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Abstract: Machine learning algorithms have been applied in the agriculture field to forecast crop
productivity. Previous studies mainly focused on the whole crop growth period while different
time windows on yield prediction were still unknown. The entire growth period was separated
into each month to assess their corresponding predictive ability by taking maize production (silage
and grain) in Czechia. We present a thorough assessment of county-level maize yield prediction in
Czechia using a machine learning algorithm (extreme learning machine (ELM)) and an extensive
set of weather data and maize yields from 2002 to 2018. Results show that sunshine in June and
water deficit in July were vastly influential factors for silage maize yield. The two primary climate
parameters for grain maize yield are minimum temperature in September and water deficit in May.
The average absolute relative deviation (AARD), root mean square error (RMSE), and coefficient
(R2) of the proposed models are 6.565–32.148%, 1.006–1.071%, 0.641–0.716, respectively. Based on
the results, silage yield will decrease by 1.367 t/ha (3.826% loss), and grain yield will increase by
0.337 t/ha (5.394% increase) when the max temperature in May increases by 2 ◦C. In conclusion,
ELM models show a great potential application for predicting maize yield.

Keywords: climate change; Czech Republic; extreme machine learning; maize yield

1. Introduction

Climate change has established its reality on affecting temperatures and precipitation,
with much evidence confirming the increase of global temperature and change in the rainfall
rates. The changes in the temperature and precipitation often come in the form of heat
waves, changes in frequency and intensity of precipitation, or other extreme events. Over
the last century, studies have shown an increase in global temperatures [1] and alterations
in rainfall patterns. The precipitation shifts are twofold: first is “wet get wetter, dry get
drier,” and the second is a change in storms that should move away from the equator
toward the poles [2].

Climate change is causing an impact on food production, and maize is no exception [3].
Temperature and precipitation are the two main climate factors influencing maize pro-
ductivity. It will be reduced when extreme temperature events occur during pollination
and are further exaggerated when there are water deficits. During the grain-filling period,
warm temperatures above the upper threshold cause a reduction in yield. Model estimates
suggest that for every 1 ◦C increase in temperature, there is nearly a 10% yield reduction [3].
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Tigchelaar et al. (2018) predicted maize production under the climate change scenarios, and
found that maize yields will decrease about 20–40% and 40–60% if a temperature increase
of 2 and 4 ◦C, respectively [4]. According to the employed statistical model heat stress
and lack of participation can cause the observed global variability from 50% in 1980–2010.
Observed and predicted extreme climate events would bring losses to world maize produc-
tion (ten years return in the given period), with 1.5 ◦C global warming levels (the 2020s).
The scenario with a 2 ◦C temperature increase (the late 2030s) shows that maize production
will suffer from heat stress and drought with no historical parallel [5].

Machine learning (ML) allows independent learning and improves from experience
via iterative training [6]. It has been applied in the agriculture field to increase the quality
and productivity of the crops. It has been proved that ML has powerful performance in data
mining and agricultural analyses, such as classifying crop types and yield prediction [7–10].
Crop yield can be predicted based on different historical available data, including weather
parameters, soil parameters, and historical crop yield [11], as well as optical, fluorescence,
thermal satellite data [12] and nitrogen loss [13]. Recently, different ML models for crop
yield prediction have been developed with various input parameters. Mainly, three ML
approaches (decision tree, Naïve Bayes Classifier, and K-nearest neighbor) were used to
classify the soils and estimate rice yield by Singh et al. [14]. They also proposed the support
vector machine and rule-based induction have the potential application to obtain better
accuracy. Panda et al. [15] initially constructed predictive models for agriculture crop
yield through Back-propagation Neural Network models combined with four vegetation
indices. Sharifi [16] established a model for integrating field data, remote sensing data and
meteorological data using four machine learning methods to predict barley production
in Iran, and found that the gaussian process regression algorithm performed the best
results. What’s more, Sharifi [17] reported the use of Sentinel-2 data for predicting maize
nitrogen update in three different farms to develop an array of precision agriculture
applications. However, Mupangwa et al. [18] found that linear discriminant analysis
algorithm was the best tool, and SVM was the worst algorithm in maize yield prediction
under conservation agriculture in Eastern and Southern Africa. Abbas et al. [19] employed
four ML algorithms, including linear regression (LR), support vector regression (SVR),
k-nearest neighbor (k-NN), elastic net (EN), to forecast the yield of potato tuber based
on the soil data and crop properties from proximal sensing. Among the ML techniques,
extreme learning machine (ELM), a novel type of learning algorithm with exceptional speed
and excellent generalization abilities [20], has been increasingly considered by researchers
in various fields.

Besides, some researchers also implemented various ML approaches for crop yield
forecasting by climate variables in recent years. In 2014, Veenadhari et al. [21] applied
a kind of decision tree technique to find out the dominant climate parameter for crop yields,
and the incredible accuracy of predictions showed the potential power of the algorithm
in forecasting the crop yield. In 2018, the deep neural network was utilized for crop yield
prediction underlying the climate data by Crane-Droesch A. [22], and results showed that
climate change has considerable negative impacts on corn yield. Hoffman et al. [23] ex-
plored the relation between crop yields and scale-compatible climate data for the 1962–2014
period using Random Forest from sub-Saharan Africa. Vogel et al. [24] studied the impacts
of climate extremes on yield anomalies of maize, soybeans, rice, and spring wheat at the
global scale using sub-national yield data and applying a machine-learning algorithm.
Chemura et al. [25] used extreme gradient boosting, a machine learning approach to model
the current climatic suitability for maize, sorghum, cassava and groundnut in Ghana using
yield data and agronomically important variables. Fan et al. [26] provided an alternative
tool for prefecture level users using an aggregate Z-index which uses precipitation as
an input in random forest to predict rice and maize yield in Sichuan Province, China.

In the recent decade (2011–2019), the average temperature increased by 0.7 ◦C, and the
average precipitation decreased by 88 mm compared to the last decade (2001–2010) in
Czechia. Meanwhile, the maize yield rate slightly decreased from 7.73 t/ha (2001–2010) to
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7.67 t/ha (2011–2019). This decrease can be significant when considering the improvement
of technological and management of maize production. Therefore, the objectives of this
study were (1) to assess the influence of climate factors on maize yield (both grain and
silage) by ELM in Czechia; (2) to establish a predictive model for maize prediction using
the ELM algorithm considering various climate parameters.

2. Materials and Methods
2.1. Data Collection

We selected nine regions for a detailed study on maize production (both grain and
silage) from 2002–2018: Liberec, Moravian-Silesian, South Moravian, Usti nad Labem,
Vysočina, Plzen, South Bohemia, Central Bohemia, and Prague. The data of maize yields
for maize production (both for grain and silage) of the nine selected regions from 2002 to
2018 were obtained from the Institute of Agricultural Economics and Information (IAEI,
http://www.iaei.cz (accessed on 1 July 2021)). The temperatures and rainfall data from
2002 to 2018 come from the Czech Hydrometeorological Institute (CHMI, http://portal.
chmi.cz/historicka-data/pocasi/uzemni-srazky?l=en (accessed on 1 July 2021)). The data
on daily average, maximum and minimum air temperature, relative humidity, daily total
precipitation, and duration of sunshine cover from 2002 to 2018 were collected from the
nine selected stations for the nine studied regions. The maize yield from 2002–2018 was
collected from the Czech Statistical Office (https://www.czso.cz (accessed on 1 July 2021))
The water deficit data was calculated based on the Czech technical norm (ČSN 750434),
which uses standardized temperatures (ST) according to the long-term averages. Detailed
calculation of water deficit was provided in Supporting Information 1.

2.2. Theory of Extreme Learning Machine (ELM)

The ELM is a novel evolutionary machine learning technique coined by Huang et al. [27].
It overcomes the shortcomings of traditional neural networks, particularly, slow learning
rate and easy to fall into local minima [28]. In the learning procedure, the weights between
the input layer and the hidden layer as well as the bias between different hidden layer
neurons can be randomly generated without iterative adjustments, and then the optimal
global solution can be gained by setting the number of hidden layer neurons [29,30]. Figure
1 described the network structure of ELM, including three layers which are input, hidden,
and output layers, respectively. The input layer has l input variables (x1, x2, . . . , xl,), and
m neurons in the hidden layer; the output layer has one desired variable (y). The specific
steps of the ELM algorithm are expressed as follows:
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Randomly generated the input weights (wij) between the input layer and hidden layer
and the bias (bm) between hidden neurons;

Confirm the number of hidden layer neurons and activation function g(x) and calculate
the connection weights (βjk) for the hidden and output layer as well as the output matrix of
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hidden layer H (Equation (1)). The connection weights matrix is β (Equation (2)), and the
desired matrix notes y. Then the ELM network with m neurons can be expressed as
Equation (3)

H = (w1, . . . , wm, x1, . . . , xl , b1, . . . , bm) = g(w1 × x1 + b1), g(w2 × x1 + b2) . . . . . . g(wm × x1 + bm)
. . . . . . . . .

g(w1 × xl + b1), g(w2 × x1 + b2) . . . . . . g(wm × xl + bm)


l×m

(1)

B =
[

βT
1 , . . . , βT

l

]
(2)

Hβ = y (3)

Calculate the output weights matrix (β̂) of output layer: β̂ = H+y, where H+ is the
Moore–Penrose generalized inverse matrix of H.

2.3. Description of Selected Descriptors and Data Analysis

It is known that the silage and grain maize have different growing seasons in the Czech
Republic, where the growing season for silage maize contains four months, from May to
August, while five months for grain maize between May and September. Therefore,
the climate indexes of each month in their growing seasons were employed to build predic-
tive models. The average values of each month were calculated by the collected data of daily
average, maximum and minimum air temperature, relative humidity, daily total precipita-
tion, duration of sunshine. As a result, seven types of descriptors, namely water deficit,
precipitation, average temperature (Temp. Mean), maximal temperature (Temp. Max),
minimal temperature (Temp. Min), humidity, and sunshine of each month during the
growing seasons of silage and grain maize were obtained. In summary, the descriptors for
modeling the silage and grain maize yields are 28 and 35, respectively.

The specific data information of the climate indexes and maize yields were given in
Supporting Information 2. The first dataset (dataset 1, Table S1) for silage maize includes
153 data points. In contrast, there are 152 samples in the second dataset (dataset 2, Table S2)
for grain maize as the observed yield data of South Bohemia in 2015 is missing. Besides,
six data points about the grain maize yields are less than 2 t/ha, probably unreasonable.
Hence, the unreliable values were removed, and the remaining data points in the second
dataset were assembled as the third dataset (dataset 3, Table S3) for building models.
The datasets were arbitrarily divided into two subsets, containing the training set (80%)
for modeling and the test set (20%) for validating, respectively.

2.4. Model Validation

To assess the performance of the predictive models, the metrics of determination coeffi-
cient (R2), relative deviation (RD), average absolute relative deviation (AARD), and the root
mean square error (RMSE) are employed. The equations of them are presented as follows:

R2 =
∑

Np
i=1

(
ypre

i − ym

)2
− ∑

Np
i=1

(
ypre

i − yobs
i

)2

∑
Np
i=1

(
ypre

i − ym

)2 (4)

AARD (%) = 100 ×
Np

∑
i=1

∣∣∣∣∣y
pre
i − yobs

i

yobs
i

∣∣∣∣∣/Np (5)

RD (%) = 100 ×
ypre

i − yobs
i

yexp
i

(6)
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RMSE =

√√√√√∑
Np
i=1

(
ypre

i − yobs
i

)2

Np
(7)

where ypre
i means the predicted yield of corn, while yobs

i notes the observed yield of corn;
ym stands for the average data of the training or test dataset, and Np is the sample number
of the corresponding dataset.

2.5. Software

The SPSS software performed the significance of climate parameters on silage and grain
maize yields based on the multiple linear regression (MLR) input method. The software
Matlab 2018a was utilized to build and train ELM models and calculate the application
domain of the developed models. The significant level was set as Sig. < 0.05.

3. Results and Discussion
3.1. Impact Analysis of Descriptors

As mentioned in 2.5, the input method of MLR was utilized to analyze the influence of
climate factors on silage and grain maize yields. The “t” and “Sig.” values were calculated
and listed in Tables 1–3. The significance of the climate parameter grows as the increasing
absolute values of t and the declining Sig. values. It should be noted that the “-” in front
of t values symbolize the corresponding parameters that negatively influence the maize
yields and vice versa.

Table 1. Climate parameters for silage maize yields of the 9 selected regions in Czechia (dataset 1).

No.
Parameters

t Sig.
Climate Factors Month

1 Water deficit 05 1.279 0.203
2 Water deficit 06 −0.322 0.748
3 Water deficit 07 −2.118 0.036
4 Water deficit 08 −0.443 0.658
5 Temp. Mean 05 0.700 0.485
6 Temp. Mean 06 −0.659 0.511
7 Temp. Mean 07 0.110 0.912
8 Temp. Mean 08 1.020 0.310
9 Temp. Max 05 −1.726 0.087

10 Temp. Max 06 1.356 0.177
11 Temp. Max 07 0.039 0.969
12 Temp. Max 08 −0.963 0.337
13 Temp. Min 05 1.039 0.301
14 Temp. Min 06 −0.868 0.387
15 Temp. Min 07 1.639 0.104
16 Temp. Min 08 −1.261 0.210
17 Humidity 05 1.007 0.316
18 Humidity 06 −1.108 0.270
19 Humidity 07 −0.476 0.635
20 Humidity 08 0.266 0.791
21 Precipitation 05 −0.135 0.893
22 Precipitation 06 0.595 0.553
23 Precipitation 07 −0.768 0.444
24 Precipitation 08 0.186 0.853
25 Sunshine 05 2.158 0.033
26 Sunshine 06 −2.955 0.004
27 Sunshine 07 −2.194 0.030
28 Sunshine 08 0.744 0.458
29 (Constant) 3.239 0.002
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Table 2. Descriptors of climate for predicting grain yields in the nine selected regions of Czechia
(dataset 2).

No.
Parameters

t Sig.
Climate Factors Month

1 Water deficit 05 2.971 0.004
2 Water deficit 06 0.834 0.406
3 Water deficit 07 −0.958 0.340
4 Water deficit 08 −0.308 0.759
5 Water deficit 09 −0.327 0.744
6 Temp. Mean 05 0.603 0.548
7 Temp. Mean 06 −0.505 0.614
8 Temp. Mean 07 0.654 0.514
9 Temp. Mean 08 1.405 0.163

10 Temp. Mean 09 1.185 0.238
11 Temp. Max 05 1.458 0.148
12 Temp. Max 06 0.314 0.754
13 Temp. Max 07 −1.263 0.209
14 Temp. Max 08 −0.355 0.723
15 Temp. Max 09 −1.622 0.108
16 Temp. Min 05 −1.609 0.110
17 Temp. Min 06 0.134 0.894
18 Temp. Min 07 1.610 0.110
19 Temp. Min 08 −0.739 0.462
20 Temp. Min 09 3.134 0.002
21 Humidity 05 1.334 0.185
22 Humidity 06 1.641 0.103
23 Humidity 07 1.456 0.148
24 Humidity 08 −0.281 0.779
25 Humidity 09 −1.059 0.292
26 Precipitation 05 2.074 0.040
27 Precipitation 06 −0.860 0.392
28 Precipitation 07 −0.341 0.734
29 Precipitation 08 0.578 0.565
30 Precipitation 09 −0.973 0.333
31 Sunshine 05 −1.433 0.154
32 Sunshine 06 1.525 0.130
33 Sunshine 07 −0.633 0.528
34 Sunshine 08 −1.909 0.059
35 Sunshine 09 0.179 0.858
36 (Constant) −1.507 0.134

Table 3. Descriptors of climate for grain maize yields in the nine selected regions of Czechia
(dataset 3).

No.
Parameters

t Sig.
Climate Factors Month

1 Water deficit 05 2.643 0.009
2 Water deficit 06 0.686 0.494
3 Water deficit 07 −0.509 0.612
4 Water deficit 08 −0.153 0.879
5 Water deficit 09 0.485 0.628
6 Temp. Mean 05 0.002 0.999
7 Temp. Mean 06 −0.186 0.853
8 Temp. Mean 07 1.107 0.271
9 Temp. Mean 08 1.804 0.074

10 Temp. Mean 09 0.293 0.770
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Table 3. Cont.

No.
Parameters

t Sig.
Climate Factors Month

11 Temp. Max 05 1.934 0.056
12 Temp. Max 06 −0.126 0.900
13 Temp. Max 07 −1.923 0.057
14 Temp. Max 08 −0.090 0.929
15 Temp. Max 09 −1.393 0.166
16 Temp. Min 05 −1.360 0.177
17 Temp. Min 06 −0.195 0.846
18 Temp. Min 07 1.718 0.089
19 Temp. Min 08 −0.753 0.453
20 Temp. Min 09 3.439 0.001
21 Humidity 05 0.320 0.749
22 Humidity 06 2.033 0.044
23 Humidity 07 0.655 0.514
24 Humidity 08 −0.273 0.785
25 Humidity 09 −0.310 0.757
26 Precipitation 05 1.784 0.077
27 Precipitation 06 −1.095 0.276
28 Precipitation 07 −0.173 0.863
29 Precipitation 08 0.517 0.606
30 Precipitation 09 −0.895 0.373
31 Sunshine 05 −2.216 0.029
32 Sunshine 06 2.069 0.041
33 Sunshine 07 −1.029 0.306
34 Sunshine 08 −2.517 0.013
35 Sunshine 09 0.234 0.815
36 (Constant) −0.817 0.416

The descriptor of sunshine in June (Sig. = 0.004) is the most important for the silage
maize yield in Czechia, and then the sun of May and July and water deficit of July with
the Sig. < 0.05 are also of great significance (Table 1). The minimum temperature (Temp.
Min) in September and the water deficit in May are the first and second most significant
factors for the grain maize yield in Czechia (Tables 2 and 3), while the following crucial
descriptors (Sig. < 0.05) are different since the datasets have a bit different.

3.1.1. Temperature

Temperature is an essential factor influencing maize yield. As shown in Table 1, Temp.
Max of May and June and the Temp. Min of July with lower Sig. values and higher absolute
t values are more crucial than other temperature descriptors for the silage maize. However,
for the grain maize, the enormously influential temperature indexes include Temp. Min
of September (Sig. = 0.002), July (Sig. = 0.110), and May (Sig. = 0.110). When it turns
to the third dataset, the three most crucial factors for grain maize are the Temp. Min of
September (Sig. = 0.001) and Temp. Max of May (Sig. = 0.056) and July (Sig. = 0.057).
Overall, the Temp. Max of May is significant for both silage and grain maize, but it is
negative for silage and positive for grain maize. The most critical temperature factor is
Temp. Min of July for silage maize while that is Temp. Min of September for grain maize.
Generally, the maize yields typically decrease with increasing temperature because of the
shorter phenological phases [31]. In United State, Hoffman et al. [32] reported that maize
yield decrease sharply when maximum temperature exceed 29 ◦C.

3.1.2. Precipitation

Precipitation is another critical factor influencing the maize yield. According to the
t and Sig. values of precipitation parameters from Tables 1–3, it has a more significant
influence on grain maize than silage maize. It also can be observed that the precipitation
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of May and September has a positive influence on grain maize, but the precipitation of
other months presents a negative impact. Besides, the greatest precipitation month is May
(Sig. = 0.040 or 0.077) for grain maize, but that is July (Sig. = 0.444) for silage maize. In prin-
ciple, the effect of precipitation may be either positive or negative. A positive correlation
may happen if precipitation reduces the existing water stress, and a negative correlation
maybe because of the intensified nitrogen leaching by the excessive precipitation [31].
Meanwhile, Fan et al. [26] also reported a negative effect of precipitation on maize yield in
Mianyang, China.

3.1.3. Water Deficit

Compared with the water deficit of other months, the water deficit of July has the most
significant impact on silage maize yield. Still, the water deficit of May is the most influential
parameter for the grain maize. Based on the t values of water deficit descriptors, we can
deduce that the water deficit in May has a positive influence while June, July, and August
show a converse effect. As for grain maize, the water deficit of May and June is positive,
while that of July, August, and September is negative. In Peru, Laudien et al. found that
a higher water availability of 77 mm in the growing season would have regionally different
effects, ranging from an increase of 20% to a decrease of 17% in maize yields [33].

3.1.4. Sunshine

Sunshine hours are significant for crop growth. In our study, the sunshine hours of
May with Sig. = 0.004 are highly significant for silage maize yields, and then the sunshine
hours of June (Sig. = 0.033) are also quite influential (Tables 1–3). In terms of grain maize
yields, the sunshine hour of August with Sig. = 0.059 or 0.013 is still a crucial parameter,
while others are relatively less important. It has been reported that long hours of sunshine
in spring (April to June) increased maize yield in Czechia [34].

3.1.5. Humidity

The humidity of June has the lowest Sig. value for both silage and grain maize among
their whole growth seasons (Tables 1–3). Thus, the descriptor of June’s humidity has
greater importance for them than other months. This is consistent with a previous report
on maize yield response to climate using ML (Random Forest) in the US, in which maize
yield showed a negative response to low atmospheric humidity during the critical phase
that encompasses flowering [32].

3.2. Extreme Learning Machine (ELM) Model Establishment

To develop effective models in this work, the collected data of climate indices dur-
ing the growing season of silage and grain maize were used as the input descriptors as
previously mentioned in the Section 2.3. The number of hidden neurons m was set as
40, and activation function g(x) was determined as “sigmoid” for all the training datasets.
Then three ELM models were constructed to predict silage and grain maize in Czechia,
and the test sets were used to verify the properties of the models.

Figure 2a shows the predicted yields compared with observed yields for silage maize.
Figure 2b,c show the predicted yields compared with observed yields for grain maize using
different datasets. The data points located in the vicinity of the diagonal demonstrate the
excellent performance of the proposed models.
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Figure 3a shows the RD% of ELM1 for silage maize in different regions of Czechia,
with 93.4% of RD% values for the data points in the range of ±15%. Only one predictive
data has the RD value of over 20%, which is 20.79% for the maize yield from Moravian-
Silesian in 2004. The RD% values of ELM2 and grain maize in different regions of Czechia
are presented in Figure 3b,c. As for the ELM2 model, around 69.1% of RD values are
between −20% and 20%, and the percent of RD within ±40% is 93.4%. However, there
are four RD% exceed 100%, which corresponds to the maize yields from Liberec in 2005
(113.8%), from Vysočina in 2015 (2062.2%), from Plzen in 2015 (267.5%), from South Bohemia
in 2013 (121.0%). Nevertheless, after removing the yields below 2 t/ha from the training
and test datasets, the percent of RD in the range of ±20% and ±40% are 74.7% and 94.5%,
respectively. Additionally, there was only one data from Plzen in 2013 with the RD over
100%, which is 129.8%.

It can be observed that the AARD value of the ELM1 model for the total datasets is
6.565%, illustrating the incredible precision of the model for predicting silage maize yields
(Table 4). The AARD% values of the ELM3 model for different datasets are lower than
those of the ELM2 model (Table 4). Therefore, the accuracy of the ELM3 model is better
than the ELM2 model for grain maize. Our models are comparable regarding accuracy and
stability with other ML algorithms applied for maize prediction in the US, in which the best
algorithm and inputs improves the prediction accuracy by 5% when compared to a baseline
statistical model (Lasso) using only basic climatic and satellite observations [35]. Besides,
all the values of RMSE for various models in our study are relatively low (0.981–3.307%),
which performs better than other ML algorithms (random forests) used for maize yield
prediction with an RMSE of 14% [13]. The determination coefficient (R2) values in our study
are above 0.7 (Table 4), this is comparable to the R2 of 0.77 using Bayesian Neural Network
for the late-season prediction across the U.S. Corn Belt in testing years 2010–2019 [36],
and R2 of 0.78 using boosted regression tree model to predicting life cycle global warming
on corn production under four emissions scenarios for years 2022–2100 [37].
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Table 4. The statistical parameters of ELM models built in this study.

No. Models Datasets Number of Datasets AARD % RMSE R2

1 ELM1

Train 123 6.200 2.675 0.674
test 30 8.062 3.307 0.560
total 153 6.565 2.810 0.641

2 ELM2

Train 122 35.791 1.052 0.746
test 30 17.335 1.145 0.754
total 152 32.148 1.071 0.741

3 ELM3

Train 117 15.126 1.013 0.705
test 29 15.193 0.981 0.773
total 146 15.139 1.006 0.716

3.3. The Application Domain (AD) of ELM Models

Defining the application domain of a model is essential to verify individual data,
which may be far from the majority of data in a dataset [38]. A well-known approach to
detect the outlier of a model is the leverage approach presented by William plot, consisting
of the standardized residual (σ) as y-axis and leverage value (h) as the x-axis. The leverage
values are obtained through Hat matrix (H) expressed as follows (Equation (8)) [39–41]:

H = X
(
XtX

)−1Xt (8)

where X is the input descriptor matrix of the training set and t means the transpose matrix.
The critical leverage value is described as h* = 3 p/n, where p is the number of input
variables plus one and n stands for the number of training samples. The points located
in the domain of 0 ≤ h ≤ h* and −3 ≤ σ ≤ 3 illustrate that the predictions locate in the
application domain. The points located in the range of h* ≤ h and −3 ≤ σ ≤ 3 can be
considered the points outside the AD of the implemented model. Nevertheless, the points
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situated in the domain of 3 ≤ σ and σ≤ −3 are regarded as outliers of the predictive
model [42].

Figure 4a shows that all the predictions of the ELM1 model for silage maize yield are
reliable data though there is one point in the range of Good High Leverage. As for the
ELM2 model (Figure 4b), two outliers are probably attributed to the doubtful data [42,43],
but the majority of the data points are still in the AD of the model demonstrating that the
model is valid. It can be seen from Figure 4c that all the points are located in the AD of the
ELM3 model. Therefore, the ELM3 model for grain maize yields has better performance
than the ELM3 model for predicting the grain maize in Czechia.
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3.4. Prediction of Maize Yield under Various Climate Factors

By analyzing the climate descriptors in Section 3.3, the temperature and water deficit
can be considered the most critical parameters for the silage and grain maize yields.
To predict the silage and grain maize using our models, we first calculated the average
of different climate parameters from 2002 to 2018; then under the precondition that the
average values of other parameters remain the same, the values of temperature and water
deficit were adjusted. Specifically, two groups of parameters, one is water deficit (05) and
Temp. Max (05) and the other is water deficit (07) and Temp. Min (07) was designed
to forecast the maize yields by ELM1 and ELM2 models. Specifically, 11 data points
(including the average) were taken within the range of plus or minus one degree of the
average temperature, and 11 data points were used within the range of plus or minus 50 of
the average water deficit. Finally, 242 new climate data points as input descriptors are used
to predict the silage and grain maize yields by the two proposed models separately, and the
detailed results were provided in the supplementary information (Tables S4 and S5).

It should be noticed that although the developed models are nonlinear, i.e., the rela-
tionships between the grain maize yields and the climate factors are nonlinear, the increased
or decreased rate can be obtained. For the forecasted grain maize yields, approximately
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0.356 t/ha will be decreased when the water deficit (07) value adds by 10, and around
0.137 t/ha will be dropped when the Temp. Max (05) rises by 0.2 ◦C, with a growing
proportion of −1.002% and −0.389%, respectively. In contrast, when the water deficit (05)
value grows by 10 and the Temp. Min (07) by 0.2 ◦C, the maize yields of the silage will
add about 0.510 t/ha and 0.181 t/ha, respectively, and the growth rates are 1.467% and
0.511%, respectively. Regardless of the new grain maize yields predicted by the ELM2
model, every 10 mm increase of water deficit (05) and water deficit (07) will cause a roughly
2.995% (0.194 t/ha) and −0.962% (−0.059 t/ha) increment, respectively. On the other hand,
when the Temp. Max (05) and Temp. Min (07) go up by 0.2 ◦C, the yields increase rate
of grain maize will be around 0.527% (0.034 t/ha) and 0.277% (0.018 t/ha). Obviously,
water deficit (05) has a greater influence on grain maize yields than silage maize yields,
but the Temp. Min (07) is more influential for silage than grain maize yields. In the case of
Temp. Max (05) increase 2 ◦C, silage yield will decrease 1.367 t/ha and is about 3.826% loss,
while grain yield will increase 0.337 t/ha and is about 5.394% increase. This means our
results on maize yield considering climate change by ELMs is not so pessimistic compared
to other models (combined empirical models of maize production with future warming
scenarios) that maize yields are foreseen to decline by 20–40% and 40–60% with a tem-
perature increase of 2 and 4 ◦C, respectively [4]. Furthermore, Crane-Droesch found that
negative impacts of climate change on corn yield by semiparametric neural networks (one
of ML methods), but less severe than impacts projected using classical statistical methods,
especially in warmest regions [22]. Fan et al. found −0.58% to −0.75% maize yield by
precipitation [26]. However, Su et al. estimated that under future climate conditions,
the performance of conservation agriculture is expected to mostly increase for maize over
its tropical areas [44]. In sub-Saharan Africa, technology could steadily increase maize
yields by about 1% (13 kg/ha) per year while increasing temperatures decreased yields by
0.8% (10 kg/ha) per ◦C. That means although we should expect increases in future crop
yields due to improving technology, the potential yields could be progressively reduced
due to warmer and drier climates [23].

4. Conclusions

The current work collected the climate data of nine regions in Czechia between 2002
and 2018, and the influences of climate indexes on the silage and grain maize yields in
Czechia were analyzed. Results show that the most significant two climate parameters are
sunshine in June and water deficit in July for the silage maize yield, while those are the
Temp. Min of September and the water deficit in May for grain maize yield in Czechia.
There ELM models were obtained to predict the silage (ELM1) and grain (ELM2 and ELM3)
maize yields in Czechia. The R2 values of the models for the total datasets are 0.641, 0.741,
and 0.716, while the AARD values are 6.565%, 32.148%, and 15.139%, respectively, present-
ing their robustness and accuracy. The application domain was also defined to detect the
reliability of the predictions. The majority of predictions are situated in the AD of models
showing the reliability of these models. Based on our ELM models, silage yield will de-
crease by 1.367 t/ha (3.8% loss), and grain yield will increase by 0.337 t/ha (5.4% increase)
when the max temperature in May increases by 2 ◦C. In conclusion, the proposed models
show a potential application for predicting maize yield.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/agronomy11112344/s1, calculation of water deficit; Table S1: The predicted and observed
yields of silage maize in different regions of Czechia in 2002–2018, Table S2 The predicted and
observed yields of grain maize in different regions of Czechia in 2002–2018, Table S3 The predicted
and observed yields of grain maize in different regions of Czechia in 2002–2018, Table S4 The newly
predictive yields of silage maize in different regions of Czechia by ELM1 model, Table S5 The newly
predictive yeilds of grain maize in different regions of Czechia by ELM2 model.
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