, regardless of the regime adopted, proved to be sufficient to promote
the development of finer fibres, presenting a MIC of 3.9 µg pol−1, about 19% lower than
MIC values observed for the control treatment. The authors of [43] reported that finer fibres
resulted from the cultivation of cotton with treated wastewater; thus, corroborating the
findings of our study.

Although the irrigation regime of 50% of the crop requirement resulted in a moderate
reduction in yield, [44] reported that no negative effects on the technological quality of
cotton fibres occurred under the semiarid conditions of Greece. More recent findings
indicate that deficit irrigation regimes in consecutive crops can reduce the quality of the
fibres, making them shorter and coarser. In general, these effects are stronger during the
stage of fibre elongation and development, which can reduce fibre growth and increase
fibre thickness [45]. However, no negative effect of deficit irrigation with TDS on fibre
quality was observed in the present study, showing better results than those observed for
the control treatment (Figure 8b).

Since longer and finer fibres were found in the treatments subjected to irrigation
regimes with TDS, compared to the control treatment, it is inferred that the conventional
management of K fertilization and irrigation with fresh water may not be adequate to
obtain coloured cotton fibres with better intrinsic characteristics in the tropical semiarid
region. In contrast, the management with TDS allowed a higher yield and water use
efficiency, as well as an adequate fibre quality. Additionally, deficit irrigation regimes with
TDS can be an essential strategy to increase water use efficiency for semiarid regions [45]
without compromising the technological characteristics of the cotton fibre.

5. Conclusions

Our results suggested that irrigation with treated domestic sewage, when associated
with K application, can be successfully used in the production of coloured cotton, leading
to better results than conventional cultivation with freshwater, which requires complete
mineral fertilization. The best high crop yield, water use efficiency, and potassium use
efficiency were obtained for treatments with TDS at both deficit and full irrigation (75
and 100% ETC) when combined with moderate increases in the recommended K rates. In
addition, no negative effect of either deficit or full irrigation with TDS was observed on
cotton fibre quality. The treatments of 75% and 100% ETc gave a better or similar fibre
quality (meeting or exceeding the fibre quality requirements of the textile industry) when
compared with freshwater plus mineral fertilization or with a TDS application above 100%
ETC. Therefore, moderate deficit irrigation with TDS is proposed as an important strategy
to promote the partial recycling of nutrients, decreasing the crop fertilizer input, and having
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the potential to increase profit margins for cotton production in tropical semiarid regions
worldwide.
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