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Abstract: The root system is the important organ of a plant, helping to anchor the plant and take
up nutrients from the soil. The purpose of this investigation was to determine the magnitude of
the root network system (RNS) through phenotypic variability in a broad range of maize inbred
lines. The GiA Root software was used to identify root attributes from images. After germination,
the inbred lines were grown hydroponically for 15 days in a high-lux plant growth room with low
phosphorus (LP) and normal phosphorus (NP) treatments. Variance analysis revealed a large range
of variability present among the inbred lines, with intermediate to high heritabilities ranging from
0.59 to 0.95 for all RNS traits, demonstrating uniformity through the experiments. The proportions
of genetic variance ranged from 0.01–0.60 in different maize RNS traits. A strong positive linear
relationship between best linear unbiased predictors (BLUPs) with estimated means was found for
all the RNS traits. The Euclidean genetic distances between the studied inbred lines ranged from
0.61 to 29.33, showing a higher amount of diversity. More than 79% of the overall genetic variation
was explained by the first three principal components, with high loadings from the measurements
of network length (NWL), network surface area (NWSA), network perimeter (NWP), network area
(NWA), the maximum number of roots (MANR), median number of roots (MENR), network volume
(NWV), network convex area (NWCA), specific root length (SRL), network depth (NWD), number of
connected components (NCC), and network width (NWW). The biplot of genotype by trait interaction
exposed superior genotypes with a relatively high expression of favorable trait combinations. Some
outstanding genotypes with higher values of most RNS traits were identified through MGIDI analysis.
These lines may be convenient for enhancing LP tolerance in maize.

Keywords: root network system; low phosphorus; root image; GiA Root software; genetic

1. Introduction

Despite their critical significance in plant performance, root characteristics are rarely
used as selection criteria in standard plant breeding schemes. Crop improvement has been
primarily focused on yield during the previous several decades, and the benefits associated
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with this method have been gradually diminishing [1]. Recently, the emphasis on crop
breeding has switched to secondary qualities that influence yield, particularly complex
features that may increase yield via increased physiological efficiency [2].

The roots are accountable for water absorption, nutritional uptake, and anchoring
the plant in the soil. The study of root biology entails a comprehensive review of the
complex interactions between plants, soil, and water, which are intricated by the presence
of microbes and insects in the rhizosphere that can affect root growth and development [3].
The soil environment provides information about the availability and uptake of nutrients,
which is a reflection of the soil state. When several elements affecting root growth and
development are insufficient, a 50% yield loss can occur. Given the expected 50% increase
in human population by 2050, improving root health in crop plants could play a significant
part in addressing the world’s growing food needs [4].

For the development and growth of plants, phosphorus (P) is a naturally limiting
constituent. Therefore, crops that grow well in low-phosphorus environments will improve
food safety in underdeveloped countries while simultaneously reducing contamination
in developed countries [5]. P deficiency is a significant barrier to the production of food
and economic expansion in low-input agriculture for underdeveloped nations. Excessive
fertilizing in high-input agriculture considerably pollutes the environment [6]. Improved
P uptake and utilization by crop plants is crucial for commercial, humanitarian, and eco-
logical reasons [7,8]. Plants have developed several techniques for acquiring and using
P in low-phosphorus conditions, including efficient P uptake and accelerated acquisi-
tion [5,9,10]. Roots are critical for phosphorus accumulation because of regional changes
in phosphorus availability from the soil due to limited movement and elements affect-
ing phosphorus availability, such as pH, microbes, and colloidal chemistry [11]. Low P
availability triggers a variety of physiological, morphological, and architectural responses
in root systems. Different root adaptations to P deficiency enhance the root’s capability
to discover the soil, especially in the topsoil, which contains the highest concentration
of phosphorus [10,12–16]. Nonetheless, the concept that the phenotypic root network
architecture enhances phosphorus acquisition in the presence of limited phosphate supply
merits attention for genetic improvement of maize phosphorus efficiency [5,15,17,18].

High quality and large-scale phenotypic data are essential in modern plant breeding.
The quality of the marker-phenotype connection is determined by the phenotypic informa-
tion [19]. Accurate phenotypic categorization of germplasm will assist breeders to make
improved selection assessments. High-throughput technologies enable breeders to analyze
phenotypic traits with better precision and in larger population sizes. The power of QTL
can be boosted as population sizes increase. If a high-throughput phenotyping tool fits the
following criteria, it should be widely used: it can analyze a vast number of plants quickly,
and attributes can be quantified with high precision. We can lower the standard error by
enhancing the precision of phenotypic measurements and evaluating a larger sample size,
generating more confidence in the quantity of the measured trait [20].

If genotypic differences are to be recognized, the trait-measurement technique must
be trustworthy, consistent, and objective. Digital phenotyping has evolved as one way of
achieving these objectives [21]. These methods are assisting in the transition from categorical
to quantitative phenotyping by establishing a connection between ontology concepts and
trait descriptors. Numerous root-analyzer programs have been developed as a means of
quantifying the RAS in a completely automated or semi-automatic fashion [22–24].

Plant root-system architecture photos may be analyzed quickly and accurately using
the semi-automated software GiA Roots (General Image Analysis of Roots). Users can
apply algorithms to help them distinguish between the root and the background in GiA
Roots. The end-user receives quantitative data on each trait, as well as all the intermediate
processes that were taken to ensure reproducibility. To integrate GiA Roots with large-scale
operations, the program provides both a graphical user interface and a command-line
interface [25]. The primary goals were to characterize the range of variation for critical
RNS traits, to assess the genetic contribution to these traits, to identify how variation is
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distributed within and between populations, and to choose some extreme inbred lines for
breeding LP tolerant maize.

2. Materials and Methods
2.1. Experimental Site

The experiment was executed at Maize Molecular Breeding Laboratory, Institute of
Crop Sciences, Graduate School of Chinese Academy of Agricultural Sciences (GSCAAS),
Haidian District, Beijing 100081, China.

2.2. Plant Materials

The inbred lines were comprised of 220 maize accessions selected to represent a wide
range of diversity, including 155 tropical and subtropical inbred lines from CIMMYT and
65 temperate inbred lines from CAAS (Table S1).

2.3. Plant Growth Condition

A high-lux hydroponic plant growth chamber was used for phenotyping, with daily
temperatures kept at 28 ◦C under light for 14 h and at 22 ◦C under dark for 10 h. The light
intensity of the growth room was 657 µmol m−2 s−1, and the relative humidity was 50%.

The experiment was carried out using the alpha design. There were two P treatments:
LP (2.5 × 10−6 mol L−1 of KH2PO4) and NP (2.5 × 10−4 mol L−1 of KH2PO4), each with
two replications and multiple blocks (25 × 22). The composition of nutrient both for LP
and NP were presented in Tables 1 and 2 respectively.

Table 1. Composition of nutrients for LP treatment.

Sl. No Name of the Chemical Net Weight (g)/10 L Volume Needs for 50 L
Stock Solution

01 Calcium Nitrate {Ca(NO3)2·4H2O} 944.6 250 mL
02 Potassium Sulfate (K2SO4) + Magnesium Sulfate (MgSO4) 261.39 + 324.12 250 mL
03 Potassium Chloride (KCl) 14.9 250 mL
04 Potassium dihydrogen phosphate (KH2PO4) 68.046 2.5 mL
05 Boric Acid (H3BO4) 0.6108 5 mL

06 Manganese sulfate (MnSO4) + Copper sulfate (CuSO4·5H2O) +
Zinc sulfate (ZnSO4·5H2O) + {(NH4)6·Mo7·O24·4H2O} 1.690 + 0.25 + 2.87 + 0.062 5 mL

07 Iron sodium salt Fe-EDTA 146.82 250 mL

Table 2. Composition of nutrients for NP treatment.

Sl. No Name of the Chemical Net Weight (g)/10 L Volume Needs for 50 L
Stock Solution

01 Calcium Nitrate {Ca(NO3)2·4H2O} 944.6 250 mL
02 Potassium Sulfate (K2SO4) + Magnesium Sulfate (MgSO4) 261.39 + 324.12 250 mL
03 Potassium Chloride (KCl) 14.9 250 mL
04 Potassium dihydrogen phosphate (KH2PO4) 68.046 250 mL
05 Boric Acid (H3BO4) 0.618 5 mL

06 Manganese sulfate (MnSO4) + Copper sulfate (CuSO4·5H2O) +
Zinc sulfate (ZnSO4·5H2O) + {(NH4)6·Mo7·O24·4H2O} 1.690 + 0.25 + 2.87 + 0.062 5 mL

07 Iron sodium salt Fe-EDTA 146.82 250 mL

The 3% NaOCl was used for 10 min to surface sterilize 25 seedlings, followed by
three washes with deionized water. After surface sterilization, the seeds were sown under
water-saturated quartz granules and covered with black polythene for 4 days in the growth
chamber for germination, and then kept under light for another 4 days. Before planting,
the seedlings were stripped of their endosperm and then wrapped in a sponge before being
inserted into the cover’s hole. Six plants were inserted into each of the six holes in the
covers. After transplantation, continuous air was delivered to a nutritional solution for
ventilation and every two days, the nutrition solution was replenished. To prevent fungus
growth, the pot was washed with the brush after changing the nutritional solution. In the
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nutrient solution, the cultures grew for 15 days. The seedlings were imaged after 15 days
of growth.

2.4. Camera Arrangements

The image was taken with a digital SLR camera with a custom polarized. The resolu-
tion of the image was 120 pixels per centimeter. The backlighting was dark and uniform
with bright white roots. The image was converted from RGB color to 8-bit grayscale format.

2.5. Imaging System

On a camera stand, a Canon EOS D7 digital SLR camera equipped with a 135 mm
macro lens and circular polarizing filter was attached. The camera was set to manual
capture mode with a shutter speed of 1/30 s, an aperture of 7 mm, and a 1000-ISO sensor
sensitivity. The camera’s optical axis was oriented to face a tray that lighted the root
systems equally. To darken the sky, limit reflections, and lessen glare from the water’s
surface, a polarizing shield was positioned next to the camera lens. The roots were lighted
and placed in a large (6040 cm) black color tray with 3–5 mm deep water to permit the root
structures to grow out proficiently with minimal parallel root overlaps. We made images
of colorful roots against a black background (Figure 1).

Figure 1. Maize root network system (RNS) of selected low-phosphorus-susceptible (G94)
and tolerance genotypes (G53) grown under Normal-P (NP) and Low-P (LP) conditions under
hydrophonic condition.

2.6. Image Acquisition, Analysis and Output

The camera was attached via a USB 2.0 port to a personal computer, and digital
photographs were captured and saved. The root systems of individual seedlings were
photographed after they were laid and distributed in a specimen tray with nutrient solution.
After batch processing and analysis of the color RGB photos with the GiA Roots software
(Figure 2). The software saved output as a comma separated value in csv extension file.
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Figure 2. The processing phases for root investigation with the GiA Roots software [25].

2.7. Recorded Data

Average root width (ARW): The average root-width estimation for the complete root
system, calculated for all pixels along the medial axis.

Ellipse axis ratio (EAR): The ratio between the minor and major axes of an
acceptable ellipse.

Major ellipse axis (MJEA): The length of the major axis of the ellipse that provides the
best fit to the network.

The maximum number of roots (MANR): The 84th percentile value is determined by
ordering the number of roots crossing a horizontal line from smallest to greatest, and the
highest number is regarded as the maximum number.

The median number of roots (MENR): The result of a vertical line sweep (Figure S1),
which evaluated the number of roots that crossed a horizontal line and then calculated the
median of all values for the network’s extent.

Minor ellipse axis (MIEA): The length of the minor axis of the ellipse that provides the
best fit to the network.

Network area (NWA): The number of network pixels in the image.
Network bushiness (NWB): The ratio of the maximum to the median number of roots.
Network convex area (NWCA): The area of the convex hull that encompasses

the image.
Network depth (NWD): The vertical distance between the top-most network pixel

and the bottom-most network pixel in pixels.
Network length (NWL): Number of pixels in the skeleton network, in whole or in part.
Network length distribution (NWLD): The proportion of network pixels that are

located in the lower two-thirds of the network. The bottom two-thirds of the network is
specified by the network depth.

Network perimeter (NWP): The sum of all pixels that are related to a backdrop pixel
(using an 8-nearest neighbor neighborhood).

Network solidity (NWS): The entire network region is separated by the network’s
convex area.

Network surface area (NWSA): The total of the local surface areas at each pixel in the
network’s skeleton, approximated as a tubular shape with an image-derived radius.

Network volume (NWV): The total of the local volumes at each pixel in the network
skeleton, approximated as a tubular shape with an image-derived radius.

Network width (NWW): The number of pixels in the horizontal direction from leftmost
network pixel to the rightmost network.

Network width to depth ratio (NWWDR): The width of the network divided by the
depth of the network.
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The number of connected components (NCC): After picture preprocessing, an integer
indicating the number of connected groups of network pixels in the image.

Specific root length (SRL): Total root length divided by the volume of the root system.
Volume is estimated as the total of the cross-sectional areas of all pixels along the root
system’s medial axis. The total root length is the number of pixels in the root system’s
medial axis.

2.8. Statistical Analysis

A linear model in alpha-lattice design [26] with four replications was used for indi-
vidual and combined analysis. R-statistics software Version 3.0.2 for Windows was used
for statistical analysis [27]. Analysis of variance was utilized to estimate components of
phenotypic variance for each variable using constrained maximum likelihood approaches.
To estimate variance components, the lme4 package’s linear mixed effect “lmer” function
was used.

2.8.1. Best Linear Unbiased Predictors (BLUPs)

In order to calculate BLUPs, the very same models that were utilized to compute variance
components were applied for every line and each character. The lme4 package’s random effect
“ranef” command was used to calculate BLUPs for all model terms. The agricolae R-package
was used to assess the genotypic, phenotypic, and broad-sense heritabilities.

2.8.2. Multivariate Analysis

All pairs of entries had their Euclidean distance coefficients evaluated using the
software Version 2.0.1 of the Statistical Tool for Agricultural Research (STAR) which is
developed by the International Rice Research Institute. A Euclidean distance matrix built
from data on seedlings was utilized as input for cluster analysis by the unweighted pair
group method of arithmetic average (UPGMA) and for principal component analysis
(PCA) to identify the primary features responsible for the majority of the gross variance
seen between the examined inbred lines. To evaluate the relatedness of lines, a UPGMA
dendrogram was created using Euclidean genetic distances.

2.8.3. Genotype by Trait (GT) Interactions Biplot

The comparative trait value for every trait was derived by dividing it by the related
trait value obtained from the NP treatment. STAR software was used to create a GT biplot
from a two-way matrix of eight traits and 220 genotypes using the relative trait. The first two
principal components were plotted. Genotypes were plotted using the principal component
scores, while characteristics were plotted using the principal component eigenvectors.

2.8.4. Multi-Trait Index Based on Factor Analysis and Genotype-Ideotypes Distance (MGIDI)

Olivoto and Nardino [28] proposed a multi-trait score based on component analysis
and genotype-ideotypes distance (MGIDI) to identify novel donors capable of performing
well under both optimal and low nitrogen environments. Additionally, the MGIDI index
result was compared to the result of the Smith-Hazel (SH) index developed by Smith [29]
and Hazel [30] and the ideotypes-design (FAI-BLUP) index suggested by Rocha et al. [31].

3. Results
3.1. Descriptive Statistic and Analysis of Variance

For each root network trait (RNT), descriptive statistics including means with their
standard errors are summarized in Table 1. For most traits, higher means were observed
under LP. RAS development was found to be more prominent under LP, which is evident
from the increase in NCR, EAR, MANR, NWW, MINR, MEA, NWA, NCA, NWS, NSA,
NWV, and NWDR. For all traits measured by GiA Roots, a wide variety of phenotypic
values was detected (Table 3).
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Table 3. Descriptive statistics for tested traits under LP and NP treatments.

Traits Treat. Mean SE Minimum Maximum Median Mode Kurtosis Skewness

ARW
NP 4.52 0.02 3.00 6.53 4.44 6.01 −0.38 0.46
LP 4.45 0.02 3.41 6.52 4.40 4.12 −0.05 0.62

NWB
NP 1.62 0.01 1.12 4.96 1.45 1.50 7.91 2.50
LP 1.54 0.01 1.10 6.50 1.39 1.33 20.68 3.40

NCC
NP 43.89 0.42 3.00 91.00 44.00 43.00 −0.11 0.13
LP 46.15 0.37 5.00 112.00 45.00 44.00 0.64 0.38

NWD
NP 2290.35 2.17 910.00 2303.00 2303.00 2303.00 158.25 −11.45
LP 2297.84 1.25 926.00 2303.00 2303.00 2303.00 634.59 −22.55

EAR
NP 0.76 0.00 0.11 0.99 0.79 0.84 −0.24 −0.56
LP 0.82 0.00 0.26 1.00 0.85 0.84 0.24 −0.87

NWLD
NP 0.53 0.01 0.11 3.07 0.46 0.24 8.27 2.20
LP 0.44 0.01 0.06 2.99 0.41 0.61 26.59 3.20

MJEA NP 3105.60 15.08 823.57 5072.72 3001.58 2632.98 0.05 0.47
LP 2972.72 11.85 830.81 4465.25 2856.90 2679.85 0.33 0.66

MANR
NP 77.86 1.25 5.00 253.00 62.00 56.00 −0.51 0.64
LP 83.14 1.24 7.00 237.00 69.00 44.00 −0.55 0.70

NWW
NP 2956.82 13.59 179.00 3455.00 3116.00 3455.00 3.19 −1.54
LP 2979.72 11.07 249.00 3455.00 3046.00 3455.00 2.48 −1.22

MENR
NP 52.43 0.97 2.00 223.00 42.00 21.00 0.52 1.02
LP 57.32 0.97 4.00 177.00 45.00 37.00 0.48 1.08

MIEA
NP 2310.48 7.83 239.24 2972.45 2353.58 2201.84 8.46 −1.97
LP 2386.18 6.64 213.02 3162.82 2398.86 2255.16 7.44 −1.09

NWA
NP 85,2169.61 12,698.0 28,448.00 2,306,467.00 766,588.00 425,187.00 −0.21 0.67
LP 927,120.77 12,626.3 33,913.00 2,380,819.00 828,074.00 1,399,665.00 −0.15 0.72

NWCA
NP 6,256,640.0 33,659.7 331,902.00 7,899,088.00 6,517,483.75 4,864,456.50 2.12 −1.20
LP 6,326,244.7 26,555.5 148,855.50 7,907,468.00 6,493,552.25 4,333,747.00 2.02 −0.99

NWP
NP 419,776.22 7310.85 10,665.00 1,449,259.00 346,500.50 149,445.00 0.20 0.88
LP 455,401.13 7309.86 11,192.00 1,372,171.00 375,264.00 709,723.00 0.21 0.95

NWS
NP 0.14 0.00 0.02 0.47 0.12 0.09 0.84 1.11
LP 0.15 0.00 0.03 0.46 0.13 0.32 0.23 1.00

SRL
NP 0.05 0.00 0.02 0.10 0.04 0.03 0.43 0.70
LP 0.05 0.00 0.02 0.08 0.05 0.05 −0.61 0.27

NWSA
NP 3,523,843.5 53,442.4 109,925.66 9,490,765.02 3,153,257.77 1,669,954.28 −0.20 0.69
LP 3,832,697.7 53,021.9 127,452.83 10,048,319.6 3,407,774.88 5,810,109.73 −0.12 0.73

NWL
NP 265,436.89 4685.19 6132.00 975,158.00 219,807.50 88,374.00 0.23 0.89
LP 287,929.75 4665.79 6225.00 879,854.00 238,309.00 449,101.00 0.24 0.96

NWV
NP 5,462,435.1 71,955.11 204,831.84 13,046,946.3 5,082,050.76 3,397,327.72 −0.53 0.43
LP 5,916,641.1 70,714.1 256,796.93 13,200,212.0 5,630,054.48 8,591,461.09 −0.62 0.39

NWWDR
NP 1.29 0.01 0.12 1.57 1.35 1.50 2.52 −1.41
LP 1.30 0.00 0.27 1.68 1.32 1.50 1.79 −1.13

ARW = Average root width, NWB = Network bushiness, NCC = Number of connected components, NWD = Network
depth, EAR = Ellipse axis ratio, NWLD = Network length distribution, MJEA = Major ellipse axis, MANR = Maximum
number of roots, NWW = Network width, MENR = Median number of roots, MIEA = Minor ellipse axis, NWA = Net-
work area, NWCA = Network convex area, NWP = Network perimeter, NWS = Network solidity, SRL = Specific root length,
NWSA = Network surface area, NWL = Network length, NWV = Network volume, NWWDR = Network width to depth ratio.

3.2. Analysis of Variance and Broad-Sense Heritability Estimated

Mixed model analysis revealed significant differences (p ≤ 0.01) in all evaluated RNS
features between inbred lines in the LP and NP treatments (Table 4).
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Table 4. Analysis of variance of the different RNS tested traits.

Traits Treatment
Mean Square

F-Value (Gen) Significance
LevelReplication Genotype Error

ARW
NP 0.04 1.45 0.09 15.69 ***
LP 0.02 0.93 0.07 14.2 ***

NWB
NP 0.04 0.78 0.07 10.83 ***
LP 0.07 0.61 0.08 7.78 ***

NCC
NP 13.07 648.64 95.46 6.80 ***
LP 83.32 482.43 93.30 5.17 ***

NWD
NP 161.82 11,386.40 4695.10 2.43 ***
LP 838.02 2807.12 2030.71 1.38 *

EAR
NP 0.01 0.06 0.01 12.7 *
LP 0.01 0.03 0.01 5.30 ***

NWLD
NP 0.03 0.27 0.03 8.11 ***
LP 0.01 0.11 0.02 6.03 ***

MJEA NP 76,230.1 916,523 103,873 8.82 ***
LP 99,507.1 486,751 71,573.5 6.80 ***

MANR
NP 12.857 7172.570 442.848 16.2 ***
LP 229.32 7031.23 456.18 15.41 ***

NWW
NP 64,219.4 696,475 100,280 6.95 ***
LP 57,281.70 407,323.00 85,124.00 4.79 ***

MENR
NP 12.86 7172.57 442.85 16.2 ***
LP 229.32 7031.23 456.18 15.41 ***

MIEA
NP 76,230.1 916,523 103,873 8.82 ***
LP 99,507.10 486,751.00 71,573.50 6.80 ***

NWA
NP 851,326,000.00 756,240,000,000.00 38,367,000,000.00 19.71 ***
LP 27,187,900,000.00 761,409,000,000.00 40,363,800,000.00 18.86 ***

NWCA
NP 663,782,000,000.00 4,530,370,000,000.00 528,786,000,000.00 8.57 ***
LP 217,830,000,000.00 2,475,580,000,000.00 428,953,000,000.00 5.77 ***

NWP
NP 120,272,000.00 246,041,000,000.00 14,265,200,000.00 17.25 ***
LP 9,820,570,000.00 252,527,000,000.00 14,005,400,000.00 18.03 ***

NWS
NP 0.001 0.025 0.001 16.83 ***
LP 0.001 0.026 0.001 19.64 ***

SRL
NP 0.00003 0.00055 0.00004 14.78 ***
LP 0.00001 0.00036 0.00003 13.06 ***

NWSA
NP 12,716,500,000.00 13,361,400,000,000.00 690,971,000,000.00 19.34 ***
LP 523,286,000,000.00 13,377,900,000,000.00 721,558,000,000.00 18.54 ***

NWL
NP 65,982,000.00 100,591,000,000.00 6,010,840,000.00 16.73 ***
LP 4,479,120,000.00 102,500,000,000.00 5,795,460,000.00 17.69 ***

NWV
NP 120,369,000,000.00 24,219,600,000,000.00 1,252,990,000,000.00 19.33 ***
LP 902,056,000,000.00 23,414,500,000,000.00 1,350,090,000,000.00 17.34 ***

NWWDR
NP 0.01 0.12 0.02 6.72 ***
LP 0.01 0.08 0.02 4.71 ***

ARW = Average root width, NWB = Network bushiness, NCC = Number of connected components, NWD = Network depth, EAR = Ellipse
axis ratio, NWLD = Network length distribution, MJEA = Major ellipse axis, MANR = Maximum number of roots, NWW = Network width,
MENR = Median number of roots, MIEA = Minor ellipse axis, NWA = Network area, NWCA = Network convex area, NWP = Network
perimeter, NWS = Network solidity, SRL = Specific root length, NWSA = Network surface area, NWL = Network length, NWV = Network
volume, NWWDR = Network width to depth ratio. Significant differences (* p < 0.05, *** p ≤ 0.01).

An extensive range of phenotypic values was detected for all traits. The traits tested
in this experiment were influenced by LP stress treatment, and the effect of LP and NP
treatments on maize germplasm for measured traits are shown by box plots (Figure 3).
The box plot’s edges depict the upper and lower quintiles, as well as the median, which
is depicted in the box’s center. Elements that do not fit inside the rank of whisker are
indicated by a circle.
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Figure 3. Effect of LP and NP treatments on maize germplasm for measured traits. The box plot’s edges depict the
upper and lower quintiles, as well as the median, which is depicted in the box’s center. Genotypes that do not fit
inside the rank of whisker are indicated by a circle. Note: ARW = Average root width, NWB = Network bushiness,
NCC = Number of connected components, NWD = Network depth, EAR = Ellipse axis ratio, NWLD = Network length
distribution, MJEA = Major ellipse axis, MANR = Maximum number of roots, NWW = Network width, MENR = Median
number of roots, MIEA = Minor ellipse axis, NWA = Network area, NWCA = Network convex area, NWP = Network
perimeter, NWS = Network solidity, SRL = Specific root length, NWSA = Network surface area, NWL = Network length,
NWV = Network volume, NWWDR = Network width to depth ratio.

Estimated heritabilities (h2) ranged from 59% to 95% under NP and 23% to 95% under
LP. This difference reflects the relative amount of genetic variation among germplasm and
was not consistent among the different types of RAS trait measurements (Figure 4). In
general, h2 estimates for ARW, MJNR, MINR, NWA, NWP, NWS, NSA, NWL, and NWV
were typically greater than those associated with the other qualities investigated.

3.3. Variance Components

For each maintained trait, the variance components due to genotype, treatment (envi-
ronment), and genotype-by-treatment interaction were evaluated (Table 5). The proportions
of genetic variance ranged from 0.01–0.60 for different maize RNS traits. The highest levels
of genetic variance were found in NWA and NWV, and the lowest proportion of genetic
variance was in NWD. Overall, ARW, NWB, MANR, MINR, NWP, NWS, SLR, NSA, and
NWV were discovered to have a significantly high proportion of variance due to genetic
effects, but a low proportion due to treatment effects.
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Figure 4. Estimated heritability for twenty traits. ARW = Average root width, NWB = Network bushiness, NCC = Number of
connected components, NWD = Network depth, EAR = Ellipse axis ratio, NWLD = Network length distribution, MJEA = Major
ellipse axis, MANR = Maximum number of roots, NWW = Network width, MENR = Median number of roots, MIEA = Minor
ellipse axis, NWA = Network area, NWCA = Network convex area, NWP = Network perimeter, NWS = Network solidity,
SRL = Specific root length, NWSA = Network surface area, NWL = Network length, NWV = Network volume,
NWWDR = Network width to depth ratio.

Table 5. Estimates of variance components (proportion of the total).

Traits Genotype Genotype × Treatment Treatment Residual

ARW 0.53 0.24 0.03 0.21
NWB 0.53 0.14 0.01 0.33
NCC 0.32 0.21 0.05 0.41
NWD 0.01 0.14 0.01 0.84
EAR 0.30 0.26 0.11 0.33

NWLD 0.34 0.24 0.08 0.34
MJEA 0.37 0.22 0.04 0.37

MANR 0.55 0.20 0.03 0.22
NWW 0.29 0.20 0.00 0.50
MENR 0.56 0.19 0.03 0.21
MIEA 0.16 0.31 0.05 0.48
NWA 0.60 0.18 0.04 0.18

NWCA 0.39 0.18 0.01 0.42
NWP 0.57 0.19 0.04 0.20
NWS 0.58 0.18 0.03 0.21
SRL 0.50 0.24 0.01 0.26

NWSA 0.59 0.18 0.04 0.19
NWL 0.56 0.19 0.04 0.21
NWV 0.60 0.17 0.04 0.19

NWWDR 0.29 0.19 0.00 0.51
ARW = Average root width, NWB = Network bushiness, NCC = Number of connected components,
NWD = Network depth, EAR = Ellipse axis ratio, NWLD = Network length distribution, MJEA = Major ellipse axis,
MANR = Maximum number of roots, NWW = Network width, MENR = Median number of roots, MIEA = Minor
ellipse axis, NWA = Network area, NWCA = Network convex area, NWP = Network perimeter, NWS = Network
solidity, SRL = Specific root length, NWSA = Network surface area, NWL = Network length, NWV = Network
volume, NWWDR = Network width to depth ratio.
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3.4. BLUP Analysis

All attributes had their BLUPs assessed on a per-genotype basis. As expected, there
was a substantial positive association between BLUPs and means, with the BLUPs gradually
shrinking toward the population average (Figure 5).

Figure 5. Correlation between BLUP and mean of each accession in the maize germplasm. ARW = Average root width,
NWB = Network bushiness, NCC = Number of connected components, NWD = Network depth, EAR = Ellipse axis ratio,
NWLD = Network length distribution, MJEA = Major ellipse axis, MANR = Maximum number of roots, NWW = Network
width, MENR = Median number of roots, MIEA = Minor ellipse axis, NWA = Network area, NWCA = Network convex
area, NWP = Network perimeter, NWS = Network solidity, SRL = Specific root length, NWSA = Network surface area,
NWL = Network length, NWV = Network volume, NWWDR = Network width to depth ratio.

3.5. Multivariate Analysis

The first three PCs described around 79.27% of the overall dissimilarity among lines
for the twenty RNS traits (Table 6). The comparative magnitude of eigenvectors for the first
principal component was 50.51%, clarified mostly by NCC, NWD, MJEA, NWW, MIEA,
NWCA, SRL, and NWWDR. From the second and third principal components, which
donated 18.83% and 9.93% of the entire variation, respectively, the most predominant traits
were NWLD, NWD, NWCA, NWW, and NWWDR.
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Table 6. The first four PCs of traits eigen vectors of the maize inbreds.

Parameter PC1 PC2 PC3 PC4

ARW −0.1955 −0.0387 0.2908 −0.3165
NWB 0.0163 0.0311 −0.2666 0.6438
NCC 0.2166 0.0606 0.2587 −0.0784
NWD 0.2171 0.2043 0.1941 0.1486
EAR 0.1465 −0.1705 0.4498 0.3054

NWLD −0.1413 0.2499 −0.0488 −0.1898
MJEA 0.1008 0.4366 −0.2509 −0.2223

MANR 0.2823 −0.098 −0.1934 −0.0069
NWW 0.2087 0.2918 0.2853 0.1004
MENR 0.2823 −0.098 −0.1934 −0.0069
MIEA 0.1008 0.4366 −0.2509 −0.2223
NWA 0.2952 −0.1247 −0.0122 −0.1458

NWCA 0.2387 0.2501 0.2458 0.0917
NWP 0.2999 −0.0692 −0.0912 −0.0696
NWS 0.1752 −0.3885 −0.0632 −0.16
SRL 0.2249 0.046 −0.3095 0.2565

NWSA 0.2957 −0.1204 −0.016 −0.1436
NWL 0.2999 −0.0651 −0.0875 −0.074
NWV 0.2685 −0.1737 0.0867 −0.2503

NWWDR 0.1947 0.3003 0.2624 0.0654
Cumulative% of total variance 52.18 69.24 79.84 85.71

ARW = Average root width, NWB = Network bushiness, NCC = Number of connected components,
NWD = Network depth, EAR = Ellipse axis ratio, NWLD = Network length distribution, MJEA = Major el-
lipse axis, MANR = Maximum number of roots, NWW = Network width, MENR= Median number of roots,
MIEA = Minor ellipse axis, NWA = Network area, NWCA = Network convex area, NWP = Network perimeter,
NWS = Network solidity, SRL = Specific root length, NWSA = Network surface area, NWL = Network length,
NWV = Network volume, NWWDR = Network width to depth ratio.

Based on RNS characteristics, Euclidian distance coefficients were determined for all
inbred lines of maize (Figure 6).

Figure 6. Dendrogram from UPGMA clustering for 220 maize inbreds using Euclidean genetic distances based on all RNS
traits measured by GiA Roots.
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Cluster analysis identified two distinct clusters among the 220 inbred lines. The first
cluster had 216 lines with relatively minor RNS characteristics, whereas the second cluster
comprised four inbred lines (CML 331/MBR, CML 311, 3130 and CML96) which had
extreme relative values like NCC, NWD, EAR, MJEA, MANR, NWW, MENR, MIEA, NWA,
NWCA, SRL, NWL, and NWWDR. The first cluster was distributed into three subgroups.
The first subgroup contained 158 lines which displayed the lowest NWB, NCC, NWD,
EAR, MJEA, MANR, NWW, MENR, MIEA, NWA, NWCA, NWP, NWS, SRL, NWSA, NWL,
NWV, and NWWDR, whereas the second subgroup contained 54 lines with moderate
values of NWB, NCC, NWD, EAR, MJEA, MANR, NWW, MENR, MIEA, NWA, NWCA,
NWP, NWS, SRL, NWSA, NWL, NWV, and NWWDR. The second subgroup contained
only four lines (E28, CML 300, CML319 and CML 322) with high MANR, MENR, NWA,
NWP, NWS, NWSA, and NWV. The genetic distance mean was 5.34, ranging from 0.61 to
29.33. The maximum genetic distance (29.33) was acquired between inbreds 53 and 62.

3.6. Genotype by Trait Interactions

A G × T biplot was created using relative traits from a two-way matrix of 20 RNS
traits by 220 genotypes (Figure 7).

Figure 7. A G × T is based on relative RNS traits of maize.

The graphic reduced the information from this matrix into two main components, the
first two of which accounted for 69.24% of the overall variation. The graph depicts the
link between qualities. The correlation coefficient between qualities is proportional to the
cosine of the angle between vectors relating those traits to the source. Qualities on differing
sides of the source are thus negatively interrelated, traits close to each other are favorably
associated, and traits at 90◦ to each other to the source are not connected. The GT biplot
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reveals superior genotypes with favorable trait combinations. The findings indicate that
NWD, NWCA, NCC, SRL, MJEA, NWW, and NWCA may be useful in identifying superior
genotypes in elite germplasm.

3.7. Multi-Trait Index Based on Factor Analysis and Genotype-Ideotype Distance (MGIDI)

The MGIDI index was intended to select the genotypes with respect to considering all
measured traits. Based on the analysis, a highly significant genotypic consequence was
noted for all measuring traits (Table 1). Under NP, estimated heritabilities (h2) ranged
from 59 to 95%, while under LP, they ranged from 23 to 95%. This difference reflects the
relative amount of genetic variation among germplasm and was not consistent across RAS
trait measurements (Figure 4). ARW, MJNR, MINR, NWA, NWP, NWS, NSA, NWL, and
NWV h2 estimates were consistently greater than those for the other qualities investigated.
However, the genotypes selected using the MGIDI index were G53, G77, G71, G54, G5, G3,
G72, G56, G74, G55 and G73 (Figure 8). The strengths and weaknesses of each genotype
were depicted in Figure 9.

Figure 8. Germplasm ranking and selected germplasm from 220 maize germplasm through multi-trait genotype-ideotypes
distance index (MGIDI) considering 5% selection intensity.
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Figure 9. The strengths and weaknesses of all the genotypes (FA = Factor Analysis).

4. Discussion

Significant quantitative variations in a variety of seedling features were detected
when seedlings were evaluated under LP and NP circumstances in a high-lux plant de-
velopment environment, showing a significant degree of morphological variation in the
maize germplasm panel investigated. Maize accessions with extended MSL, MRL, and
RSR discovered in this experiment are promising candidates for LP tolerance breeding.
Similarly, multiple investigations have revealed significant variation in maize inbreds, with
tolerant inbreds having longer roots, more root volume and leaf area, and more root hairs
than sensitive inbreds under P shortage conditions [5,32–36]. During the seedling stage, LP
tolerant genotypes displayed a low shoot dry-weight, a robust root system, and a high root
to shoot ratio [37–42]. This is because a robust root system enables plants to develop more
rapidly and fully prior to LP stress, hence speeding P-scavenging and sustaining growth
at the seedling stage in LP surroundings. Additionally, a robust RAS with an extensive
and well-distributed root system is critical for the uptake of both mobile and immobile
nutrients, such NO3 [43] and P. This is because the root system will graze in a larger area of
soil, increasing nutrient intake.

Hydroponic evaluation of maize germplasm enables the identification of maize lines
with improved root properties [44]. While this method can be used to analyze seedlings
as young as 14 days, the measures acquired can be utilized to predict lines with superior
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root development at later stages of development. Environmental impacts on plants in the
field were also a disadvantage in identifying superior phenotypes, making the hydroponic
assessment under controlled settings more trustworthy. Another benefit of the hydroponic
approach is that it allows for the screening of a high number of lines using a tiny growing
chamber. However, numerous downsides of hydroponic systems should be mentioned,
including abnormal root conditions and the inability to bring plants to maturity [45].
Furthermore, according to Tuberosa et al. [46], when it comes to identifying quantitative
trait loci (QTL) for characteristics like root traits, the magnitude and nature of the “QTL
environment” interactions are more important than the absolute values of root attributes
evaluated in hydroponics. As a result, if common QTL for root qualities developed in
hydroponics and the field could be found, those QTL could have an impact on grain
yield. Many plants, including rice, maize, and soybean, have been studied genetically for
LP tolerance utilizing biparental populations [47–49]. Various characteristics have been
utilized in maize to investigate the genetic basis of LP tolerance. RIL populations were
used to conduct QTL analyses for root hair length, seminal root length and number, and
lateral root length and number under LP and NP conditions [50–52].

For the most part, the estimated genetic components of variance were low to mod-
erate. The modest genetic variations could be due to the fact that the germplasm panel
included cultivars and breeding lines that had undergone extensive selection. The low
genetic variance could also indicate a complex genetic inheritance pattern and/or a high
environmental influence on characteristic manifestation. Complex root features, such as
lateral root, seminal root, and root hair are genetically controlled by multi-gene or QTL
and/or loci with epistatic effects, according to previous QTL studies conducted in the
context of biparental mapping [49,53,54].

Enhancing selection techniques for quantitative trait improvement requires accurate
estimates of the heritability and variance components of selection gain. The large genetic
variations and moderate-to-high heritability estimates discovered in this work for many
seedling trait qualities imply promising prospects for increasing adult plant height and
root length by the phenotypic selection, and consequently LP tolerance [55–57].

Correlation analysis of seedling traits under both LP and NP conditions revealed that
genotypic correlation coefficients were frequently greater than corresponding phenotypic
correlation coefficients, indicating that the suppressive effect of the treatment altered
phenotypic expression by lowering phenotypic correlation coefficient values. In a few
cases, the phenotypic correlation coefficients were equal to or greater than the genotypic
correlation coefficients, implying that both treatment and genotypic correlations act in the
same direction and ultimately maximize phenotypic expression.

PCA demonstrated that seedling traits, such as MSL, MRL, RDW, and RSR account
for the majority of phenotypic variations, implying that these traits account for most of
the diversity observed between the maize accessions tested. Concentrating on MSL, RL,
and root fresh weight appeared to be sufficient to account for variation between maize
accessions at the seedling phase, and to identify a large number of lines for LP tolerance in
future research. Due to the ease with which MSL can be measured in comparison to other
traits, it might be used as an indirect attribute to describe TDM. In various screening trials,
the relative-trait method is the most reliable method for classifying LP tolerance [18,58,59].

Generally, the methods for evaluating root traits are incapable of being actualized
up for high-throughput applications. The GiA Roots (General Image Analysis of Roots)
is a software application that automates and facilitates the analysis of root networks on
a large scale. It was created to assist scientists and breeders in assessing the structure of
plant root-system architecture regardless of their prior mathematics or computer science
training [60]. It can estimate quantitative features from photos of plant root networks with
high accuracy. A high-throughput phenotyping technology enables rapid evaluation of a
large number of plants and accurate measurement of attributes. By increasing the accuracy
of phenotyping and analyzing a larger number of plants, we can reduce the standard error,
giving us greater confidence in the mean value of the measured characteristic. Significant
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quantitative variation was reported for a variety of root-network system features examined
under LP and NP circumstances in a high-lux plant growing room, demonstrating that
root properties are very variable among inbred lines of maize. The inbred lines of maize
employed in this investigation did not group according to their genetic backgrounds and
origins, demonstrating a significant degree of diversity between and within distinct genetic
backgrounds. Maize accessions with a long and enlarged root system revealed in this work
are promising for LP tolerance breeding and for finding the genetic areas regulating these
features. Breeders with experience frequently strive to blend multiple desired features
into a new genotype to achieve high performance. When many attributes are measured, it
is usually difficult to distinguish a genotype from an ideotype. Numerous multivariate
methods, like principal component analysis, factor analysis, cluster analysis, and multiple
samples, are commonly employed in this context to classify observed traits or to choose
test genotypes [61]. In this study, a two-way heat map clustering pattern and PCA were
used to connect test genotypes and measured attributes (Figures 6 and 7), but we were not
able to select the specific genotypes. Olivoto and Nardino [28] recently introduced MGIDI
(multi-trait genotype-ideotypes distance index), a new technique for genotype isolation
based on multiple trait information, to make the selection of genotypes with multiple
features easier. The MGIDI index identified eggplant genotypes G53, G77, G71, G54, G5,
G3, G72, G56, G74, G55, and G73 as promising. The use of the MGIDI index in plant crop
research is expected to increase rapidly. Similarly, this index was employed in order to
identify the best strawberry genotype [62].

5. Conclusions

In genetics and developmental biology, maize is a well-established model species.
P is an indispensable constituent for the growth of plants. Because soil P availability is
generally poor, a lot of phosphorus fertilizer is used to boost crop yields. P shortage in
maize crops is common and reduces yields. For sustainable agriculture and global food
security, breeding P efficiency in maize is critical. The inbred lines were grown up to
15 days in the high-lux plant growth room on hydroponic with LP and NP treatments after
germination. The analysis of variance revealed a wide range of variability present among
the inbred lines with intermediate to high heritabilities ranging from 0.59 to 0.95 for all RNS
traits, specifying stability through the experiments. The proportions of genetic variance
ranged from 0.01–0.60 in different maize RNS traits. Strong positive linear relationships
between BLUPs were detected for all RNS traits. The Euclidean genetic distances ranged
from 0.61 to 29.33, showing a high degree of variation among the inbred lines studied.
The first three principal components described approximately 79% of the overall genetic
variation, with high loadings from network length (NWL), network surface area (NWSA),
network perimeter (NWP), network area (NWA), the maximum number of roots (MANR),
median number of roots (MENR), network volume (NWV), network convex area (NWCA),
specific root length (SRL), network depth (NWD), number of connected components
(NCC), and network width (NWW). The genotype by trait interaction biplot revealed
superior genotypes with more desirable trait interactions. Some outstanding genotypes
(G53, G77, G71, G54, G5, G3, G72, G56, G74, G55, and G73), with higher values of most
RNS traits, were identified using MGIDI analysis. These lines may be useful for breeding
LP-tolerant maize.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/agronomy11112230/s1, Figure S1: A vertical line sweep, which evaluated the number of roots
that crossed a horizontal line and then calculated the median of all values for the network’s extent,
Table S1: The inbred lines were comprised of 220 maize accessions selected to represent a wide range
of diversity including 155 tropical and subtropical inbred lines from CIMMYT and 65 temperate
inbreds from CAAS.
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