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Abstract: This study presents the Segmented Colour Feature Extreme Learning Machine (SCF-ELM).
The SCF-ELM is inspired by the Extreme Learning Machine (ELM) which is known for its rapid
training and inference times. The ELM is therefore an ideal candidate for an ensemble learning
algorithm. The Colour Feature Extreme Learning Machine (CF-ELM) is used in this study due to its
additional ability to extract colour image features. The SCF-ELM is an ensemble learner that utilizes
feature mapping via k-means clustering, a decision matrix and majority voting. It has been evaluated
on a range of challenging agricultural object classification scenarios including weed, livestock and
machinery detection. SCF-ELM model performance results were excellent both in terms of detection,
90 to 99% accuracy, and also inference times, around 0.01(s) per image. The SCF-ELM was able
to compete or improve upon established algorithms in its class, indicating its potential for remote
computing applications in agriculture.

Keywords: agricultural robotics; computer vision; drone; stationary camera trap; ensemble; extreme
learning machine; feature mapping; object classification

1. Introduction

Fast and accurate object detection is essential in many machine vision applications,
particularly agricultural robotics. Due to processor and operational requirements, there
is often a trade off between detection accuracy and processing speeds. Agricultural ap-
plications often opt for a statistical approaches to classification, including multivariant
data analysis [1], principal componet analysis [2], template matching [3] and random
forrest [4]. These implementations typically rely on a reduced set of attributes within a
controlled environment. This is efficient and well suited to the application area, but has
the potential for large numbers of false positives and/or false negatives in inconsistent
terrain, which includes pastures for livestock. The Support Vector Machine (SVM) has
shown promise in this space as a highly optimised solution [5], but still suffers from the
proliferation of support vectors [6]. Object detection methods, including artificial neural
networks (ANN) for deep learning allow higher levels of sophistication and can be utilised
for complex environments [7]. Neural networks however, have long training phases and
can be computationally intensive. This limits an ANN'’s ability to calibrate and provide
feedback in an remote environment, this is exemplified in remote devices that require
the preservation of battery or have hardware limitations [8]. To overcome the training
times and to improve classification of a shallow network, Huang et al. [9] proposed the
Extreme Learning Machine (ELM). The ELM has a much faster training phase than other
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more common ANNSs, where, instead of a long gradient decent based approach such as
the back propagation algorithm [10], the ELM uses the pseudo inverse of its hidden layer
output to analytically determine its output weights. Using this method the ELM is trained
analytically in one calculation rather than a long iterative process. Another drawback of a
standard ANN is that it typically uses grey-scale inputs to determine the output values
and hence only grey-scale images can be used in training and testing. Colour however is
not sensitive to adjustments in scale, size and location [11] and can provide key cues to
object detection. To overcome these challenges Sadgrove et al [12] proposed the Colour
Feature Extreme Learning Machine (CF-ELM) which uses the architecture of the ELM,
but has a partially connected hidden layer with one section for each colour band and a
fully connected output layer, allowing the CF-ELM to analytically determine its output
weights and with the added information of colour. The CF-ELM has shown promise as a
fast and accurate approach to real-time remote classification. This makes it an ideal choice
for fast detection, however, the random neuron weights result in inconsistencies in results
each time it is train [13]. To improve consistency in neural networks a large amount of
hidden neurons are often used, where the ideal number of neurons is purported to be
some where between the number of inputs and outputs [14]. The Multiple Expert Colour
Feature Extreme Learning Machine (MEC-ELM) improved the consistency on low resolu-
tion images by using a small number of CF-ELMS trained on different sets of images [15].
The MEC-ELM however, did not take into account the change in orientation of objects for
objects with consistent feature sets, such as animals and vehicles. The proposed SCF-ELM
will utilise k-means for fast feature mapping, this will allow features to be mapped con-
sistently to individual classifiers. It is hypothesized that by training unique features on
individual classifiers, that this will improve overall performance of an ensemble, an equal
k-means algorithm is proposed for fast convergence. The SCF-ELM will be trained using
quasi-pseudo random weights, utilise a decision matrix and use a majority voting system to
improve consistency and optimisation. Localization invariance is another issue that can be
encountered in remote environments, that is, subtle changes in the environment, including,
time of day, season and local flora. Discrepancies in flora between locations can alter the
appearance of the scene and hence effect the performance of the classifier. It is desirable
that an algorithm can be retrained quickly in order to adapt to changing environment
conditions. Deep learning Neural networks such as CNN [16] require long training phases
and diverse parameter optimisation. For this reason the SCF-ELM will be benchmarked
against algorithms with much faster training and testing phases (seconds as opposed to
hours). This will be considered algorithms in its class and will include the ELM, CF-ELM,
CIW-ELM [13], EN-ELM [17] and libSVM [18]. Other variants of the ELM may provide
additional optimisation, but may add to processing time [19]. The goal of this research
is then that the SCF-ELM be used in both remote laptop and robotic agricultural based
applications, with comparison to similar algorithms in its class, with focus on shallow
networks with little preprocessing.

2. Materials and Methods
2.1. Extreme Learning Machine (ELM) and Colour Feature Variant (CF-ELM)

The Colour-feature Extreme Learning Machine (CF-ELM) is a single layer, feed for-
ward neural network based on the Extreme Learning Machine (ELM) [20] with a partially
connected, three tier hidden layer and a fully connected output layer. This differs from the
ELM which has a fully connected hidden layer. During the training phase the summation
of the product of the random weight values and the inputs are stored in the hidden layer
output matrix H, to transform the input signal into an output signal the values are first
processed through an activation function g(-) [21]. The CF-ELM is typically processed with
the soft-sign activation function g(x) and this can be expressed [22]:

g(x) = | 1)
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The H matrix can be expressed [12]:
H(‘:Vl e /WN/bl e /leYll e /Y/N/Ul e IU_NIVI e /VN)
SW1-Y1+b1) - g(Wyx-Y1+Dbs)
SWi-YN+b1) - gWg-YN+Dbn)
§Wi-Up+by) -+ g(Wg-Up+bz) )
= : : 3N-N @)
gWy-Uy+b1) -+ g(Wg- Uy +Dbs)
L §W1-VN+b1) -+ g(Wg-VN+Dbi) |

where H is the hidden layer output matrix, N is the number of samples used in the training
phase and N is the number of neurons in the hidden layer. In the activation function g(-),
W is the input weight and b is the bias. Here the colour input sample values are expressed
asY’, Uand V for each pixel value. This differs from the ELM which only uses grey-scale
values, but has an identical output layer.

The hidden layer output then becomes the input multiplier for the output weights B.
The output target T of the CF-ELM is then the result of - H.

T=8H ®)
Here B can be expressed:
B
B=1| : |N-m (4)
Py

where m is the number of neurons in the output layer, which is equivalent to the number
of outputs of the ANN. The matrix of target outputs T can be expressed as:

T=| ! |N-m ®)

where for each t the value is stored based on the input training sample and its desired
output (typically a vector of 1 s). This leaves  as the one unknown, by making 8 the
subject we get:

B=H1'.T (6)

where H™! is the Moore-Penrose pseudo inverse [23] of matrix H. The output values of this
process are then stored in 8 and used as the weights in the output layer removing the need
for a long gradient descent based training process. The classification function is a feed
forward summation of the dot product between the input image and the weights in the
hidden layer and a dot product with the output layer. The hidden layer is split into 3 for
each colour attribute, therefore the number of hidden layer neurons needs to be divisible
by 3. For Y'UV, the classifier function for output y; of m classes can be expressed:

o=

Yi= (ﬂij(wj'yl+bj)+/3ij+N(Wj+N'U+bj+N)+ﬁij+2N(Wj+2N’V+bj+2N)) )

j=1
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where W is the weight vector for the j" neuron, matched to the beta weight value for the
output layer and Y/, U and V are the pixel vectors for each colour attribute for a single
image. The base of this function, while removing B, was used to generate the H matrix.

2.2. Equal K-Means

The K-means clustering algorithm is an unsupervised learning technique that can
be used to split collections of data items into individual clusters [24]. Each cluster is
represented by a centroid depicting the mean of the collection of items within a cluster.
Typically the algorithm will start by randomly choosing a data item as the initial centroid.
Each data item is tested against the centroid to obtain a distance. Successive iterations
of the algorithm will test each data item against the centroid made from the mean of the
closest matching items. If no changes are recorded during an iteration, the algorithm is
said to have converged and ends. The most common distance function is the Euclidean
distance function, this can be expressed [25]:

d= /(1 =11+ (x2 = 92) -+ (10— yn)? ®)

where (x, y) are the centroid and an individual data item, n is the number of data points
that make up each data item. Improved K-means algorithms typically utilise a method to
select the initial cluster centroids [26]. This improves the speed of convergence, which was
not necessary for an image where initial clusters can be based on the location of features.
Equal K-means is a variation of the K-means algorithm that dictates that each cluster
should be of an equal size [27]. This implementation is useful in image processing where
individual segments (or features) of an image need to be clustered and each segment needs
to be utilised based on its cluster. For Neural Networks this means that all clusters will
be utilised in a predetermined subsection of the network or in the case of this research,
an independent classifier. This research utilises Equal K-means and proposes the following
algorithm for fast selection of individual clusters.

Algorithm 1 is used in both determining the clusters in training and in detection,
utilising the centroids determined in training. Here ;... is equal to the centroids for each
cluster, where k is the number of centroids and number of image segments, S is each image
segment, C is an array where each value has been initialised to zero and this stores the
cluster number for the image segment. Where min is set to the max float value for each
iteration of S. For each iteration of y the image segments are checked to find the image
segment of closest distance. Once the closest image segment is found, the image segment
is not checked against the successive centroids C.

The image in Figure 1 depicts the mapping of features between two low resolution
images of cows. This was processed using Algorithm 1 at pixel block level. In this example
sub image A is being recreated uisng a block of pixels from sub image B and stored as
sub image C. Each block of pixels represents a feature within each image and is being
rearranged in the shape of another cow.

Figure 1. Feature mapping: Image (B) is being mapped with image (A) as the centroids to image (C).



Agronomy 2021, 11, 2290 50f 16

Algorithm 1 Equal K-means

Require: pq ...
Require: S;...5¢

1: function KMEANS

2 k < length(u)

3 C + (01 R Ok)

4 fori+ 1tokdo

5: min < max

6 min_index < 0

7 forj < 1tokdo

8 if Ci!=0 then

9: continue
10: end if
11: distance < d(p;, S;)
12: if distance < min then
13: min < distance
14: min_index < j
15: end if

16: end for

17: Cmin_index —i

18: end for

19: return C

20: end function

2.3. Decision Matrix

A decision matrix is a set of values that can be used in a majority voting system of an
ensemble learner to prioritise a list of options [28]. In image processing it can be used to
give a higher weight to certain areas or features of an image. In an ensemble classifier this
can be used to give greater weight to a classifier results based on the section of the image it
is working from. In this study, the decision matrix was designed to give greater weight
to the segments in the centre of the image. This helped to alleviate the problem of non-
target objects appearing in cropped images and in this case, prioritised features appearing
in the centre of the cropped image. The decision matrix can be calculated according to
Algorithm 2.

Algorithm 2 depicts the first pass of calculating the decision matrix (assuming a square
matrix), in the second pass the loops and conditions can be reversed to accommodate a
matrix, where width and height are calculated based on the number of clusters and are equal
to the width and height of the image segments arranged to their location in the image.
The final step is to divide by the max value in the matrix to get a weight value. For this
research, the decision matrix was used as an optimisation technique.
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Algorithm 2 Decision Matrix - Square Matrix: First pass

Require: width + \/E
Require: height « vk

function DECISION_MATRIX
d < (01,1 - - - Ouidth height]

1:
2
3 mid < N/2
4 k<0
5: fori < 1 to width do
6 ifi > midthenk < k—1
7 elsek <+ k+1
8 end if
9: [+ 0
10: for j < 1 to height do
11: dij < k+1
12: ifj>midthen] < [—1
13: else/l +—1+1
14: end if
15: end for
16: end for
17: return d

18: end function

2.4. Hardware/Implementation Specifics

All algorithms used in benchmarking were programmed in the C programming language
and tested on a Manjaro Linux based system, with an i7 processor, 16 gigabytes of RAM
and a solid state drive (SSD). The C language was chosen for functionality, portability,
efficiency and speed. The pseudo inverse of the matrix H was calculated with assistance
from the lapack and lapacke linear algebra libraries [29]. The SCE-ELM was benchmarked
against algorithms in a similar class, these included, the Ensemble Extreme Learning
Machine (EN-ELM), CIW-ELM, ELM, the C-Support Vector Machine (C-SVC) and linear
support vector machine (LSVM) The C-SVC and LSVM were implemented using the
libsum library [18] programmed in C and C++. The EN-ELM was programmed based
on Lui and Wang [30] with the discrete cosine transform (DCT) for attribute reduction
programmed based on Rod et al. [17]. The EN-ELM was the only algorithm that required
preprocessing of the image and for this reason the DCT was included in the bench marking
times. In this research the DCT was optimizing by merging the main function with the
normalization section and reducing the number of iterations to the desired 81 attributes.
The coefficients and cosine values were processed prior to implementation. This provided a
fast implementation of the DCT. The ELM was the standard algorithm [18] and was the base
used in the EN-ELM, CF-ELM and SCF-ELM. The recording of training and test times were
conducted using the clock_gettime function which was imported from the time.h library
in the ¢ programming environment and the CLOCK_MONOTONIC option was used, as it
delivered more accurate times for parallel processing. All images were pre-cropped and
scaled to 100 by 100 pixels matching the 10,000 total weights in the input layer of the
CF-ELM, this resolution was chosen as a compromise between high resolution accuracy
and faster processing speeds. All images were stored as JPEG (4:4:4 sampling) in 100 by
100 pixel dimension and retrieved using the libjpeg library, JPEG was chosen, as it is the
default output file type for a number of low resolution cameras used in remote interfaces, it
was also the best option considering remote storage and file transfer restrictions. The Y'UV
colour space was used in the implementation of the CF-ELM and SCF-ELM. To convert to
Y'UV the formula ITU-R B.601 defined by the International Telecommunications Union
was adopted [31,32].
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2.5. Training/Iesting Algorithms

The training algorithm differed from [12], the Sobol sequence [33] was used to generate
quasi random weights for the hidden layer of the CF-ELM, providing a uniform distribution
of weight values. The same hidden layer was used for all CF-ELMs generated in the
ensemble, where the number of CF-ELMs matches the number of image segments, this
means that a CF-ELM was trained for each segment as depicted in Algorithm 3.

Algorithm 3 SCF-ELM Training

Require: Images; ... Imagesy

S < [Imagesi, ..., Imagesny|
C+(@1,..,k
W [ZUH, ey wNP}
B + (bi, veey bN)
function TRAIN(S[][],WII[],BID
fori + 1tokdo
Bi < H[W-Sc,+B[:1-T
end for
return 8
end function

_
4

Where N is the number of training images, P is the number of pixels per image, N
is the number of neurons in the hidden layer and k is the number of clusters. Each image
segment S had Y, Cr and Cb vectors, this is expounded in Equation (2) of the H matrix.
Here C is initialised with Algorithm 1. The number of hidden layer neurons was set to \/ﬁ,
where P is the number of inputs [34]. This was found to be an optimal amount of neurons in
pretesting. Given the size of the ensemble, this was a necessary trade off between accuracy
and performance, avoiding the necessity of a large number of hidden layer neurons.

Testing utilises a majority voting system, the algorithm is made up of four sections,
in the first instance the image is divided into image segments, the individual image
segments are then matched to the individual cluster centroids determined in training.
The decision matrix is added each time a result is within a threshold. This is depicted as a
block diagram in Figure 2 and in Algorithm 4. Where a threshold 0 is a float distance to
the target T set in training. The results in this paper utilised a two class system, each CF-
ELM was trained twice, once for the target object and once for images of the surrounding
landscape. For a two class system, instead of 6, the decision threshold would be If(|T; —
outputy| < |T; — outputy|). The a threshold O is set to half the max of the sum of the
weight values in the decision matrix. This can be adjusted higher or lower for fine tuning
accuracy. The decision function in Algorithm 4 is expounded in Equation (7).

- = YUV CF-ELM n
R —
= D) Y'UV CF-ELM ||
R k-means DMatrix|3» Qutput
Qgﬁ"% ) YUV CF-ELM |~
=
Y'UV CF-ELM |

Figure 2. The SCF-ELM with image split into four sections and pixel values sent to four indepen-
dent CF-ELMs.
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Algorithm 4 SCF-ELM Testing - for the i image

Require: Image;
Require: 8 <— TRAIN()
Require: D < DECISION_MATRIX()

1: S < [Image;, ..., Image;]

2: C <~ KMEANS()

3: W« [ZUH, ey wNP}

4: B+ (bi,..., bN)

5. function PREDICT(S[][],WII[1,B[1,CI])

6 p<+0
7: forj< 1tokdo
8: output; < p;- [W-Sc, + B;
9: if |T; — output;| < 0 then
10: p<p+ DC],
11: end if
12: end for
13: if p > O then
14: return True
15: end if
16: return False

17: end function

2.6. Benchmarking Details

RGB was the default colour system when decoding from JPEG. For this reason, the al-
gorithm differed slightly for each CF-ELM, each took an RGB input that was converted
to different colour systems in the case of YCrCb. All algorithms including the EN-ELM,
CF-ELM, CIW-ELM, ELM and C-SVC were trained as two class systems, with a positive
class of the target object and a negative class of the surrounding landscape. In the case of the
ELM implementations the output that was the lowest (or closest to one) was considered the
identified class. The SCF-ELM was trained with 99 neurons so that the number of neurons
was divisible by 3. The weights and biases in the hidden layer were generated from quasi
random numbers from the Sobol sequence. All other ELMs were trained using 100 neurons
with pseudo random weights set between 0 and 1 and the biases in the hidden layers set
between 0 and 0.1. The weights and biases that worked best differed between each dataset
and method. The values for each colour system and DCT were normalised to between 0
and 1. The softsign activation function [35] was used in all of the ELM implementations.
These values were selected based on pre-testing and delivered the most consistent results
for each of the classifiers.

2.7. Data Sets

The datasets examined three different agricultural robotic applications: (i, ii) Weed,
(iif) ATV and (iv) cattle detection, all images were stored as 100 by 100 resolution and pre
cropped to border the associated object. An aspect ratio of 1:1 was chosen as a consistent
number of pixel inputs were required. A square image provided the best coverage in the
case of these datasets. The resolution was based on pretesting as a compromised between
processing speed and accuracy metrics. The amount of images in each dataset are available
in Table 1. The datasets were split for 10-fold cross validation, 10% for testing and 90%
for training.
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Table 1. Images in each data set, image amounts in training and testing are based on 10-fold
cross validation.

Dataset All Images Training Testing Resolution
Bull Thistle 1000 450 50 100,100
Horehound 1000 225 25 100,100

Cattle 1000 450 50 100,100
ATV 1000 450 50 100,100

Specifications of each dataset are as follows:

®  Bull Thistle: The Cirsium Vulgare (or Bull Thistle) and surrounding landscape were
cropped to eliminate background. These images were photograph using a Fujifilm
10 megapixel hand held camera, at a fixed distance of 2m and nadir geometry. Bull
thistle can cause injury to livestock and competes with pasture growing in the area,
this has become a problem in eastern areas of Australia [36]. Samples from this dataset
are on display in Figure 3.

Figure 3. Images of thistle rosettes and surrounding landscape.

e Horehound: The Marrubium vulgare (or Horehound) and surrounding landscape were
cropped to eliminate background. These images were photograph using a Cannon
EOS 6D 20 megapixel hand held camera, at a fixed distance of 2m and nadir geometry.
Horehound is unpalatable for livestock and competes with pasture growing in the
area, this weed has also become a problem in eastern areas of Australia [36]. Samples
from this dataset are on display in Figure 4.

Figure 4. Horehound and surrounding landscape.
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Vehicle detection: The vehicle detection dataset contains cropped images of an all terrain
vehicle (ATV) on farm land and surrounding landscape. The ATV was photographed
using a Fujifilm 10 megapixel hand held camera at a fixed distance of 5 m and at
oblique angles and random orientations to simulate a drone fly over. ATV accidents
are a major cause of injury and/or death in farm related incidents [37]. A collection of
samples from the dataset are available in Figure 5.

Figure 5. Images of the ATV and surrounding landscape.

Cattle detection: The cattle detection dataset contains cropped images of Poll Herefords
in and of a farming landscape. The images were cropped from multiple stationary
surveillance cameras that were position at different creek beds waiting for animals to
come to drink. These images were captured in AVI video format using a Scoutguard
SG860C camera with 640 by 480 pixels at 16 frames per second for 1 min. Image
frames were extracted into JPEG format at 1 frame per second, cropped to surround
the cattle. The purpose of this dataset is determine if the algorithms could be used in
the tracking and counting of cattle. A sample of the image set is displayed in Figure 6.

Figure 6. Images of cattle on the left and surrounding landscape on the right.

3. Results

The results include train and test times, true positive rates (TPR), false positive rates

(FPR) and accuracy metrics evaluated across all agricultural datasets.

3.1. Dataset Test Results

The datasets used in this section included weed detection (Bull Thistle and Hore-

hound), live stock detection (cattle) and vehicle detection (ATV). The datasets were tested
on the proposed SCF-ELM and for comparison were tested against the linear Support Vec-
tor Machine (LSVM), the C-Support Vector Classification algorithm (C-SVC), the ensemble
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ELM (EN-ELM), the Colour-feature Extreme Learning Machine (CF-ELM), the explicit
computation of input weights ELM (CIW-ELM) and the standard Extreme Learning Ma-
chine (ELM).

Metrics were recorded in three tables for each of the datasets and included: Training
time, testing time per image, True Positive Rate (TPR), False Positive Rate (FPR), Precision
and classification accuracy (ACC). Recall was not included, as TPR is identical to recall.
The results in were recorded using 10-fold cross validation. The number of ensembles for
the EN-ELM was based on the algorithm in literature [30], while the number of classifiers
in the SCF-ELM was preset at 225, one for each image segement. The C-SVC training time
included a grid search to find optimum C and gamma values. This was a requirement to
get the best results from the classifier. All times were in seconds, TPR is the percentage of
correct classifications against the total, FPR is the percentage of incorrect classifications
against the total, precision and accuracy can be expressed:

TP+ TN
A =
cc TP+FP+TN+FN ©)
TP
Precision = ————— 1
recision TD + EP (10)

where TP is true positives, FP is false positives, TN is true negatives and FN is false negatives.

Tables 2-5 contain the results for testing with each of the datasets; the SCF-ELM and
EN-ELM were both ensemble learners that required a longer training phase to collaborate.
This was decided based on a tradeoff between accuracy and processing time. The C-SVC
required a grid search to get optimum C and gamma values, this was conducted using the
grid.py script available in the libsum package and the time function in the bash console.
This is reflected in the results with the C-SVC displaying the slowest training time, followed
by the EN-ELM and SCF-ELM. The ELM was the fastest in training followed closely by
the CF-ELM. The ELM was also the fastest in testing time per image, while the SCF-ELM
provided the highest accuracy in all four datasets. The SCF-ELM was slower in inference
times as compared to the other (non-ensemble) classifiers. This was due in part to the
feature mapping algorithm, but k-means still managed to converge after just two iterations
using the proposed Algorithm 1. The ATV was easier to separate from the surrounding
landscapes and the highly optimised linear SVM was able to generalise the solution quite
quickly. Producing the fastest training and testing times. For convenience the best results
have been underlined in Tables 2-5.

Table 2. Testing results for Bull Thistle for each classifier.

Dataset Classifier Train Time(s) Time/Image(s) TPR FPR Precision Accuracy
Bull Thistle SCF-ELM 9.94 0.0111 94.00 12.80 88.01 90.60
LSVM 291 0.0057 68.4 21.60 76.00 73.40
C-svC 1939.60 0.0069 89.60 27.60 76.45 81.00
EN-ELM 64.19 0.0048 53.27 15.93 76.98 68.67
CF-ELM 1.56 0.0029 86.40 16.00 84.38 85.20
CIW-ELM 4.51 0.0019 71.52 54.24 56.87 58.64
ELM 1.08 0.0019 80.58 55.11 59.39 62.74
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Table 3. Testing results for Cattle for each classifier.

Dataset Classifier Train Time(s) Time/Image(s) TPR FPR Precision Accuracy
Cattle SCF-ELM 9.92 0.0110 95.20 5.40 94.63 94.90
LSVM 151 0.0036 88.00 11.60 88.35 88.20
C-svC 1749.16 0.0064 90.00 2.80 96.98 93.60
EN-ELM 63.89 0.0046 74.00 10.93 87.13 81.54
CF-ELM 1.55 0.0029 78.10 15.80 83.17 81.15
CIW-ELM 4.43 0.0019 80.40 30.32 72.62 75.04
ELM 1.08 0.0019 76.05 28.31 72.87 73.87

Table 4. Testing results for ATV for each classifier.

Dataset Classifier Train Time(s) Time/Image(s) TPR FPR Precision Accuracy
ATV SCF-ELM 9.93 0.0110 99.8 1.00 99.01 99.40
LSVM 0.52 0.0014 99.60 1.20 98.71 99.20
C-svC 591.27 0.0048 100.00 4.00 96.51 98.00
EN-ELM 64.34 0.0047 86.35 5.73 93.78 90.31
CF-ELM 1.56 0.0029 85.92 7.88 91.60 89.02
CIW-ELM 4.399858 0.0019 76.88 3.16 96.05 86.86
ELM 1.09 0.0019 81.16 13.56 85.68 83.80

Table 5. Testing results for Horehound for each classifier.

Dataset Classifier Train Time(s) Time/Image(s) TPR FPR Precision Accuracy
Horehound SCF-ELM 9.93 0.0111 97.20 18.20 84.23 89.50
LSVM 3.13 0.0061 68.40 21.60 76.00 73.40
C-svC 2037.52 0.0073 89.60 27.60 76.45 81.00
EN-ELM 60.26 0.0048 66.67 53.90 55.30 56.38
CF-ELM 1.56 0.0029 90.27 25.69 77.85 82.29
CIW-ELM 451 0.0019 70.92 51.77 57.80 59.57
ELM 1.08 0.0019 73.05 55.32 56.91 58.87

3.2. Benefits of Feature Mapping and Decision Matrix

To demonstrate the benefit of matching individual image segments (or features) to
individual CF-ELMS, Figure 7 has three tests based on 10 fold cross validation and the
cattle dataset. In the first case (blue), the SCF-ELM was trained with feature mapping and
decision matrix, in the second case (red), the SCF-ELM without feature mapping and in
the third case (green), the SCF-ELM without decision matrix and feature mapping. It can
be seen that feature mapping improves the accuracy by almost 10 percent. Removing the
decision matrix has some effect, decreasing the average accuracy over the 10 folds.
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Figure 7. Accuracy with and without feature mapping and decision matrix.

4. Discussion

Remote object detection applications often require results in real time and and as a
result less computationally intensive algorithms are typically utilised [38]. The perfor-
mance can be adequate, but may suffer from differing levels of consistency or accuracy
e.g., randomizing of weights in the case of an ELM.

It is worth noting that the SCF-ELM did not have the level of optimisation of the
libsum package. This is due in part to the libsum’s long development cycle [18]. However,
the processing times are still comparable and the results in each case were still superior
to the C-SVC with radial basis function. The SVM also still suffers from the proliferation
of support vectors [6], while a shallow network such as the ELM utilises a consistently
sized framework. Given these points, it is a good indication of the SCF-ELM suitability in
this space. It is worth noting that the ELM does have further performance optimisation
available in literature [19] and this may improve the detection accuracy of the base model
ELM and hence the SCF-ELM that uses compatible architecture. Improvements could also
be made to both the majority voting and decision matrix algorithms. The decision matrix
could be improved by formulating the weighting based on the distance to the chosen
centroid for example, but this may increase processing times. The emphasis in this research
however, has been on minimal pre-processing and therefore less computational intensive
approaches. As this may be a necessity in remote environments, where rapid retraining to
new environments is desirable.

The testing times for both implementations also appear adequate for use in a real-time
object detection scenario and it is proposed that this research could be used in a remote
computer based application. Unmanned aerial vehicles (UAVs) or alternatively unmanned
ground vehicles (UGVs) for example can deliver real-time video footage for processing to a
remote computer (for convenience a mobile tablet or laptop) via wireless connection [39].
Image frames from video footage can then be extracted for processing purposes and be
classified quickly for real-time results. From these results, attached robotics can administer
chemicals in the case of weed detection, count or track cattle or return location data in the
case of vehicle detection. Due to the ELMs smaller framework and consistent network
structure, the ELM is better suited than many of the deep learning and stastical approaches
to object classification utilised in remote computing. It is desirable that an algorithm be
memory efficient, be able to process images quickly and with a high level of accuracy.
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The hypothesis stated that the ELM would be well suited as an ensemble learner and the
results depicted in this research confer this reality.

It is worth noting that the field of machine learning is a fast moving field and there
may exist new implementations of the ELM and other neural based methods that could
improve upon the results depicted in this research. This paper placed emphasis on using
the standard ELM as many ELM implementations add processing time to the training
and testing stages [40]. The CIW-ELM was included in the results to demonstrate the
significance of the CF-ELM on these datasets. It also adds little to the training time while
demonstrating an improvement in detection consistency in two of the three datasets.
The EN-ELM was included as it is a well known ensemble learner in the ELM space.
The LIBSVM has been included as it is a leading algorithm that doesn’t have the processing
constraints of methods such as the convolutional neural networks (CNN). CNNs have a
preference for deep structures [16] and this will impact directly with storage processing
requirements in a battery operated device.

In summary, the results depict the SCF-ELM'’s ability to improve upon the results of
the CF-ELM and with feature mapping, function better on objects with uniform features
and with performance metrics comparable or better than some state-of-the-art algorithms.

5. Conclusions

A feature mapping ensemble (or segmented) colour extreme learning machine (SCF-
ELM), has been compared to other algorithms in its class, including the LSVM, C-SVC,
EN-ELM, CF-ELM and ELM. The classifiers were tested on four datasets, including a
weed detection dataset containing bull thistle and surrounding landscape in a paddock.
Another weed detection dataset containing Horehound and surrounding landscape in a
paddock. ATV detection dataset, where an ATV was positioned in different areas of a
paddock and images taken at multiple angles and a cattle detection dataset taken from
surveillance footage from a near by farm. The results showed that the SCF-ELM performed
comparable or better in each of the four datasets. Future research will involve using the
SCF-ELM as a low resolution feature extraction and object detection algorithm, testing
a range of custom colour spaces and incorporating feature mapping into a single colour
feature based classifier.
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Abbreviations

The following abbreviations are used in this manuscript:

ACC Accuracy

ANN Artificial Neural Network

ATV All Terrain Vehicle

CF-ELM Colour Feature Extreme Learning Machine
CNN Convolutional Neural Network

CIW-ELM  Computed Input Weights Extreme Learning Machine
C-svC C-Support Vector Machine

DCT Discrete Cosine Transform

ELM Extreme Learning Machine

EN-ELM Ensemble Extreme Learning Machine
LSVM Linear Support Vector Machine

MEC-ELM  Multiple Expert Colour Feature Extreme Learning Machine
SCF-ELM  Segemented Colour Feature Extreme Learning Machine

SVM Support Vector Machine

TPR True Positive Rate

FPR False Positive Rate

YCrCb Light intensity, chrominance red and blue.
YUV Light intensity, chrominance red and blue.
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