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Abstract: Microsatellites, or simple sequences repeat (SSRs), are distributed in genes, intergenic
regions and transposable elements in the genome. SSRs were identified for developing markers
from draft genome assemblies, transcriptome sequences and genome survey sequences in plant and
animals. The identification, distribution, and density of microsatellites in pre-microRNAs (miRNAs)
are not well documented in plants. In this study, SSRs were identified in 16,892 pre-miRNA sequences
from 292 plant species in six taxonomic groups (algae to dicots). Fifty-one percent of pre-miRNA
sequences contained SSRs. Mononucleotide repeats were the most abundant, followed by di- and
trinucleotide repeats. Tetra-, penta-, and hexarepeats were rare. A total of 9,498 (57.46%) microsatellite
loci had potential as pre-miRNA SSR markers. Of the markers, 3,573 (37.62%) were non-redundant,
and 2,341 (65.51%) primer pairs could be transferred to at least one of the plant taxonomic groups. All
data and primer pairs were deposited in a user-friendly, freely accessible plant miRNA SSR marker
database. The data presented in this study, accelerate the understanding of pre-miRNA evolution
and serve as valuable genomic treasure for genetic improvements in a wide range of crops, including
legumes, cereals, and cruciferous crops.

Keywords: microsatellite; microRNA; pre-miRNA; simple sequence repeat; marker database; legumes

1. Introduction

Microsatellites, also called simple sequence repeats (SSRs), consist of tandemly re-
peated units of one to six nucleotides. They are abundant elements in both prokaryotic and
eukaryotic genomes, although their frequency varies greatly among different organisms [1].
Simple sequence repeats likely originate from either de novo or adoptive genesis [2]. The
slippage in DNA replication and unequal recombination are responsible for length-altering
mutations of SSRs, thus causing their increase and evolution [3,4]. Simple sequence repeats
are inherently unstable, as a result they can be highly polymorphic even among closely
related species [5]. The mutation rates within SSRs generally increase with the increasing
number of repeat units [4]. SSRs are not randomly distributed in genomes [2,6] and they
are found in noncoding, as well as coding, regions [3,7]. Mutations in SSRs can affect the
function of sequence segments and ultimately lead to phenotypic changes [8,9]. In this
sense, SSRs are described as potential evolutionary tuning knobs [10,11], allowing for a
fast adaptation under selection pressure.

In recent years, SSRs have become one of the most popular classes of genetic markers
because of their high reproducibility, codominant inheritance, multi-allelic nature, high
genomic abundance, wide range of distribution and high mutational rate [12]. For these
reasons, SSRs are used as informative molecular markers in population genetic [13–15] and
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phylogenetic [16–18] studies. Furthermore, SSR markers are used extensively in studies on
mapping [19,20], as well as linkage associations [21].

Simple sequence repeats are identified in ESTs (Expressed Sequence Tag) [22,23] and
genomic sequences in species from fungi to vascular plants [3,7,24–27]. However, the
occurrence and frequency of SSRs in plant pre-microRNAs (miRNAs) has not been inves-
tigated. Pre-miRNAs are short sequences that become functional miRNAs after nuclear
and cytoplasmic processing [28]. MicroRNAs received considerable attention in recent
years, and several studies characterized pre-miRNA and miRNA functions in plants [29,30];
a miRNA database was also constructed [31]. Thus, these data are available for further
use, including in functional analysis, target prediction and even in the development of
molecular markers. Several studies indicated that SSR-bearing “pri-miRNA candidates”
may have roles in gene regulation and can be used for the development of functional
molecular markers. For example, Joy and Soniya [32] reported that a CT-motif dinucleotide
is the key element in one of the SSR-bearing “pri-miRNA candidates” that was found in the
Piper nigrum genome. This candidate has an important regulatory function in the miRNA-
mediated mechanism for plant growth and development. In Cleistogenes songorica, 110
SSR-bearing “pri-miRNA candidates” were identified; SSR markers were developed and
their transferability to other nongrass species was tested. Then, their utility in population
structure and genetic diversity estimations was validated [33]. This study demonstrated
that SSR-bearing “pri-miRNA candidates” were the potential source of molecular markers
for the study of genetic diversity and marker-assisted breeding of grass species [33].

Notably, even single-nucleotide changes in pre-miRNAs can greatly affect their func-
tion [33,34]. On the basis of this observation, the abundance of SSRs in pre-miRNAs was
investigated. In brief, in this study, the frequency, density, and repeat-type characteristics of
SSRs were determined in pre-miRNA sequences in plant species from different taxonomic
groups. This work provides a foundation to increase the understanding of the roles SSRs
play in pre-miRNA functions. Furthermore, to maximize the utility of the data, a freely
accessible database was developed.

2. Methods
2.1. Retrieving and Processing pre-miRNA Sequences

A total of 16,892 pre-miRNA sequences were obtained from PMD (http://bioinformatics.
cau.edu.cn/PMRD/ accessed on 14 September 2019) and miRNEST2.0 (http://lemur.amu.
edu.pl/share/php/mirnest/downloads.php accessed on 14 September 2019) [31], as well
as from in-house mining of pre-miRNA sequences from fungi and citrus EST databases.
Pre-miRNA sequences of fungal and citrus species were predicted from the EST sequences.
The miRNA database v21 was used for homology searches against fungal and citrus EST
collections. The best hits with a minimum length of 18 nucleotides and a maximum miRNA
length cover up to 26 nucleotides, with no more than three mismatches considered as
putative candidate miRNAs. Further, BLASTx [35] was applied to eliminate protein coding
transcripts. Then, Mfold [36] was used to predict stem–loop structure. Potential pre-miRNA
sequences were selected according to the following criteria: (a) a mature miRNA on the
arm of the hairpin; (b) minimum paired and unpaired residues in miRNA of 14 and ≤5,
respectively; (c) maximum number of five G–U pairs in miRNA; (d) maximum bulge size
of 3 nt; (e) low negative minimal folding free energy (MFE) (≤−18 kcal/mol) [37]; and (f)
high minimal folding free energy index (MFEI = [(MFE/length of the RNA sequence) ×
100]/(G + C)%) (>0.85) [38–40]. In this study, pre-miRNAs of different plant species were
separated into six taxonomic groups: algae, fungi, mosses–ferns, conifers, monocots, and
dicots (listed in Supplementary Table S1).

2.2. Microsatellite Search and Localization and Primer Design

A Perl script was developed to scan plant pre-miRNA sequences for perfect microsatellites.
In the search, a minimum of three repeat units was required, similar to a survey of SSRs
in Escherichia coli [41]. To verify results, two tools were used to detect SSRs, as described by
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Chen et al. [42]. Locations of SSR motifs on pre-miRNA sequences were predicted by comparing
SSR location and stem–loop structure using Perl scrip developed in-house. Primer pairs from
identified SSR-associated miRNAs were designed with primer3 software using the following
parameters: primer length range 18 to 23 nt, with 21 nt the optimum; PCR product size range
= 100 to 250 nt; optimum annealing temperature 55 ◦C; and GC content 40% to 60%, with
50% the optimum [43]. Perl script was used to remove redundant primer sets from the primer
database. If more than one set of primers was generated for the same sequence, one primer set
was selected randomly for further analysis.

2.3. In Silico Characterization, Transferability, and Polymorphism of Primer Sets

Identified SSRs were characterized in silico according to (i) length of repeat motifs
(Class I ≥ 20 nt, Class II < 20 nt) and (ii) base composition of repeat motifs (AT-rich, GC-
rich, and AT–GC balanced). Localization of SSR motifs in either stem or loop regions of
pre-miRNAs was determined by correlating stem–loop position and SSR position within
pre-miRNA sequences. MicroRNA SSRs were mapped onto 35 plant genomes (covering
all six taxonomic groups) using the ePCR strategy. Marker positions on mapped genomes
were recorded, and in silico PCR amplicon size was calculated. Then, the size of each
marker in different genomes was compared. If an amplicon size differed by at least 2 bp,
the SSR was classified as polymorphic; other amplicons were considered as monomorphic.

2.4. Creation of PmiRNASM (Plant microRNA Simple Sequence Repeat Marker) Database

A user-friendly, freely accessible pre-miRNA SSR marker database (PmiRNASSRdb:
http://plantmirssr.enset-project.org/ or http://genomicsres.org/plantmirssr/ ) was con-
structed to maximize the use of the markers. The web interface was designed by using
HTML and JAVA script, which is compatible with various browsers, including Google
Chrome, Mozilla Firefox and Internet Explorer. In this study, PHP scripts were used for
communication between user interface and database at the server. The information re-
garding SSR primers, their flanking sequences, miRNA association, transferability, and
polymorphism details are cataloged in the MySql server. The database can be accessed
through http://plantmirssr.enset-project.org/ or http://genomicsres.org/plantmirssr/.

2.5. Statistical Analyses

Relative occurrence of SSRs in each taxonomic group was calculated as follows:
relative occurrence of an SSR = (number of SSRs) / (number of pre-miRNAs). The frequency
of an SSR class of unit size i (1 ≤ i ≤ 6) was calculated as the average number of SSRs per
kilobase as follows: Fi = (Ni/G) × 1000, where Ni is the total number of SSRs with unit size
i, and G is the size of the pre-miRNA sequence. The SSR density per kilobase was obtained
as follows: Di = (Li/G) × 1000, where Li is the total length of SSR motifs with unit size i.
Linear regression was used to determine relations between average number, frequency
and density of microsatellites and genome features (namely AT or GC content). Quadratic
regressions (QR) of SSR density, SSR frequency, and SSR subgroup on pre-miRNA sequence
AT content were determined using Perl script and MS Excel. Goodness of fit of a QR was
determined by R2, and f -tests and t-tests were used to determine statistical significance of
regressions and coefficients, respectively. Pearson correlations and Student’s t-tests were
also performed using MS Excel.

3. Results
3.1. Frequency, Density and Distribution of Simple Sequence Repeats

A total of 16,892 pre-miRNA sequences from 292 plant species were searched for SSRs, and
the results are summarized in Table 1. The percentage of SSR-containing pre-miRNAs ranged
from 38 for mosses and conifers to 84 for fungi. On average, at least 1.2 SSRs were found per
plant, pre-miRNA sequence. Overall, 51% of plant pre-miRNA sequences contained at least
one SSR. The SSR frequency and density gradually increased from lower to higher in the plant
species. Class II (SSR length shorter than 20 bp) SSRs were more frequent than Class I (longer
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than 19 bp) SSRs in plant pre-miRNA sequences. The most abundant SSRs were those of 5 to
10 bp in length, and the least frequent were those longer than 20 bp, as shown in Figure 1a,b.
The frequency of the repeat numbers of the SSR motifs in the pre-miRNA sequences was not
significantly different among the six plant taxonomic groups. The most frequent number of
repeats in pre-miRNA sequences was five (Figure 1a).
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Table 1. Summary of in silico simple sequence repeat (SSR) mining in plant pre-microRNA sequences (PMS).

Item Fungi Algae Mosses Conifers Monocots Dicots Overall

No. of species 23 6 3 10 56 194 292
No. of analyzed PMS 45 109 425 248 6838 9227 16892
Range length of PMS 106–865 65–932 67–533 58–650 45–910 41–1021 41–1021
Average length of PMS 370 241 158 150 142 141 200
Total length of PMS 16,659 26,258 67,258 37,139 973,200 1,300,562 2,421,076
Average GC content 48.39 57.58 47.77 46.23 44.45 44.37 48
No. of non-SSR PMS 7 60 265 154 3373 4382 8241
No. of SSR-containing PMS 38 49 160 94 3465 4845 8651
% of SSR-containing PMS 84 45 38 38 51 53 51
Total no. of SSRs 145 108 245 130 6754 9149 16531
Density of SSRs per bp of
PMS 115 243 275 286 144 142 146

Range of SSR occurrence in
PMS 1–13 1–12 1–5 1–4 1–10 1–29 1–29

Average no. of SSRs per PMS 3.2 1 0.6 0.5 1 1 1.2
Class I SSRs 25 7 5 5 73 286 401
Class II SSRs 120 101 240 125 6681 8863 16,130
GC-rich SSRs 37 78 52 28 1071 1786 3052
AU-rich SSRs 89 28 152 94 5330 6724 12417
GC–AU balanced SSRs 19 2 41 8 353 639 1062

3.2. Occurrence and Relative Counts of Repeat Units

In plant pre-miRNAs, the mononucleotide motif was the most common repeat class
(Table 2). The relative occurrence of mononucleotide repeats ranged from 0.43 in mosses
to 1.76 in fungi. In ferns–mosses, conifers, monocots and dicots, poly (A/U) repeats
dominated, whereas, in algae, poly (C/G) repeats dominated (Figure 1c). In fungi, the
numbers of poly (A/C) repeats and poly (G/U) repeats were comparable (Figure 2). The
longest mononucleotide repeat was (A)38, which was found in dicot pre-miRNAs, and it
was followed by (A)28 in monocots and (U)20 in fungi (Supplementary Table S2).
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Table 2. Number of pre-microRNA sequences (PMS) and absolute and relative numbers of simple sequence repeats in
different plant taxonomic groups.

Plant
Groups

No. of
PMS

Repeat Type Total
Mono Di Tri Tetra Penta Hexa Compound

Fungi 45 79(1.76) 5(0.11) 20(0.45) 0(0.00) 2(0.04) 17(0.38) 22(0.49) 145(3.22)
Algae 109 71(0.65) 5(0.05) 28(0.26) 0(0.00) 0(0.00) 2(0.02) 2(0.02) 108(0.99)
Mosses 425 183(0.43) 43(0.10) 11(0.03) 0(0.00) 6(0.01) 1(0.00) 1(0.00) 245(0.56)
Conifers 248 109(0.44) 8(0.03) 8(0.03) 0(0.00) 1(0.00) 2(0.01) 2(0.01) 130(0.52)
Monocots 6838 5725(0.84) 698(0.10) 138(0.02) 12(0.00) 44(0.01) 49(0.01) 88(0.01) 6754(0.99)
Dicots 9227 7454(0.81) 791(0.07) 533(0.06) 8(0.00) 101(0.01) 88(0.01) 174(0.02) 9149(0.99)
Total 16,892 13,621(0.81) 1550(0.09) 738(0.04) 20(0.00) 154(0.01) 159(0.01) 289(0.02)

Dinucleotide repeats were the second-most abundant repeat class in pre-miRNAs
(Table 2) for most of the taxa except fungi and algae. The AG/CU repeats were predominant
in fungi, ferns–mosses, conifers, monocots and dicots, whereas AG/CU and AU/UA
repeats were not found in 109 algal pre-miRNAs (Figure 1c). Notably, CG/GC repeats
were relatively rare in ferns–mosses, conifer, monocot and dicot pre-miRNAs. The longest
dinucleotide repeat was (AU)33, which was found in monocot pre-miRNAs (Supplementary
Table S2).

Relative counts of trinucleotide repeats ranged from 0.02 in monocots to 0.45 in fungi
(Table 2). In plant pre-miRNAs, trinucleotide repeats were less frequent than di- and
mononucleotide repeats. The ACU/AGU and AUG/GUA repeats were common in all
six plant taxonomic groups, whereas other trinucleotide repeat units were rare (Figure 1c).
Notably, most trinucleotide repeat units contained the base “U.” In dicot pre-miRNAs,
“U”-containing trinucleotide repeat units were predominant, whereas in monocots, “C”-
containing trinucleotide repeat units were predominant. The longest trinucleotide repeat
unit was (GAA)30, which was found in monocot pre-miRNAs (Supplementary Table S2).

Tetra-, penta-, and hexanucleotide repeats were less abundant than other repeats
in plant pre-miRNAs (Table 2). In particular, tetranucleotide repeats were not found in
fungi, algae, mosses and conifers, whereas pentanucleotide repeats were not found in algae
pre-miRNAs (Figure 1c). AU-rich and AU–GC balanced tetra nucleotide repeats were
dominant in dicot and monocot pre-miRNAs. The GC-rich penta nucleotide repeats were
more abundant in mosses than in other plant pre-miRNAs. The longest penta nucleotide
repeat was (AACCG)6 with a length of 30 bp, and it was found in algal pre-miRNAs. A
total of 34 different hexanucleotide repeat motifs were identified, but a common motif was
not found among the six taxonomic groups of plants. However, the CCUCUU motif was
more frequent in fungal pre-miRNAs. The longest hexanucleotide repeat was (CUUCCU)13,
which was found in dicot pre-miRNAs.

3.3. Effect of Nucleotide Composition on Simple Sequence Repeat Frequency, Density and Variation
within pre-microRNAs

To evaluate the effects of the nucleotide composition of plant pre-miRNAs on SSR fre-
quency, density and variation in SSR motif composition, correlations between the AT/GC
content of pre-miRNA sequences and different features of SSRs (density, frequency and mo-
tif nucleotide composition) were determined for the different plant species (Figure 2). The
AT content of plant pre-miRNA sequences was weakly correlated with the SSR frequency
and density of the different plant species. The regressions of the frequency and density of
each type of SSR on AT content were also determined, and the coefficient a increased with
the increase in SSR frequency (Supplementary Tables S3 and S4). For example, mono- and
di-repeat types of SSR were more frequent in pre-miRNA sequences, and their regression
coefficients were also higher than those of other types of SSR repeats (Figure 2).

To evaluate the effect of pre-miRNA sequence nucleotide composition on SSR motif
constitution, each type of SSR was categorized according to their repeat unit nucleotide
composition into AT-rich, GC-rich, or AT–GC balanced SSR motif subgroups. The abun-
dance of the motif of each subgroup per SSR type was determined, and the percentage was
calculated. Subsequently, the percentage of abundance was plotted against the AT content
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(%) of pre-miRNA sequences of different plant species (Figure 2). As expected, AT-rich and
GC-rich motifs were the most common for high-AT and GC-rich pre-miRNA sequences,
respectively. Balanced AT–GC motifs were more common in AT–GC balanced sequences.
In addition, the difference in AT and GC contents (%) of pre-miRNA sequences was not
significant (Table 1).

3.4. Location of Simple Sequence Repeat Loci in pre-microRNA Sequences

A comparative analysis of SSR motif localization on pre-miRNAs was conducted, and
the results are summarized in Figure 3. In all plant taxonomic groups, most SSR motifs
were in the stem of miRNAs. Similarly, most motifs, mono- to hexanucleotide, were in the
stem of miRNAs. Overall, 20% of SSR motifs were in the loop of miRNAs.
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3.5. Pre-microRNA Simple Sequence Repeat Marker Development and In Silico Characterization,
Transferability, and Polymorphism Test

To maximize the utility of miRNA SSRs, primers were designed and their in silico
transferability, polymorphism, and function were tested. The results are provided in
Tables S5 and S6 and Figure 4. Among 16,531 SSR loci, 9498 (57.46%) could be used as
markers. The remining 42.54% of loci failed to generate specific primers because of limited
lengths of flanking sequences on both sides of the SSR tract. Some pre-miRNA sequences
contained more than one SSR loci and, in those cases, multiple sets of primers were
generated from the same pre-miRNA sequence. In most cases, the primer sequences of the
multiple primer sets were the same; therefore, many duplicate primers were generated
from multiple loci-containing sequences. To reduce primer redundancy, only one primer
set was selected from one pre-miRNA sequence. In this study, 3573 non-redundant sets
of pre-miRNA SSR primers were designed. Primer modeling success varied significantly
among plant taxonomic groups. The highest and lowest primer modeling rates were
noted in mosses (34.29%) and fungi (15.17%), respectively. Compound repeat loci had the
highest percentage of primer modeling success, and they were followed by tetra-, di-, and
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monorepeat motifs (Figure 4a). Primer modeling success rate was also partitioned on the
basis of the SSR type, nucleotide base composition of the SSR motif, and motif length in
the six plant taxonomic groups (Figure 4b). In the analysis of nucleotide base composition
of SSR motifs, AU-rich SSR loci had the best performance in primer modeling in all plant
taxonomic groups except algae. The Class II-type SSR motif was better for primer modeling
than the Class I-type SSR motif in all six plant taxonomic groups.
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and polymorphism (%) of SSR markers among 34 species and (d) number of transferable SSR markers among six plant
taxonomic groups.

e-PCR was used to estimate the in silico transferability and polymorphism of miRNA
SSRs. All non-redundant miRNA SSR primer pairs were blasted against 35 plant species
from the six major plant groups, and 2341 (65.51%) of the miRNA SSRs were transferable
to at least one of the six plant taxonomic groups. Thus, they were highly conserved
among the plant species (Figure 4c). The highest number of markers was transferable to
O. sativa (26.61%), followed by Arabidopsis (11.61%), P. glauca (11.08%), and P. virgatum
(10.24%). Notably, two of the markers, PmiR03763 and PmiR09889, could be transferred
to all taxonomic groups (Figure 4d). MicroRNA SSR markers were classified as either
monomorphic or polymorphic based on their ePCR amplicon size variation, and 937
(26.22%) markers were monomorphic and 1404 (39.29%) were polymorphic.

3.6. PmiRNASSR (Plant microRNA Simple Sequence Repeat Marker) Database

To facilitate the wider use of SSRs associated with plant miRNAs, a freely accessible
web-based, searchable and downloadable database was constructed. The database included
3573 miRNA SSR markers with the following features: motif repeats, motif length, SSR
class (Class I or II), motif type, motif nucleotide base composition (AT-rich, GC-rich, AT–GC
balanced), marker id, miRNA family, in silico transferability and polymorphic information.
The marker information could be retrieved using the general search or customized search
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option (tools). General search tools facilitated the search of miRNA SSR marker information
on the basis of single search parameters such as SSR type, SSR class, SSR motif richness
and miRNA family. With the customized search tool, more specific miRNA SSR marker
information could be extracted from the database using three parameters in different
combinations based on user interest. The snapshots of the various features and utilities of
the database are shown in Figure 5.
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A search returns of all the information on markers as a list in tabular format, in-
cluding marker id, SSR motif, motif type, motif nucleotide base composition, primer
sequences, annealing temperature, PCR product size, flanking sequences, miRNA fam-
ily, transferability and polymorphism. In addition, the database has two other link
pages, home and about. The home page provides the basic information and objectives
of the database. The about us page details the workflow, methodology applied and Perl
script used in this study, as well as some additional data files and useful links. Further-
more, the database provides a download facility for the search data. The database can
be accessed via the web link http://plantmirssr.enset-project.org/index.html (Mirror:
http://genomicsres.org/plantmirssr/).

4. Discussion

Plant pre-miRNAs are found in the intronic, exonic and intergenic regions of genomes [28],
and they are typically associated with at least some microsatellites. The availability of plant pre-
miRNA sequences provides opportunities to analyze the sequences for microsatellites. A total of
16892 plant pre-miRNA sequences from 292 plant species were screened for microsatellites, and
many contained at least one microsatellite repeat. This finding suggested that microsatellites
played important roles in pre-miRNA structure, function and evolution. A comprehensive

http://plantmirssr.enset-project.org/index.html
http://genomicsres.org/plantmirssr/
http://genomicsres.org/plantmirssr/
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analysis of SSRs in animal pre-miRNAs found similar results [42]. The distribution of SSRs in
plant pre-miRNAs varied not only among taxonomic groups but also among species (Figure 1).
As expected, SSR loci were shorter in pre-miRNA sequences than in other genomic regions (e.g.,
genes, CDS, mRNA and introns), because pre-miRNA sequences are much shorter than those
of other genomic regions.

Among tandem repeat unit classes in plant pre-miRNAs, the most abundant were
mono and di repeats, which were also observed in other genomic regions of plant species [7].
The distributions of poly (A/U) and poly (G/C) repeats in plant pre-miRNAs were com-
pared among the plant taxonomic groups, and poly (A/U) repeats were more abundant
than poly (G/C) repeats in all taxonomic groups except algae. Similar results were reported
for animal pre-miRNAs [42]. The dominance of poly (G/C) repeats in pre-miRNAs of algae
was correlated with a higher GC content in algal pre-miRNAs (Figure 1c), and in algae as a
whole [7]. Overall, the repeat unit characteristics in pre-miRNAs depended strongly on
the species as well as the nucleotide composition in the genome. According to a previous
study [7], the dominant dinucleotide repeats units are AG/CT in ferns, mosses, monocots
and dicots, whereas AC/GT and AT/TA are dominant in algae and pines. Notably, in this
study, the most abundant dinucleotide repeats in plant pre-miRNAs were AG/CU repeats,
except in those of algae.

Microsatellites are usually classified into two categories according to their length, i.e.,
≥20 nt (class I) and <20 nt (class II) [44]. In the plant pre-miRNAs, very few SSRs were
longer than 8 to 12 nt, with most measuring 6 to 8 nt. Because pre-miRNAs are short
elements, it is possible that they cannot host long repeats, and, seemingly, microsatellites
cannot significantly expand the size of pre-miRNAs. This conclusion is consistent with
the general recognition that miRNAs are highly conserved elements [28]. Therefore, the
substantial contributions of microsatellites in those elements found in this survey could
even be considered unexpected.

In this study, 80% of SSR motifs were in the stem of miRNAs. Thus, it was assumed the
stem was the preferred position of SSRs within the pre-miRNA sequences. The remaining
20% of SSR motifs were in the loop nucleotides of the pre-miRNAs, where they may
interfere with the stem–loop structure by the concatenation or deduction of SSR motifs.
The pre-miRNA loop nucleotides may be important in controlling the activity of miRNA
genes [42]. Even members of the same miRNA gene family show different functional
activities caused by alternations in their pre-miRNA loop sequences or structures. Chen
et al. [42] proposed that SSR variation within the pre-miRNAs was critical for normal
miRNA activity because the insertion or deletion of SSRs in pre-miRNAs directly affected
the corresponding miRNA products. Thus, the SSR variation in the miRNA loop may alter
the biogenesis, structure, function, and evolution of miRNAs.

The development and validation of SSR markers from SSR-bearing “pre-miRNA can-
didates” were recently achieved in several crop species, including rice [45], Arabidopsis
thaliana [46], Brassica [47], Medicago truncatula [48], pomegranate [49], Melilotus albus [50],
and wheat [51,52]. Despite the many SSR-bearing “pre-miRNA candidates” from a wide
range of plant species, these candidates were not explored for marker development. There-
fore, in this study, 8651 SSR-bearing “pre-miRNA candidates” from 292 plant species were
examined for potential markers; the markers were then in silico characterized and tested
for cross-taxa transferability and polymorphism. Lastly, an online database was developed
for the miRNA SSR markers. The study revealed that a significant number of SSR-bearing
“pre-miRNA candidates” had a high potential for therapeutic SSR marker development.
Similar results were reported in rice, Medicago, and pomegranate.

Genome-wide SSR markers and marker-based online resources were developed for
crop plants. However, similar approaches have not yet been applied for SSR-bearing
“pre-miRNA candidates” in different plant species. Therefore, previous approaches were
replicated, and the first online SSR marker database for SSR-bearing plant “pre-miRNA
candidates” was developed. The unique, freely accessible database accelerates the general
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research on miRNA SSRs, as well as that on the molecular breeding programs of 292
plant species.

5. Conclusions

In the present study, 8651 (51%) pre-miRNA SSR candidates were identified from
292 plant species. A total of 9498 (57%) SSR loci had the potential to be pre-miRNA SSR
markers. Subsequently, the selected pre-miRNA SSR markers were in silico characterized.
Lastly, an online, freely accessible marker database was developed to increase the use of
the pre-miRNA SSR markers. The database contains the largest, freely available dataset
of pre-miRNA SSR markers for plant species. The database is the first genomic resource
for pre-miRNA SSR markers and is an excellent source of molecular markers for plant
molecular breeding studies.
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Distribution of pre-miRNA simple sequence repeat (SSR) markers among different classes of SSR.
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