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Abstract: Rhizosphere arguably embodies the most diverse microbial ecosystem on the planet, yet it
is largely a functional ‘black box’ of belowground plant-microbiome interactions. The rhizosphere
is the primary site of entry for subsurface injection of fixed carbon (C) into soil with impacts on
local to global scale C biogeochemistry and ultimately Earth’s climate. While spatial organization
of rhizosphere is central to its function, small scale and steep microbial and geochemical gradients
within this dynamic region make it easily disrupted by sampling. The significant challenge presented
by sampling blocks elucidation of discreet functions, drivers, and interactions within rhizosphere
ecosystems. Here, we describe a non-destructive sampling method linked to metaproteomic analysis
in order to measure temporal shifts in the microbial composition and function of rhizosphere. A
robust, non-destructive method of sampling microbial hotspots within rhizosphere provides an
unperturbed window into the elusive functional interactome of this system over time and space.

Keywords: rhizosphere; metaproteomics; hot-spots; metagenomics; in situ; non-destructive; temporal

1. Introduction

Rhizosphere microbiomes inhabits the narrow (~2–4 mm) zonal interfaces between
soil and plant roots, representing the most diverse microbiomes on Earth, containing up
to 1011 microbial cells and ~30,000 bacterial species per gram of root [1]. The rhizosphere
microbiome exists through an interwoven tapestry of bacteria, viruses, archaea, protists,
fungi, nematodes, and small arthropods interacting directly with plant roots and each
other. Plant functional traits are influenced by the rhizosphere microbiome, which in-
cludes impacts on plant metabolism, hormonal pathways, nutrition, stress tolerance (e.g.,
drought), and enhancement of biosynthetic capacities [2]. The rhizosphere is fundamentally
essential for multiple ecosystem processes including recycling and storage of plant fixed
C (CO2 consumed during photosynthesis), water cycling, nitrogen fixation, and nutrient
storage [3]. Increased anthropogenic C cycling is manipulating the global climate with
resulting differential moisture extremes, rising temperatures, and pathogen migrations
that are undoubtedly impacting the function of the rhizosphere microbiome and shifting
its overall functional capacity. Warming is also causing increased global soil respiration
and the resulting CO2 fluxes driven by microbial heterotrophic metabolism. The impact of
these microbes ‘breathing harder’ results in net C losses and likely the overall reduction in
C storage in soils [4], with resulting direct and indirect impacts on the global food supply
chain including, crop production, and primary livestock feed [3]. Possessing spatially and
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temporal focused tools for functional assessment will be crucial for forming a predictive
understanding of both how the rhizosphere influences C and nutrient cycling and how
these impacts may be amplified or dampened by future environmental changes.

Despite the importance of spatial organization within rhizosphere, sampling of intact
rhizosphere ‘omes’ without disruption or destruction remains elusive. While metage-
nomics, metatranscriptomics, metaproteomics, and metabolomics can provide an inte-
grated ‘multi-omic’ and ‘metaphenomic’ view of soil/rhizosphere microbiome [5], these
tools are limited to only looking at samples after physical disruption required for analysis,
such as soil sieving which alters ‘real-time functions,’ destroys spatial gradients, and erases
spatial specialization of the rhizosphere. Metaproteomics provides a representative mea-
surement of microbiome function with the stability of proteins and helps to elude biases
associated with mRNA analysis. However, rhizosphere metaproteomics is not without chal-
lenges linked to high diversity, heterogeneity of soil matrices, extraction biases, and limited
metagenomic reference databases for these systems [6]. Significant improvements with
respect to high-resolution mass spectrometry, extraction [7], increased separation via pro-
teomic fractionation using 2D [8], and metagenomic assembly for proteomic databases [9]
have provided higher proteomic resolution, but the ability for metaproteomics to measure
the rhizosphere/soil microbiome still relies on disruptive and destructive sampling methods.

Here, for the first time, we describe and demonstrate an integrated temporally resolved
sampling and measurement technique of the metaproteome within switchgrass rhizosphere
in a non-disruptive/non-destructive manner to bridge high-throughput mass spectrometry
with specific physical locations on rhizosphere.

2. Materials and Methods
2.1. Soil and Plant Sampling Set-up

Switchgrass (Panicum virgatum L., var. Cave-in-Rock [10]) was grown in rhizoboxes
containing soil harvested from a W.K. Kellogg Biological Station (KBS) field plot that has
been in continuous Panicum virgatum (switchgrass) cultivation since July 2008 [11,12]. The
soil is characterized as a Typic Hapludalfs with approximately 43% sand, 40% silt, and 17%
clay content [13] and was maintained at 4 ◦C from harvest until sieving through a 4 mm2

sieve in preparation for plant growth. The plants were cultured by sowing a single seed
into each of triplicate rhizoboxes (dimensions of 1 cm × 20 cm × 15 cm) that had removable
opaque sides to enable sampling of soil. Plant cultivation was in a Conviron (Winnipeg,
MB, Canada) model number GR48 walk-in growth chamber following the methods of
Ilhardt et al. [14]. Briefly, a 16:8 h lighting cycle (1219 µmol s−1 m−2) at 24 ◦C and 60%
humidity was used during the light cycle and 18 ◦C with 50% humidity during the night
cycle. Rhizoboxes were placed at roughly a 30◦ angle offset from vertical to encourage root
growth along the sampling pane of the rhizobox and roots were visualized via their auto
fluorescence using a Typhoon Laser Scanner 9500 (GE Healthcare, Chicago, IL, USA).

2.2. Proteomics

We performed non-destructive protein extraction (Figure 1) from each rhizotron by
removing the side panel and applying a pre-wetted nitrocellulose membrane to the exposed
root-rhizosphere soil surface, following the blotting methods of Lin et al. for 15 min [15].
Proteins were transferred from the sample to the membrane surface over a 15 min duration,
fixed and stained using SyproTM Ruby general protein stain, and then visualized using a
TyphoonTM FL 9500 (GE Healthcare, Chicago, IL, USA) laser scanner to localize protein
(by fluorescence). Manual sampling of small subsections of the membrane was guided
by black light illumination of the sample, which enabled us to performed membrane
excisions in areas of high protein abundance using a biopsy device (Integra Miltex Biopsy
punch, Integra 3335, Integra Life Sciences, Princeton, NJ, USA), which removed 5 mm
diameter membrane sections. These section punches from each individual rhizobox and
sampling day were combined for a total of 15 samples (3 rhizoboxes; 5 sampling days). We
performed trypsin digestion on the membrane then the resulting peptides were analyzed
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via the nanoproteomics platform (SNaPP) [16] on a Q-Exactive mass spectrometer (Thermo
Scientific, San Jose, CA, USA). Briefly, peptides were analyzed by injecting the entire 20 µL
sample (resulting from the on-membrane trypsin digests) onto an in-house simplified
nanoproteomics platform (SNaPP), where by bypassing the immobilized trypsin column,
the peptides were trapped and desalted via an on-line SPE column (4 cm length × 150µm
inner diameter) packed with 5µm C18 particles (Phenomenex) [16]. The peptides were then
separated using a 25 cm analytical column with 50 µm I.D. packed with 1.7 µm AQ C18
media (Waters, Milford, MA, USA). The eluting peptides were analyzed on a Q-Exactive
mass spectrometer (Thermo Scientific). Mass spectra were collected from 400 to 2000 m/z
at a resolution of 70 k followed by data dependent HCD MS/MS at a resolution of 17.5 K
for the twelve most abundant ions.
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Figure 1. Setup of Rhizobox, sampling, and measurements. A pre-wetted nitrocellulose membrane is
placed on an exposed soil surface on the side of a rhizobox and used to non-destructively remove
mobile proteins from the sample while preserving their two-dimensional location on the membrane.
Spatial distributions of collected proteins were determined using a general protein stain which helps
guide excision of small (1 mm diameter) membrane sections used for proteomic analysis. Products of
on-membrane trypsin digests were purified and separated using the SNaPP method [16] to minimize
loses to increase overall proteomic yields from analysis by mass spectrometry.

A Kellogg Biological Station (KBS) at Michigan State University metaproteomic refer-
ence database constructed from the KBS rhizosphere metagenome [17] via ATLAS [9] and
16S amplicons were analyzed as previously described [18]. Mass spectra, peak discovery,
and refinement using MS-GF+ were completed as previously described [8]. In order to
compare the temporally resolved proteomic analysis, we also performed 16S amplicon as
previously described using PowerSOIL DNA extraction, Earth Microbiome PCR methods,
and qiime2 [18] and more traditional and bulk scale metaproteomic assessment (using ~5 g
of excised soil) following the simultaneous extraction of metabolites, proteins, and lipids
MPLEx extraction [7].

3. Results and Discussion

We compared taxonomic identification between the temporally resolved non-disruptive/
destructive rhizosphere ‘hot-spot’ metaproteomics and the more traditional 16S amplicon,
bulk proteomic, and metagenomic analyses performed at the end of the experiment. Note,
here we refer to hot-spots as the specific locations containing enhanced protein abundance
as measured by staining and fluorescence. We resolved nine different phyla of bacteria
(Figure 2) between all measurements and elucidated the temporal dynamics of which of
these groups were functionally active in the ‘hot-spots.’ Measurements greater than >30%,
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on average, of the results were obtained from groups that were taxonomically unidentified
(Figure 2).
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Figure 2. Taxonomic and functional profile of rhizosphere hot-spots. Taxonomy is based on
SILVA database for 16S amplicons. The bulk metagenome from KBS, hotspot proteomic time series
(1–5 represent days; Pre = beginning of the experiment or day 1; Post = Day 5), and the post (bulk
~5 g) metaproteome are based on RefSeq taxonomy from ATLAS.

We further elucidated the proteins by function, which included both plant and micro-
bial proteins. The plant-specific proteins identified in the hot-spots included ATP-synthases
and ribosomal proteins (Table 1). The microbial-specific proteins included kinases, chap-
erones (Hsp70), polymerases, glyceraldehyde-3-phosphate dehydrogenase, isomerases,
pyridoxal phosphate-dependent aminotransferase, and malate dehydrogenase (Table 1).
Only fast-growing fastidious members from Gammaproteobacteria and Bacteroidetes such
as Acinetobacter, Pseudomonas, and Mulicaginibacter were identified (Table 1). These Pseu-
domonas and Acinetobacter (a member of the same order) are strong root colonizers that
often form biofilms and limit competing microbes from colonizing as well as provide
plant-growth promotion [19].

Table 1. Protein identifications from the ‘rhizobox’ samples blots. Functions and taxonomic are from RefSeq notation.

Membrane Protein Observed Observed In (RhizoBox) Protein Function Organism

6SS2_k121_2341198_12 B1, B2, C2, B4, B5
Nucleotide-Binding Domain of the

sugar kinase/HSP70/ actin superfamily Bacteria

6SS2_k121_3766132_8 C1,

Nucleotide-Binding Domain of
the sugar

kinase/HSP70/actin superfamily Bacteria

6SS4_k121_1151881_1 A2,
molecular chaperone DnaK

Hsp70 protein Acinetobacter

6SS4_k121_241109_3 A2,
DNA-directed RNA polymerase

subunit alpha Acinetobacter

6SS4_k121_25570_1 A2,
pyridoxal phosphate-dependent

aminotransferase Acinetobacter
6SS4_k121_444875_3 A2, malate dehydrogenase Acinetobacter

6SS4_k121_107562_9 B2,
phosphonate ABC transporter

substrate-binding protein Acinetobacter
6SS2_k121_309756_1 A3, A5, B5 F0F1 ATP synthase subunit alpha Panicum

6SS2_k121_3149475_2 A3, B5 Ribosomal protein S11 Bacteria

6SS4_k121_315695_2 A3,
glyceraldehyde-3-phosphate

dehydrogenase Chryseobacterium
6SS4_k121_820786_1 A3, A4, ketol-acid reductoisomerase Pseudomonas
6SS2_k121_559796_1 A5, B5 ATPase, F1 complex Panicum

6SS5_k121_1973917_7 B5 nucleoside-diphosphate kinase Mucilaginibacter
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4. Conclusions

Our study provides the first ‘proof-of-concept’ non-disruptive/non-destructive mea-
surements of taxonomy and functions of the rhizosphere ‘hot-spots’ of microbial metabolism
over temporal space. Coupling of this approach with stable-isotope labeling would help
distinguish proteins being generated in real-time by currently growing microbes from
residual/relic proteins synthesized before the application of an isotope tracer [20,21].
Activity-based probes and fluorescence in situ hybridization (FISH) could also be used
to assay for functional genes or microbial functional guilds within these rhizosphere hot-
spots [22,23], but these approaches are also very targeted and cannot provide the broader
data coverage of a metaproteomic approach as developed here. We further revealed that
these rhizosphere hot-spots can detect similar taxonomic diversity and functions even via
small sampling when compared to those predicted by traditional 16S, metagenomics, and
bulk shotgun metaproteomics [24], further illustrating why the direct measurement of these
dimensions will provide enlightening details of the belowground functional black box.
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