
agronomy

Article

Spatial Prediction of Agrochemical Properties on the Scale of a
Single Field Using Machine Learning Methods Based on
Remote Sensing Data †

Ilnas Sahabiev * , Elena Smirnova and Kamil Giniyatullin

����������
�������

Citation: Sahabiev, I.; Smirnova, E.;

Giniyatullin, K. Spatial Prediction of

Agrochemical Properties on the Scale

of a Single Field Using Machine

Learning Methods Based on Remote

Sensing Data. Agronomy 2021, 11,

2266. https://doi.org/10.3390/

agronomy11112266

Academic Editor: Youssef Rouphael

Received: 29 September 2021

Accepted: 4 November 2021

Published: 9 November 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Institute of Environmental Sciences, Kazan Federal University, Kremlevskaya Str. 18, 420008 Kazan, Russia;
elenavsmirnova@mail.ru (E.S.); ginijatullin@mail.ru (K.G.)
* Correspondence: ilnassoil@yandex.ru; Tel.: +7-(843)-233-73-94
† Presented at the 1st International Electronic Conference on Agronomy, 3–17 May 2021; Available online:

https://sciforum.net/conference/IECAG2021; accessed on 7 November 2021.

Abstract: Creating accurate digital maps of the agrochemical properties of soils on a field scale with
a limited data set is a problem that slows down the introduction of precision farming. The use of
machine learning methods based on the use of direct and indirect predictors of spatial changes in
the agrochemical properties of soils is promising. Spectral indicators of open soil based on remote
sensing data, as well as soil properties, were used to create digital maps of available forms of nitrogen,
phosphorus, and potassium. It was shown that machine learning methods based on support vectors
(SVMr) and random forest (RF) using spectral reflectance data are similarly accurate at spatial
prediction. An acceptable prediction was obtained for available nitrogen and available potassium;
the variability of available phosphorus was modeled less accurately. The coefficient of determination
(R2) of the best model for nitrogen is R2

SVMr = 0.90 (Landsat 8 OLI) and R2
SVMr = 0.79 (Sentinel

2), for potassium—R2
SVMr = 0.82 (Landsat 8 OLI) and R2

SVMr = 0.77 (Sentinel 2), for phosphorus—
R2

SVMr = 0.68 (Landsat 8 OLI), R2
SVMr = 0.64 (Sentinel 2). The models based on remote sensing data

were refined when soil organic matter (SOC) and fractions of texture (Silt, Clay) were included as
predictors. The SVMr models were the most accurate. For Landsat 8 OLI, the SVMr model has a
R2 value: nitrogen—R2 = 0.95, potassium—R2 = 0.89 and phosphorus—R2 = 0.65. Based on Sentinel
2, nitrogen—R2 = 0.92, potassium—R2 = 0.88, phosphorus—R2 = 0.72. The spatial prediction of
nitrogen content is influenced by SOC, potassium—by SOC and texture, phosphorus—by texture. The
validation of the final models was carried out on an independent sample on soils from a chernozem
zone. For nitrogen based on Landsat 8 OLI R2 = 0.88, for potassium R2 = 0.65, and for phosphorus
R2 = 0.31. Based on Sentinel 2, for nitrogen R2 = 0.85, for potassium R2 = 0.62, and for phosphorus
R2 = 0.71. The inclusion of SOC and texture in remote sensing-based machine learning models makes
it possible to improve the spatial prediction of nitrogen, phosphorus and potassium availability of
soils in chernozem zones and can potentially be widely used to create digital agrochemical maps on
the scale of a single field.

Keywords: precision agriculture; digital maps; machine learning methods; remote sensing

1. Introduction

The widespread introduction into agricultural practice of the digital technologies of
variable-rate fertilizers is currently one of the conditions for gross crop production with a
minimal negative impact on the environment [1]. Furthermore, the technology of variable
rate fertilization helps to increase the ability of the soil to store carbon [2].

Precision farming technologies are focused on the optimal satisfaction of the nutrient
needs of cultivated plants, taking into account the spatial heterogeneity of arable land
in terms of agrochemical indicators. At the same time, the need for precision farming
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technologies requires the development of new approaches to the description of the spatial
heterogeneity of soil cover.

When conducting research related to soil degradation and pollution, modeling of
the spatial heterogeneity of soil cover by various parameters is often carried out on a
national and regional scale [3–9]. However, the practice of soil cover mapping for the
implementation of precision farming systems usually requires a description of the soil
heterogeneity of arable land on the scale of one definite field, often using a limited set of
point data [10,11]. The transfer of models of spatial heterogeneity of soils to different-scale
objects is a very difficult and as yet unresolved task [12]. Therefore, the formation of
approaches to the creation of maps of the heterogeneity of arable land for precision farming
should be considered as an independent problem requiring a separate solution.

Ordinary kriging has traditionally been used in interpolated agrochemical maps
for precision farming [1], which can offer certain disadvantages if the dataset is limited.
Webster and Oliver [13] believe that when using kriging, at least 100 data are required for
successful variogram calculations. Kerry et al. [14] admitted that, using special variogram
modeling methods, it is possible to limit the processing of 50 spatially localized data. At
the same time, Saito and Goovaerts [15] note that when using fewer than 50 (or even
100 observations), the kriging method may not offer any obvious advantages over other
interpolators. It is also necessary to take into account the fact that an increase in the number
of points due to a decrease in the area of soil sampling sites to create more reliable maps of
spatial variability presents difficulties associated with the significant increase in the costs
of sampling in the field and conducting the analyses [16].

It is natural that when developing methodological support for precision agriculture,
emphasis is placed on approaches to creating maps of spatial heterogeneity of arable land
soils based on the use of predictors that allow the minimization of the number of soil
samples and at the same time provide denser coverage of the entire field. In this respect,
Goovaerts et al. [17] considered the possibility of using cokriging and regression kriging
for precision farming. Regression kriging is one of the most popular, practical, and reliable
methods of hybrid spatial interpolation, which makes it possible to model the distribution
of soil properties across space and time [18–20]. For example, Lin et al. [21] showed that
the use of logistic regression and regression kriging provides a more reliable assessment of
the risk of soil contamination with heavy metals for monitoring information support than
spatial probabilistic models. Despite all its advantages, the productive use of regression
kriging for solving precision farming problems may also present limitations, which are
primarily related to the compilation of a set of spatially localized data and the indirect
predictors used. Hengl et al. [19] recommend using regression kriging only for data sets
with more than 50 observations and at least 10 observations for each predictor of multiple
regression, which prevents over-fitting of the model. On the chernozem soils of Tatarstan
(Russia), we have previously shown that the use of regression models based on kriging to
create large-scale maps of soil properties offers advantages over ordinary kriging only if a
sufficiently large number of predictors (at least more than 10) is used for modeling [22]. As
a limitation of the regression kriging method, it can also be noted that when describing the
deterministic part of the variability of the target variable, it is not always possible to take
into account the nonlinear nature of the effect of predictors. The limitations and advantages
of this method are discussed in detail in the review by Keskin and Grunwald [20].

Recently, there has been an increasing interest in soil science in machine learning and
deep learning methods, as well as data mining methods, which can significantly improve
the accuracy of spatial predictions [23]. For example, an improvement in the accuracy of
spatial prediction using machine learning methods was obtained when mapping soil pollu-
tion with various pollutants [9,24–26], the content and organic matter stocks [3,4,11,27,28],
and physicochemical and agrochemical soil properties [29,30]. In general, various machine
learning algorithms offer similar indicators of spatial prediction [7,27], but a reasonable
choice of algorithm for modeling a specific soil property with a certain set of predictors
still allows us to improve the final result [7].
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The advantages of using machine learning, deep learning, and data mining methods
in comparison with traditional methods of spatial analysis are often manifested on the
global [29], national [6], and regional scaling levels [31–34]. On the scale of individual fields,
which is necessary for the application of variable-rate fertilizer, machine learning methods
are used less often. [12,35]. Recently, Matinfar et al. [11] obtained acceptable accuracy from
their spatial prediction of SOC on the scale of a separate field by using machine learning
methods in combination with covariates of remote sensing. Many studies are related to the
analysis of soil properties and vegetation conditions at different scales, in which satellite
data are successfully used [10,36–40]. Nevertheless, digital mapping of the heterogeneity
of the soil properties of arable land, based on the use of remote sensing data, is largely
determined by their availability [17]. Currently, the widely used Landsat 8 OLI and Sentinel
2 satellites, which are publicly available, offer different, but acceptable, resolutions and
feature a wide range of reflectance bands in various spectrum ranges. Thus, this work is
aimed at assessing the possibility of using remote sensing data obtained from the Landsat
8 OLI and Sentinel 2 satellites as predictors of the spatial prediction of the agrochemical
properties of the soil on the field scale when using machine learning methods.

2. Materials and Methods
2.1. Study Area and Sampling Design

Two fields located on the territory of the Republic of Tatarstan (Russia) in the zone
of chernozem soils were used as the object (Figure 1). Tatarstan is located in the eastern
part of the East European Plain, within forest and forest-steppe natural zones. Umbric
Albeluvisols, Albic Luvisols, and Chernozems are widespread in these zones.
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The need to model the agrochemical properties of chernozem soils is primarily due to
the fact that the introduction of advanced technologies in agriculture offers great benefits
when applied to more fertile soils. Precision farming technologies are no exception and
their introduction into practice in Russia occurs mainly in the zone of distribution of
chernozem soils. The first field (55.182893◦ N, 51.999358◦ E) with an area of 254 hectares
is characterized by a height difference of up to 60 m, with steep slopes and high soil
heterogeneity and fertility. The second field (52.49621◦ N, 55.35032◦ E), with an area of
287 hectares, is characterized by a smaller dissection of the relief (a height difference of
30 m) and a more homogeneous soil cover. The first field was used to train the model,
while the second field was used to test the final models.

The fields were divided into elementary square plots with a size of about 5 hectares,
from which point samples (20–40 pieces each) were taken in 2019 to compile mixed samples.
In total, 50 mixed samples were compiled for the first field, and 59 for the second field. The
content of available forms of nitrogen for plants according to Cornfield (N), phosphorus
(P2O5), and potassium (K2O), according to the Chirikov method, were determined in
the samples. The Cornfield method is based on long-term alkaline (1 mol L−1 NaOH)
hydrolysis of the soil at optimal temperature and humidity, followed by the determination
of the released NH3. The determination of phosphorus and potassium by the Chirikov
method is a standard method for assessing the content of available forms in noncarbonate
chernozem soils. The method is based on soil treatment with 1 mol L−1 acetic acid. The
organic carbon content in the samples was determined by dry combustion on an organic
elemental analyzer Vario Max Cube (Elementar, Langenselbold, Germany). The fractions
of silt and clay were determined by laser diffraction on a BLUEWAVE particle size analyzer
(Microtrac, York, PA, USA) after soil treatment with sodium pyrophosphate and dispersion
of suspensions by ultrasound. All reagents were purchased from Ecopharm, Kazan, Russia.

2.2. Remote Sensing Data and Spectral Indices

The sources of the remotely sensed datasets were from the Landsat 8 OLI and Sentinel
2 satellites, which were obtained from the websites of the US Geological Survey and the
European Space Agency. Images with open soil, i.e., with minimal influence of vegetation,
were used for the work. For Landsat 8 OLI, the images used were from 31 May 2019. For
the Sentinel 2 satellite, the images were from 12 May 2019. During the selection of the
satellite images, the minimal influence of atmospheric disturbances was taken into account;
however, all the images were subjected to atmospheric correction using the DOS 1 method
(dark object subtraction). The DOS 1 method assumes that there are areas within the
satellite image where the reflection coefficient is almost zero (water, dense forest, shadow).
The signal from these areas is the result of atmospheric scattering, which must be removed.
The difference between this value and the actual value of the digital numbers of images
(DN) can be attributed to the additive haze effect [41].

Based on the satellite data, spectral indices were calculated that characterize open
soil and may reflect the redistribution of soil material, and may also correlate with such
fundamental soil properties as SOC and texture. In chernozem soils, these are the main
properties of soils that determine the availability of nitrogen, phosphorus, and potassium.
Table 1 shows a list of the indices used and their calculation formulas, which were adapted
for the Landsat 8 OLI and Sentinel 2 satellites. Individual satellite bands (Landsat 8 OLI:
Bands 2–7, Sentinel 2: Bands 1–8, 11 and 12) and bands ratios were also used for the spatial
prediction of agrochemical properties. The data of each satellite were used separately from
each other.
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Table 1. Spectral indices and formulas for their calculation.

Spectral Indices Formula Landsat 8 OLI Formula Sentinel 2 References

Normalized differences vegetation Index
(NDVI)

Band 5 − Band 4
Band 5 + Band 4

NIR − R
NIR + R [42]

Grain size index (GSI) (Band 4 − Band 2)
(Band 2 + Band 3 + Band 4)

(Band 4 − Band 2)
(Band 2 + Band 3 + Band 4)

[43]

Clay index (CLI) Band 6
Band 7

Band 11
Band 12 [44]

Bare soil index (BSI 1, BSI 2)

(Band 5 + Band 3) − Band 4
Band 5 + Band 3 + Band 4

(Band 6 + Band 4) − (Band 5 + Band 2)
(Band 6 + Band 4) + (Band 5 + Band 2) ∗

100 + 100

(Band 8 + Band 3) − Band 4
Band 8 + Band 3 + Band 4

(Band 11 + Band 4) − (Band 8 + Band 2)
(Band 11 + Band 4) + (Band 8 + Band 2) ∗

100 + 100

[45,46]

Redness index (RI) Band 42

Band 2 ∗ Band 33
Band 42

Band 2 ∗ Band 43 [47]
Panchromatic index (Panchrom) Band 2 + Band 3 + Band 4 Band 2 + Band 3 + Band 4 [48]

MID-Infrared index (MID-IR) Band 6 − Band 7
Band 6 + Band 7

Band 11 − Band 12
Band 11 + Band 12 [47]

Brightness index (BI)
√

Band 22 + Band 32 + Band 42

3

√
Band 22 + Band 32 + Band 42

3
[49]

Saturation index (SI) Band 4 − Band 2
Band 4 + Band 2

Band 4 − Band 2
Band 4 + Band 2 [49]

Coloration index (CI) Band 4 − Band 3
Band 4 + Band 3

Band 4 − Band 3
Band 4 + Band 3 [49]

Normalized difference index (NDI 1, NDI 2) Band 5 − Band 6
Band 5 + Band 6

Band 8 − Band 11
Band 8 + Band 11
Band 8 − Band 12
Band 8 + Band 12

[50,51]

Bands relations
R/B, SWIR1/R, SWIR1/NIR

Band 4
Band 2 , Band 6

Band 4 , Band 6
Band 5

Band 4
Band 2 , Band 11

Band 4 , Band 11
Band 8

Bands relations
SWIR1/SWIR2

(Landsat 8 OLI), R/SWIR2 (Sentinel 2)

Band 7
Band 6

Band 4
Band 12

Texture can be characterized by Cli and GSI indices and MID-Infrared index (MID-IR).
Open soil can be characterized by both low NDVI values and bare soil indices (BSI 1,
BSI 2) and indices that determine the color indicators of soils (RI, BI, SI, CI). SOC may
have a relationship with the panchromatic index and the indices of bare soil. Agricultural
cultivation of soil cover and non-photosynthetic vegetation, which are determined by the
indices NDI 1, NDI 2, can also affect the color characteristics of soils.

The values of the spectral data were extracted from the polygons of the elementary
sampling sites and averaged. The average remote sensing data and laboratory data were
linked to the coordinates of the centroids of the sampling polygons.

2.3. Spatial Prediction Methods

For the spatial prediction, regression models based on Support Vectors (SVMr) and
Random Forest (RF) were used. Regression based on support vectors is a controlled non-
parametric machine learning method. The method is based on the use of the nonlinear
transformation technique to map the original input space into a new hyperspace [52]. In
the transformed hyperspace, complex and nonlinear relations between covariates and the
output variable can be modeled using a linear function [53]. The SVMr model defines
a decision boundary, which restricts points that are close to the hyperplane. The sup-
port vectors are involved in finding the closest match between the data points and the
actual function that they represent. Due to its ability to process nonlinear relations and
efficiency in generalization, SVMr has shown itself to be a promising method in various
soil studies [30,54,55].

An RF is a tree-like machine learning algorithm that, using the results of several
decision trees, can significantly reduce the risk of overfitting. The algorithm is based on
the construction of decision trees, which are then combined according to certain criteria to
create random forests. RF can be generated from hundreds (or even thousands) of decision
trees. The predictions in RF are generated as the average of predictions of an ensemble
of decision trees. The decision tree constructed each time may differ due to randomness;
this uniqueness is used as an advantage to model multiple nonlinear relationships [56,57].
Random selection and averaging procedures make RF models stable algorithms with a
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high predictive ability [58]. RF is mainly used for classification tasks; several comparative
studies have proven that this is one of the best and currently available machine learning
methods [57].

The correlations of the remote sensing data with the target soil’s properties were
investigated using the Spearman correlation. Since the set of potential predictors was large,
a subsample of data was created using the Recursive Feature Elimination (RFE) procedure
to obtain the most important predictors for each response variable. For each model, the
importance estimates of the predictors were iteratively determined, and were then ranked
according to the degree of importance for the response variable. At each stage of the search,
the least important predictors were iteratively removed before the next stage in the creation
of the model. The corresponding estimation functions were used for the models. The size
of the subsample corresponding to the best value of the objective function was used as the
final model [59].

The RF and SVMr models were subjected to a tuning procedure. For the RF models,
the optimal values of the number of variables at each moment of tree separation (“mtry”)
were estimated. Accordingly, a random search for the values was performed within the
range of the predictors using 10-fold cross-validation and estimation by the corresponding
performance indicator [60]. A total of 1000 trees were selected as the “ntree” parameter.

For the SVMr models, the ε-insensitive error function “epsilon”, and the penalty
parameter “cost”, which regulates the excess of this error, were tuned. The radial basis
function was used as the core function. The model was tuned using a 10-fold cross-
validation with an assessment based on the performance indicator.

The models were tested using the bootstrap procedure with replacement and taking
into account the optimism which characterizes the overfitting of the model [60]. The
approach consists of the following steps:

1. Fitting the model to the original data and evaluating the performance indicator.
2. Getting a bootstrap sample with replacement from the original data.
3. Fitting the model to the bootstrap dataset and evaluating the performance indicator.
4. Fitting the model from the bootstrap dataset to the original dataset and evaluating

the performance indicator.
5. Evaluation of optimism by the average value of the difference in the performance

indicator of the model from point 3 and the model from point 4.
6. Evaluation of the performance indicator adjusted for optimism by subtracting the

value of the optimism from the performance indicator of the model from point 1.

The model evaluation measures were the RMSE, MAE, and R2 criteria.
Mean absolute error:

MAE =
1
n

n

∑
i =1
|(pi − oi)|

Root-mean-square error:

RMSE = [
1
n

n

∑
i =1

(pi − oi)
2]1/2

Coefficient of determination:

R2 = 1− ∑n
i =1 (oi − pi)

2

∑n
i =1(oi − o)2

where pi is the predicted value and oi is the observed value.
The best models were recognized as models with a minimum value of RMSE and

MAE and a maximum value of R2.
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2.4. Software

Atmospheric correction of remote sensing data was carried in the Semi-Automatic
classification plugin in QGIS [61]. Statistical analysis, correlation analysis, modeling, and
working with rasters were carried out using the object-oriented language R [62]. The
correlation matrix was plotted using the “corrplot” package. Work with raster images was
carried out in the “raster” package. The RF models were built using the “randomForest”
package and the SVMr models were built using the “kernlab” and “e1071” packages. The
models were tuned using the “caret” package.

3. Results and Discussion
3.1. Descriptive Statistics

Table 2 shows the statistical data of the soil properties. The variation of available
nitrogen on the training field is characterized as average with a range of variation of
91.8 mg kg−1. The variability of the available phosphorus content was very high; the range
of variation was 206.7 mg kg−1. The variation in the available potassium was average, with
a range of variation of 192.9 mg kg−1.

Table 2. Descriptive statistics of soil properties.

Property N, mg kg−1 P2O5, mg kg−1 K2O, mg kg−1 SOC, % Silt, % Clay, %

Train field

Minimum 53.8 75.3 154.6 2.7 41.1 3.5
Maximum 145.6 282.0 347.5 5.6 88.9 22.0

Range 91.8 206.7 192.9 2.9 47.8 18.5
Mean 100.4 149.4 226.5 4.0 75.2 10.1

Coefficient of
variation, % 19 34 19 19 10 31

Test field

Minimum 91.8 75.1 98.9 3.1 65.77 13.73
Maximum 213.9 314.2 267.2 9.1 76.51 23.31

Range 122.1 239.1 168.3 6.0 10.74 9.58
Mean 140.0 131.3 163.3 5.1 69.35 20.72

Coefficient of
variation, % 16 42 25 17 4 10

The variability of available nitrogen in the test field was average, with an average
value of 140.0 mg kg−1. The available potassium demonstrated a strong variability, with an
average value of 163.3 mg kg−1, and the available phosphorus was characterized by very
high variability and an average value of 131.3 mg kg−1. According to the agrochemical
indicators, both fields were similar. Differences were observed in silt and clay. The
variability of the silt content on the training field was low, with a range of variation of
47.8%. In terms of clay content, the field was heterogeneous, with very high variability; the
range of variation was 18.5%. On the test field, the coefficient of variation showed very
weak variability for silt (4%), and weak variability for clay (10%). The SOC content on the
training field was characterized by the average spatial variation (range of variation 2.9%).
The SOC content on the test field was 1.5 times higher than on the training field.

3.2. Correlation Relations

Figure 2 shows the correlation matrices of the relationships between the soil properties
and the remote sensing data. Nitrogen had the strongest relationship with SOC (r = 0.80),
and low correlation with clay r = −0.21 and silt—r = 0.20. The correlation of nitrogen with
SOC was statistically significant (p < 0.05), whereas with texture it was not significant.
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Furthermore, the available phosphorus and potassium demonstrated a low correla-
tion with texture. Silt demonstrated a correlation with phosphorus r = −0.19 and with
potassium—r = 0.22. Clay correlated with potassium r = 0.25; the correlation of available
phosphorus with clay was very low. The correlation of texture with phosphorus and
potassium was not significant at 5% significance level.

Of the agrochemical properties, the available nitrogen and available potassium corre-
lated the strongest with the remote sensing data. The available nitrogen displayed mostly
negative correlations with the remote sensing data. The significant values (p < 0.05) of the
correlation coefficient for nitrogen in the case of Landsat 8 OLI ranged from r = −0.51 to
r = −0.68, and in the case of Sentinel 2 from r = −0.50 to r = −0.72. A significant (p < 0.05)
positive correlation of nitrogen with the remote sensing data was also present and varied in
a range from r = 0.28 to r = 0.75 for Landsat 8 OLI and from r = 0.47 to r = 0.75 for Sentinel 2.
The available potassium displayed the most significant (p < 0.05) positive correlation with
individual bands: from r = 0.51 to r = 0.74 for Landsat 8 OLI and from r = 0.56 to r = 0.69
for Sentinel 2. The correlation of the available phosphorus with the remote sensing data
was mostly positive, but low. For Landsat 8 OLI, the significant correlation (p < 0.05) of
phosphorus varied from r = 0.24 to r = 0.4. In the case of Sentinel 2, the correlation of
phosphorus with the remote sensing data was not significant at 5% significance level.

3.3. Accuracy of Remote Sensing-Based Models

Table 3 shows an estimate of the accuracy of models of spatial variability of the
content of the available forms of nitrogen, phosphorus, and potassium. When using
RF and SVMr models, based on Sentinel 2 data, the content of available nitrogen and
available potassium were predicted more accurately. For the available nitrogen, the SVMr
model (Sentinel 2) demonstrated the value R2 = 0.79 and the RF model—R2 = 0.77; the
determination coefficient of the SVMr model for the available potassium R2 = 0.77, and
the RF model—R2 = 0.62. When using the Landsat 8 OLI satellite data for the available
nitrogen, the SVMr model displayed the value R2 = 0.90 and the RF model—R2 = 0.74.
For the available potassium, the value of the determination coefficient of the SVMr model
(Landsat 8 OLI) corresponded to R2 = 0.82 and the RF model—R2 = 0.66. The models of
the spatial variability of the available phosphorus were less effective. In the case of the
Landsat 8 OLI satellite data, for the available phosphorus when using the SVMr model, the
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value R2 = 0.68 and the RF model—R2 = 0.49, whereas, when using the Sentinel 2 data for
the SVMr model, R2 = 0.64, and for the RF model—R2 = 0.45.

Table 3. Estimation of the accuracy of models of available forms of nitrogen, phosphorus and
potassium based on remote sensing data and remote sensing with soil properties (SOC, Silt, Clay).

Property Model RMSE MAE R2 RMSE MAE R2

Remote Sensing Data Remote Sensing + Soil
Properties

Sentinel 2

N
SVMr 9.06 0.55 0.79 5.78 0.24 0.92

RF 10.13 1.10 0.77 8.65 1.10 0.83

P2O5
SVMr 31.19 4.57 0.64 27.52 4.05 0.72

RF 40.47 4.91 0.45 40.90 4.57 0.45

K2O SVMr 21.86 4.02 0.77 15.04 2.16 0.88
RF 28.98 2.98 0.62 28.40 2.78 0.64

Landsat 8 OLI

N
SVMr 6.30 0.61 0.90 4.39 0.26 0.95

RF 10.77 0.81 0.74 8.77 0.87 0.82

P2O5
SVMr 29.53 5.90 0.68 30.60 2.33 0.65

RF 39.38 3.82 0.49 39.84 4.71 0.48

K2O SVMr 19.16 1.63 0.82 14.62 2.54 0.89
RF 27.56 2.82 0.66 27.38 2.86 0.66

In general, after a comprehensive assessment of all the modeling accuracy indicators
(RMSE, MAE and R2), the results of the spatial modeling using SVMr and RF algorithms
based on the satellite data were satisfactory. At the same time, it is necessary to recognize
that the accuracy of some modeling results should be improved, especially the supply of
soils with available forms of phosphorus.

When attempting to improve spatial prediction, many studies consider the use of
different types of predictors (indicators of soil properties, vegetation state, morphometry)
for evaluating the target variable [5,11,37]. A significant improvement in spatial prediction
when using machine learning methods can be achieved by using individual soil indicators
as predictors of spatial data, along with remote sensing materials. For example, Kumar et al.
(2011) used interpolated maps of soil properties (clay, total nitrogen, pH, etc.) for a spatial
assessment of the SOC stock [63]. To create predictive maps of the SOC content using
machine learning and data mining, Were et al. [16] used interpolated maps of the texture,
Ca, Mg, P, K, total nitrogen, and pH. It is clear that among soil properties, the change in the
content of available forms of nutrients is primarily influenced by the content of SOC and
the texture.

3.4. Accuracy of Models Based on Remote Sensing and Soil Properties

Using the existing analytical data, maps of changes in the SOC content, silt fraction,
and clay fraction were compiled using SVMr and RF machine learning algorithms based on
the remote sensing data. In the case of the Sentinel 2 data, the best prediction was obtained
using the RF model (R2 = 0.84), while for the content of silt and clay fractions, the SVMr
model was the most effective at prediction (R2 = 0.62 and R2 = 0.76, respectively). In the
case of the Landsat 8 OLI data, the RF model was found to be the best for the content
of SOC (R2 = 0.83) and clay (R2 = 0.61), and the SVMr model was found to be the most
effective for the content of silt (R2 = 0.87). The final maps were used as additional predictors
together with the remote sensing data when modeling the variability of the content of the
available forms of nitrogen, phosphorus, and potassium.
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The inclusion of soil properties in the remote sensing model made it possible to
improve the accuracy of the prediction of the nutrients. The exceptions were the variants of
the models of the available phosphorus (RF (Sentinel 2), SVMr (Landsat 8 OLI), RF(Landsat
8 OLI)), and available potassium (RF (Sentinel 2), RF (Landsat 8 OLI)). For the remaining
variants, there was a noticeable improvement in the accuracy of the prediction when using
a combination of remote sensing with soil properties. For example, for Sentinel 2, in the
case of available nitrogen, the value of R2 in the RF model increased from 0.77 to 0.83,
and in the SVMr model, from 0.79 to 0.92. In the case of potassium, the SVMr showed
an improvement in R2 from 0.77 to 0.88, whereas in the case of phosphorus, the R2 of the
SVMr model increased from 0.64 to 0.72. For Landsat 8 OLI, a similar situation was also
observed for available nitrogen, the R2 of the SVMr model changed from 0.90 to 0.95, and
the R2 of the RF model from 0.74 to 0.82. There was also an improvement in the SVMr
(Landsat 8 OLI) model for the available potassium; R2 increased from 0.82 to 0.89. For
all the variants (from both Landsat 8 OLI and Sentinel 2), the SVMr model offered better
predictions compared to the RF models. The SVMr models offered better predictions of the
available nitrogen and potassium content than of available phosphorus. The prediction
accuracy for phosphorus content in soils when using remote sensing data is low. For
example, in a study by Hengl et al. [64] showed of 15 indicators of soils in sub-Saharan
Africa, significant models for most target nutrients displayed a value of R2 from 40% to 85%
(including total nitrogen and extracted potassium), except phosphorus, sulfur, and boron.

The degree of influence of remote sensing predictors and soil properties on the avail-
able forms of nitrogen, phosphorus and potassium, expressed as a weighting factor of each
predictor in the SVMr models, is shown in Figure 3. For the available nitrogen, there was a
significant influence of SOC, since there were often strong correlations between SOC and
N. Of the soil properties, only the content of the silt and clay fractions influenced the avail-
able phosphorus, and the combined effect of silt, clay, and SOC influenced the available
potassium. The latter was most likely because the availability of potassium is significantly
influenced by the content of its exchange forms in the soil, which is largely determined
by the cation exchange capacity (CEC) of the soil, and the availability of phosphorus is
influenced by the lithology of soil material.
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3.5. Validation of the Models Based on an Independent Data Sample

When assessing the reliability of predictive models at describing the spatial hetero-
geneity of soils on the scale of one field, along with assessing their accuracy, it is necessary
to assess the reliability of other, similar objects. Since the transferability of the initial models
is largely determined by the regional peculiarities of the formation of the heterogeneity of
the soil cover, a field also located in the zone of distribution of chernozems was selected
for testing. The final models with the highest R2 values were subjected to the validation
procedure. The validation data are presented in Table 4.

Table 4. Results of the evaluation of the accuracy of the best models (SVMr) based on a combination
of remote sensing and soil properties.

RMSE MAE R2

Sentinel 2

N 9.19 0.39 0.85
P2O5 31.24 7.57 0.71
K2O 25.69 5.42 0.62

Landsat 8 OLI

N 8.35 0.44 0.88
P2O5 46.79 12.15 0.31
K2O 24.78 3.18 0.65

In general, the models showed an expected decrease in the accuracy of the spatial
prediction. For the nitrogen based on Landsat 8 OLI, the test models demonstrated values
of R2 = 0.88 (R2 of the original model = 0.95), for potassium R2 = 0.65 (R2 of the original
model = 0.89), and for phosphorus R2 = 0.31 (R2 of the original model = 0.65). Based
on Sentinel 2, the test model for nitrogen demonstrated R2 = 0.85 (R2 of the original
model = 0.92), for potassium R2 = 0.62 (R2 of the original model = 0.88), and for phosphorus
R2 = 0.71 (R2 of the original model = 0.72). It can be assumed that the decrease in the
accuracy of the prediction in the test field was associated with a lower degree of terrain
indentation and a smaller manifestation of intra-field transfer of soil material compared
to the first field used to train the final models. It can also be assumed that to ensure the
universality of the resulting models, it is necessary to expand the set of predictors (for
example, to include morphometric attributes of the relief). For example, Mponela et al.
(2020) showed that phosphorus content has a closer relationship with the attributes of the
digital relief model SRTM than with remote sensing; the relationship of relief indicators
with potassium content is weaker [65]. At the same time, it should be taken into account
that poor prediction can be caused mainly by small sample sizes and high variability
of auxiliary predictors [10]. Thus, the choice of a reasonable relationship between these
parameters can also produce greater reliability in models.

3.6. Final Spatial Prediction Maps

The final maps of the spatial prediction of the available forms of nitrogen, phosphorus,
and potassium obtained from the Landsat 8 OLI and Sentinel 2 satellite data, as well as the
soil properties using the SVMr models, are shown in Figure 4.
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The maps based on Sentinel 2 are characterized by a greater degree of detail on the
spatial variability of the soil properties. It is known that Sentinel 2 data are more sensitive
to local changes in soil parameters, in contrast to Landsat 8 OLI data, which feature a
coarser resolution. Similar conclusions were made in other works, for example, in the study
of saline soils in China [66]. At the same time, the accuracy of the prediction according to
Landsat 8 OLI data approximately corresponded to the accuracy of the prediction based
on Sentinel 2 data, especially when using additional predictors of the soil properties.
The similarity of the accuracy of the spatial prediction when mapping changes with the
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content of SOC using different space sensors (Sentinel 2, Landsat 8, and PlanetScope)
was also noted by Žížala, et al. [39]. Thus, when choosing a remote sensing source, it is
necessary to take into account the planned accuracy of dosing mineral fertilizers with the
technical resources used. Currently, when creating maps for variable-rate fertilization,
the planning of application cells with a size of 18 m × 18 m, which is less than the
resolution of the Landsat-8 satellite, is considered standard. In such cases, the use of
more detailed agrochemical maps created based on the Sentinel 2 satellite data may be
considered preferable. For example, a prediction with a resolution of at least 10 m can be
useful for the application of precision farming technologies in irrigated agriculture and
irrigated vegetable growing.

4. Conclusions

The use of RF and SVMr algorithms based on Landsat 8 OLI and Sentinel 2 data on
open chernozem soil for the spatial prediction of available forms of nitrogen, phosphorus,
and potassium shows similar performance values. The phosphorus content was predicted
to be worse than the nitrogen and potassium content, which were more closely related to
the remote sensing data. The available nitrogen displayed mostly negative correlations
with the remote sensing data: from r =−0.51 to r =−0.68 (Landsat 8 OLI), from r =−0.50 to
r = −0.72 (Sentinel 2). The available potassium demonstrated the most significant positive
correlation with the individual bands: from r = 0.51 to r = 0.74 for Landsat 8 OLI and from
r = 0.56 to r = 0.69 for Sentinel 2. The correlation of the available phosphorus with the
remote sensing data was low.

The inclusion of soil indicators (SOS, silt, clay) in the remote sensing model makes it
possible to improve the spatial prediction of nutrients. When modeling remote sensing in
combination with soil indicators, the SVMr algorithm produced the best results. The test of
the best final models on an independent sample (chernozem) revealed a decrease in the
accuracy of R2 compared to the original models. For the nitrogen based on the Landsat 8
OLI, the test models demonstrated values of R2 = 0.88 (R2 of the original model = 0.95), for
potassium R2 = 0.65 (R2 of the original model = 0.89), and for phosphorus R2 = 0.31 (R2 of
the original model = 0.65). Based on Sentinel 2, the test model for nitrogen demonstrated
s R2 = 0.85 (R2 of the original model = 0.92), for potassium R2 = 0.62 (R2 of the original
model = 0.88), and for phosphorus R2 = 0.71 (R2 of the original model = 0.72).

To improve the reliability of the model, it is necessary to use additional predictors
(for example, morphometric relief attributes), and it is also necessary to take into account
the limitation of the model to the zone of applicability. Future research should aim at
determining the boundaries of the range of applicability of models. However, models
based on one or more fields can be used to survey the entire territory without the additional
cost of agrochemical analysis for precision farming purposes.

The need to model the agrochemical properties of chernozem soils is primarily due to
the fact that the introduction of advanced technologies in agriculture offers great benefits
in more fertile soils. Precision farming technologies are no exception and their introduction
into practice in Russia occurs mainly in the zone of distribution of chernozem soils.
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