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Abstract: In a global context where agriculture is the major consumer of water, there is a pressing
need to look for alternative water resources. In light of there being a lack of studies that compare the
use of diverse water alternatives in different crops, the overall objective of this research is to evaluate
the impact generated by the use of tertiary water from an economic and financial perspective and
compare it with groundwater and desalinated water. To reach this objective, a detailed study of
the cost structure of greenhouse investment has been developed. Furthermore, the most traditional
indicators for investment profitability have been calculated for the three different water alternatives:
tertiary water, groundwater and desalinated water. The cost analyses demonstrate the relative short
reach that the price of water has in an area of greenhouse agriculture exploitation, which provides a
margin of increasing water costs while still allowing for economic profit. Taking into account the
three water resources considered, evidence shows that the use of tertiary water is not only financially
and economically viable but is also the best alternative water resource above desalinated water in
terms of profitability and sustainability.

Keywords: tertiary water; reclaimed water; treated wastewater; agriculture; irrigation; greenhouse

1. Introduction

Water is a critical resource since it establishes a basis for humans from a subsistence,
economic, social and environmental perspective [1,2]. Such a vital asset being jeopardized
for decades by climate change, unceasing demand and pollution, has resulted in a decline
in water quality and quantity [3–5]. Furthermore, forecasts predict substantial worsening
brought with further biofuel production, growing population, rapid urbanization and
expanding agriculture [6–9]. For the ninth year in a row, the World Economic Forum
has reported water crises as one of the top five global risks that may affect society [10].
Estimations claim that already 10% of the population does not have access to fresh drinking
water [11]. The upcoming situation is expected to be exacerbated, with at least 25% of
the global population having to deal with water shortages in the near future and facing
a water deficit of 40% in less than a decade [9,12]. Due to its essentiality, guaranteeing
the supply of this dwindling resource is one of the most relevant challenges currently
faced by humanity [10,11]. Within the framework of water consumption, agriculture is
in the spotlight for being the major user worldwide, with an uptake between 60% and
90%, depending on the region [12–14]. As the main water consumer and in such context of
great strain caused by water use for irrigation, agriculture plays a key role in enhancing
environmental sustainability and ensuring water resources [11,15,16].

Managing hazards that may endanger water quality and supply requires making
farming decisions that enhance horticultural production in a sustainable way [17]. In
this sense, the Mediterranean region plays an essential role not only as being one of the
most important agricultural areas in the world, but also because it already has scarce
water resources under high stress [18,19]. Furthermore, this pressure adds to the fact
that agriculture in Southern Europe is the main consumer of water and that there is
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expected to be a reduction in river flow in the upcoming years [20,21]. Among all the
Mediterranean countries, Spain stands out for having more than 30% of the whole of the
irrigated area of the EU, and this is mainly due to a region in the South East that deserves
special consideration [22]. Almeria is well-known for being the main fruit and vegetable
exporter in the European Union and for having the highest greenhouse concentration in the
world [23–26]. Despite its highly productive agricultural sector allowing rapid economic
development in the region, there have also been negative consequences [27–29]. Because of
such production levels, water resources have been overexploited for years to meet demand,
resulting in salinity problems in depleting aquifers, which highlights the need to look for
alternatives to gradually reduce and eventually eliminate this constraint factor [30].

With water being a key driver for crops and in a social and environmental situation
where increasing demand and decreasing quality attract attention, the incorporation of
unconventional sources as an alternative for obtaining irrigation water is of vital impor-
tance [31–34]. Reclaimed water stands out for being a resource with few risks to humans or
the environment, thus why its ever more frequent implementation is evident, especially in
arid and semi-arid climate as Mediterranean [35–38]. Reclaimed water, which can be also
referred as tertiary water or treated wastewater, consists of handling urban wastewater
in treatment plants in order to develop an alternative water source to irrigate [39]. This
treatment should be regulated, controlled and adequate before irrigating crops to avoid
microbiological or physicochemical soil alterations that may jeopardize the environment or
high heavy metal concentrations that may endanger human health [40–42]. Tertiary water
significance is emphasized by the 2030 Agenda for Sustainable Development, where the
need for increasing global treated wastewater is stated as a desired target [43]. This sustain-
able and cost-effective alternative may change the water supply landscape, considering that
around 60% of irrigated farming worldwide takes place close to a wastewater treatment
plant [44]. Furthermore, research has proved that its use provides overall benefits [45].
Against this background, using reclaimed wastewater for irrigation has been shown to be
mutually profitable for all growers, nature and society [33,46].

From a sustainability perspective, as well as helping with water stress reduction
and aquifer recovery, reclaimed wastewater use in agriculture decreases water pollution
by providing a solution for the disposal of wastewater, instead of it being discharged
into waterways without any treatment, which is currently over 80% [47–52]. Another
relevant example of tertiary water helping farmers to increase economic profit is with
fertilizers, which can be reduced by up to 66%, helping to improve soil fertility and fruit
quality [53,54]. The supply of essential organic and inorganic nutrients, along with nitrate
pollution control are also among the benefits that positively influence crops irrigated by
treated wastewater [55–58]. Due to the proven benefits and limited risks, which can remain
unnoticeable with preventive barriers in place, international institutions have been boosting
reclaimed wastewater implementation for irrigation [43,59].

Notwithstanding, many positive aspects derived from the use of treated wastewater
to irrigate crops, its still low implementation worldwide seems to be connected to farmers’
perceptions [60]. This is due to the frequent inability to receive the economic, social and
environmental benefits normally derived from its use [61,62]. Despite the vast research
carried out on wastewater use in agriculture, particularly over the last few years, there is a
lack of studies that compare the use of various water alternatives. This is indicative of the
clear research gap existing in this field, which impedes the widespread implementation of
an alternative water resource as reclaimed water in a context of water depletion worldwide
and where agriculture is consuming up to 90% of water resources in some areas. Moreover,
it is important to illustrate to farmers the need to put wastewater irrigation into effect
and therefore, it is key to show them that the economic benefits derived after using this
alternative water resource are not only realistic but also will enhance the sustainability of
their agriculture exploitations in the long run; this would not be possible at the current
rates of underground water usage. Therefore, the overall objective of this research is to
evaluate the impact generated by the use of tertiary water, economically and financially,
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which will show potential users convincing reasons for its implementation and will help
researchers in future studies where this economic and financial perspective may be used
as a basis. This objective will be fulfilled through a detailed study of the cost structure of
greenhouse investment and with different indicators of profitability.

2. Materials and Methods

With the main goal of analyzing the impact generated by the use of treated wastewater
on the profitability of agricultural holdings, economically and financially, the paradigmatic
case of Southeast Spain was studied. The results of this work have important practical
implications, since they show the impact that the implementation of this irrigation alter-
native may have on the profitability of farms. In this context, tertiary water, apart from
having proved its indispensability in the management of water disposal, has also been
widely demonstrated as being the most effective alternative for dealing with water supply
and demand, providing remarkable benefits for crops, humans and the environment. In
addition, lessons learned from this case study could be useful to other regions that are
already facing increasing scarcity of water for use in agriculture and are considering using
reclaimed wastewater.

2.1. Study Region

The province of Almeria is located in Southeastern Spain and is well known for
its agricultural production. With more than 3,764,735 tons harvested in the 2018/2019
agricultural season, of which 80% are exported, it is the leading exporter of many fruits
and vegetables in the European Union [26,63]. With an export value of 2684 million
euros, the agricultural sector in the area has developed a consistent auxiliary industry
of 1367 million [64]. Almeria is made up of six main sub-areas; Campo de Dalias and
Bajo Andarax (including Almeria City) stand out among them for having the highest
concentration of greenhouses with a surface area covering more than 77% of the total [65].

In view of its role as an economic engine, it is vital to ensure water availability for
crop irrigation in an area where structural water deficit is a major problem [66]. Despite
having one of the most efficient agricultural systems in terms of water consumption, it
remains the largest water consumer in the province with more than 80% of groundwater
uptake [67]. In this context, the fast development of agriculture has led to pollution from
aquifers and overexploitation, the storage volume of reservoirs has been greatly reduced
and nearly all greenhouse areas have been declared as Nitrate Vulnerable Zones by the
European Union [29,68]. This issue has added to the already existing problems with
seawater intrusion for being in a coastal area [54,69]. To tackle these drawbacks and face
current and coming needs, desalinated and reclaimed wastewater are thus far considered
the most suitable alternatives [70].

2.2. Data Analysis

Due to all of the unprecedented alterations undergone by food systems worldwide
during the 2019/2020 agricultural season, and to avoid bias from the great economic
fluctuations and severe GDP declines caused by COVID-19, this study has been developed
using the 2018/2019 crop season as a basis [71–73]. The current research was carried out
in two phases in order to meet the objectives stated in the introduction. The first phase
focused on qualitative research. To begin, an exploration of the existing literature in this
field of study was carried out where articles, reports, research projects and public institution’
studies were analysed. Moreover, a group of professionals with expertise in the agricultural
and irrigation sector were consulted and interviewed throughout the entire process with
the aim of checking the information and data compiled. Process evaluations by experts in
qualitative studies have proved to be the most worthwhile method in outlining the research,
ensuring the reliability of the study and managing flaws or unexpected circumstances [74].
Furthermore, agriculturalists have provided primary data from their farms regarding the
water consumption of the diverse crops studied.
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During the second phase, quantitative analysis was carried out. In this section, the
traditional analytical methods used to financially evaluate investments were applied [75,76].
Net present value and internal rate of return were used to determine the viability of an
outlay. These indicators of project profitability were complemented with a detailed study
of the cost structure and the influence of the cost of water on the profitability of the farms.
To conclude the analysis, the apparent productivity of water, and shutdown and breakeven
points were also calculated in order to show the maximum payment capacity for water.
The results show the farmers’ ability to pay for the use of different water resources on
their farms.

3. Results and Discussion
3.1. Area of Cultivation and Crop Distribution

The province of Almeria was composed of 31,614 real hectares in the 2018/2019
agricultural season [65]. Nevertheless, and to account for the fact that more than 44%
of crops are planted in two short cycles instead of one large cycle, the total number of
effective hectares studied to value production properly was 45,668 [63]. As can be seen
in Table 1, peppers, watermelons and tomatoes are the crops that occupy the largest part
of this area with 11,125, 10,524 and 9555 hectares. In terms of production, these three
crops also lead, with 785,043, 548,677 and 888,389 tons produced, respectively. However,
in terms of economic value, the leading crop is the pepper with 604.483 million euros,
which is followed by tomatoes, cucumbers and zucchinis, with 582.783; 266.313 and
245.330 million euros respectively.

Table 1. Major aspects of greenhouse cultivation in the province of Almeria.

Crop Cultivated Area (Hectares) Production (Tons) Farmers’ Income Value (Million Euros)

Tomato 9555 888,389 582.783
Pepper 11,125 785,043 604.483

Watermelon 10,524 548,677 160.214
Zucchini 7439 459,420 245.33

Cucumber 4677 527,352 266.313
Aubergine 2164 190,614 112.272

Melon 2589 121,344 55.818
Green Bean 290 4347 7.081

Data: Cajamar from its Analysis of 2018/2019 crop season (Análisis de la campaña hor tofrutícola 2018/2019).

The surface area comprises different crops depending on the sub-area. In Figure 1,
represented with different colours, are the three sub-areas that have been studied in this
research. Red represents Campo de Dalias, orange is the city of Almeria and brown is
Bajo Andarax.

Campo de Dalias, as Table 2 shows, is well known for its pepper production with
30% of the area focused on this crop. Next in importance are zucchinis and cucumbers
with 16% and 14% of the area respectively. Almeria city’s farming is focused mainly on
tomatoes, which take up 75% of the area, followed far behind by watermelons and melons,
with 10% and 7%. With respect to Bajo Andarax, the tomato has a clear lead again with
82% of the area dedicated to this fruit, followed by cucumbers and peppers with a much
lower 12% and 3%. Crop differentiation in different areas depends mainly on water and
soil characteristics, which make an area suitable for a certain crop.

Due to their close proximity and similarities in terms of crops and that both water
supplies come from the same sources, Bajo Andarax and Almeria will be considered herein
as the same sub-area for this study.
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Figure 1. Area of study adapted from Fototeca Digital CNIG.

Table 2. Crop distribution in each of the study areas.

Campo de Dalias Almeria Bajo Andarax

Crop Surface Area Crop Surface Area Crop Surface Area

Pepper 30% Tomato 75% Tomato 87%
Zucchini 16% Watermelon 10% Cucumber 12%

Cucumber 14% Melon 7% Pepper 3%
Watermelon 12% Cucumber 3% Zucchini 3%

Melon 11% Zucchini 3% Green Bean 2%
Tomato 9% Pepper 2% Watermelon 2%

Aubergine 5% Melon 1%
Data: COEXPHAL internal reports.

3.2. Structure Cost: Initial Investment and Regular Expenses
3.2.1. Initial Investment

With the objective of calculating the relevance of water in farmers’ expenditures, it is
necessary to develop an initial cost structure based on start-up costs that are required for
economic activity in a greenhouse, as represented in Table 3. The investment needed at
the beginning of greenhouse implementation has been defined by diverse influences that
are a compilation of local banks’ adjustments for loans to this end, previous governmental
studies, research, farmers with experience and local companies dedicated to each item.
The initial cost structure has been divided into three main sections: structural elements,
retrofit and irrigation system. Costs are calculated for one hectare of greenhouse. Moreover,
investment costs have been estimated for a greenhouse structure of “Raspa y Amagado”
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on the basis it is the most representative structure in the study area, being used for more
than 75% of the greenhouses in the province [77,78].

Table 3. Initial Investment for a Greenhouse Hectare.

Initial Investment EUR

Structural Elements
Windows 11,200
Corridors 4000

Storage construction 9000
Walls 8000

Wiring 3000
Tillage and Levelling 8000

Greenhouse Construction 82,000
Retrofit

Topsoil Contribution 15,000
Sanding 18,000

Treatment installation 2000
Manure 5000

Irrigation System
Watering head 9000

Watering distribution system 6500
Irrigation pond building 10,000

Total 190,700
Primary data obtained from agriculturalists.

3.2.2. Fixed Costs

With the goal of calculating some important figures from an accounting perspective,
such as the shutdown and breakeven costs, the development of an annual fixed cost
structure, such as the one in Table 4, was necessary. For this study, a useful life for the
investment of 20 years has been considered, which is the most common loan term for
greenhouse investment in Almeria. Despite some fixed costs not being yearly (some may
be every 2 to 3 years or more) the total costs for the entire period have been divided to
obtain annual fixed costs.

Table 4. Annual Fixed Costs for a Greenhouse Hectare.

Annual Fixed Costs EUR

Solarisation 1600
Bleaching 500

Maintenance of Structures 500
Plastic 3800

Manure 1000
Pond 350

7400
Primary data obtained from agriculturalists.

3.2.3. Variable Costs, Production and Intakes

Costs that are neither related to the initial investment nor fixed every period are
highly significant, as depending on certain crops may vary greatly. To include the most
representative crops in the areas of study in relation to surface area, production and value,
and to represent the alternatives that are more common in Campo de Dalias and Bajo
Andarax, three different crop alternatives were studied (Table 5). First, the tomato, which is
the most important fruit in the province in terms of surface area cultivated and production.
The tomato crop is essentially sown in long-cycle, which may comprise from eight to
nine months of harvesting. The selected variety is “Larga Vida (Long Life)”. The second
alternative that has been chosen is the combination of “California (Californian)” pepper
and “Galia” melon, in two short-cycles. The pepper leads the ranking in terms of reported
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incomes of farmers, and based on its latest trends, may take the lead in the other categories
in the near future. Finally, “Almeria” cucumbers and zucchinis have been considered as
an example due to their extensive use in the province and because they are the third and
fourth most valuable crops regarding landowners’ revenues.

Table 5. Variable Costs of an Agricultural Holding (per hectare) *.

Tomato “Larga Vida” Pepper “California”/
Melon “Galia”

Cucumber “Almería”
/Zucchini

Salaried-worker labour 12,770 12,470 16,160
Seeds + Seedbed 3460 12,940 7440

Fertilizers 3970 2650 5910
Plan-protection (insects included) 5580 4770 4570

Energy 2200 1430 2090
Supplies 800 700 900

External Services 800 800 300
Water (groundwater) 1800 2295 2100

Total 31,380 38,055 39,470

* Household labour is not evaluated; Data: Prices and Markets Andalusian Observatory (Observatorio de Precios y Mercados de la Junta de
Andalucía).

In terms of variable costs, the most significant item is salaried-worker labour, repre-
senting between 33–41% of the total. The importance of fertilizers also has to be highlighted,
as they comprise between 7% and 15% of the total variable costs. This is quite relevant as
far as the implementation of treated wastewater for irrigation is concerned, as it has been
proven that expenditure in fertilizers can be reduced by up to 45% in this area [79]. For
its part, water makes up no more than 6% of the total variable costs among crops studied,
despite the inclusion of water used for irrigation and disinfection.

3.2.4. Variable Costs, Production and Intakes

There are other aspects from an agricultural holding, such as efficiency, crop water
consumption and total income that are directly related to the cost structure and therefore
must be calculated to develop a deeper financial assessment (see Table 6). Tomatoes
have the highest efficiency in terms of water consumption with 6000 m3/he and peppers
and melons lead the ranking of less labour with 339 working days per hectare. Valuing
medium prices at which the different crops were sold in the 2018/2019 agricultural season,
cucumbers and zucchinis reach the highest costs and the greatest gross margin per hectare
with EUR 83,475 and EUR 27,070, respectively. This crop alternative also has the highest
efficiency levels with 175,000 tons harvested per hectare.

Table 6. Relevant Indicators for the Three Crop Alternatives Studied.

Tomato “Larga Vida” Pepper “California”/Melon “Galia” Cucumber “Almería”
/Zucchini

Efficiency (kg/he) 130,000 130,000 175,000
Water (m3/he) 6000 7650 7000

Labour (working days/he) 432 339 471
Income (€/he) 65,780 80,000 83,475

Gross Margin (€/he) 17,465 25,010 27,070

Data: Markets and Prices Andalusian Observatory & Primary Data.

3.3. Financial Indicators: Shutdown and Breakeven Points and Apparent Productivity of
Water (APW)

In order to assess water productivity in the area, which has already proved in various
studies to be one of the highest in Spain, the APW has been calculated in Table 7 [80–82].
Results of APW calculations in the area prove the efficiency of the agricultural sector in
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Almeria and its potential. Therefore, it reinforces the growing need for developing and
potentiating alternative water resources in order to face a demand that is acquiring greater
importance every day in terms of a growing cultivation area and production.

Table 7. Apparent Productivity and Shutdown and Breakeven Points.

Selling Price APW BP SP

Tomato Min: 0.196 4.25 −2.22 −0.68
Med: 0.506 10.96 4.5 6.03
Max: 0.763 16.53 10.07 11.6

Cucumber/Zucchini Min: 0.186/0.196 4.76 −1.94 −0.58
Med: 0.432/0.537 11.93 5.23 6.59
Max: 0.927/1.446 28.74 22.04 23.4

Pepper/Melon Min: 0.444/0.358 6.98 1.04 2.31
Med: 0.705/0.472 10.46 4.52 5.78
Max: 1.005/0.742 15.36 9.42 10.68

APW: Apparent productivity of water; BP: Breakeven Point; SP: Shutdown Point.

Breakeven point is when the total income equals the total costs, which means that the
level of profits is exactly zero, with neither benefits nor losses [83]. At this point, when
the agricultural holding breaks even, any increase in cost would lead to the surpassing
of the breakeven and therefore the farmer may be inclined to stop production rather than
continuing to produce at a point where costs are not covered. Results show that with
medium prices there is still a margin to increase the price of water and provide economic
benefits for the grower. This means that groundwater could be substituted for other water
alternatives, even if their price is higher, and still prove desirable.

Lastly, and in order to complete an assessment of the maximum payment capacity
of farmers for water, the shutdown point has been calculated. This refers to the level at
which total variable costs are equal to total income. For this reason, the grower would be
incurring losses under this point, which would be the same as fixed costs. It can be defined
as the maximum water repayment capacity that can be faced in the short term because
fixed costs are incurred even with zero production [30]. That means that the shutdown
point shows the minimum price and quantity needed to keep economic activity going.
Below this point, the farmer would not be interested in continuing production as it would
be impossible to cover total variable costs.

Having analysed the three different price scenarios where minimum, medium and
maximum prices during the agricultural season studied have been considered for each
crop alternative or combination, it can be claimed that apart from tomatoes and the combi-
nation of cucumbers and zucchinis with minimum prices as a model, the rest of the crops
show high shutdown points in the different price scenarios, which guarantees short-term
repayment capacity for the growers.

3.4. Financial Profitability of Three Different Investment Alternatives: Desalinated, Ground and
Tertiary Water

To determine the viability of the alternatives provided, a financial analysis has been de-
veloped with the traditional most used indicators to determine profitability. As previously
mentioned in Section 3.3, minimum, maximum and medium prices have been considered
based on the fact that there is a great price variation in every agricultural season. A 20-year
lifetime of the investment has been taken into account and using the Spanish Official Credit
Institute as a reference, an interest rate of 4.852% has been used for the calculations [84].
In terms of water price, different alternatives have been evaluated; all of them based on
the most widespread prices for each resource in the area of study. For groundwater a
price of 0.3 EUR/m3, which is most common among local irrigation associations, has been
used. For desalinated water, a price range has been chosen for developing precise and
unbiased analysis, as the price of desalinated water varies depending on the area. This
variation depends mainly on two factors. The first is that some desalination plants are
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owned by the government which subsidies part of the cost for the agriculture, while in
other areas the grower has to face the entire cost of the water. On the other hand, the cause
of inequality among areas is due to natural resources, as in Campo de Dalias where there is
a reservoir from which water use for irrigation has a cost of 0.02 EUR/m3. As a result of
its depletion, irrigation associations from the area have developed a plan where the real
cost of desalinated water coming from public desalination plants, which is 0.60 EUR/m3,
is compensated with the cost of Beninar Reservoir water, so agriculturists use a mixture of
both resources and a price of 0.30 EUR/m3 is charged indistinctly. The price of desalinated
water where plants are private is 1 EUR/m3 (which is the most common scenario for other
Mediterranean areas). Reclaimed water in the area of study comes from the wastewater
treatment plant located in Almeria city where raw urban wastewater coming from indus-
tries and households gets primary, secondary and tertiary treatments. Treated wastewater
resulting from these treatments has homogeneous quality and meets the parameters stipu-
lated by the EU, which protect both human health and the environment. Its costs depend
on where the farm is located, as a result of a variation in distribution costs. Therefore,
in the area of study where this resource can be used for irrigation its prices vary from
0.44 EUR/m3 to 0.62 EUR/m3. Furthermore, it was necessary to consider that when using
tertiary water, the reduction of fertilizers has proved to be of 45% in this area, as claimed in
3.2.4. As a consequence, when evaluating reclaimed water, these costs have been adapted
and this fluctuation has been considered.

3.4.1. Net Present Value (NPV)

NPV, presented in Table 8, evaluates the absolute return of an investment. If future
cash flows are known, this indicator calculates the present value of a future stream of
payments, which are the projected earnings of the investment [85]. When the NPV of an
outlay is positive, this means it is profitable and therefore, desirable.

Table 8. NPV of three different crop alternatives with diverse water alternatives.

NPVGW (EUR) NPVDW (EUR) NPVTW (EUR)

Selling Price WP (EUR/m3) 0.3 0.3 1 0.44 0.62

Tomato Min: 0.196 −288,180 −288,180 −341,184 −298,781 −312,410
Med: 0.506 29,710 29,710 −23,294 19,109 5479
Max: 0.763 642,047 642,047 589,043 631,446 617,817

Cucumber/Zucchini Min: 0.186/0.196 −291,587 −291,587 −353,426 −303,955 −319,856
Med: 0.432/0.537 150,926 150,926 57,348 138,558 122,657
Max: 0.927/1.446 1,826,695 1,826,695 1,764,857 1,814,328 1,798,426

Pepper/Melon Min: 0.444/0.358 −19,814 −19,814 −87,394 −33,330 −50,708
Med: 0.705/0.472 124,929 124,929 89,087 111,412 94,035
Max: 1.005/0.742 788,882 788,882 721,301 775,366 757,988

NPV: Net Present Value; WP: Water Price depending on the source; NPVGW: Net Present Value with Groundwater; NPVDW: Net Present
Value with Desalinated Water; NPVTW: Net Present Value with Treated Wastewater.

In this area of study, the start-up of a greenhouse will result in benefits as long as
medium prices are maintained. The analysis shows, with only one exception, how all three
water alternatives maintain positive levels of profitability. The only time, when under
circumstances of medium prices, the investment would not be profitable, is in the case of
the tomato crop and only in the most expensive scenario with desalinated water. It should
also be emphasized that considering the scenarios for the three alternatives in terms of
water costs and selling prices, the use of treated wastewater for irrigation shows in all cases
better economic results in all the crops evaluated compared with those for desalinated
water. In consideration of the analysis, it can be claimed that the extra costs that represent
the use of treated wastewater instead of groundwater do not involve a threat to profitability
for the grower and that it is more than compensated due to the reduction in fertilizer costs.
Other aspects, such as volatility of prices, which in the agricultural campaign studied were
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high with several peaks and a deep variability between them in both senses, have been
shown to have a much higher importance than water price.

3.4.2. Internal Rate of Return (IRR)

A discounted cash flow analysis equal to the NPV of all cash flows to zero results in
IRR [86]. This discount rate estimation helps to cost the profitability of potential invest-
ments, delivering the expected compound annual rate of return that will be earned.

In all cases, except for those of minimum prices, the return rate is positive and therefore
desirable (see Table 9). The most important aspect of this internal rate of return analysis
is that under no circumstances is tertiary water rate lower than desalinated rate, which
reinforces the idea that reclaimed water is the most profitable alternative for groundwater.
Furthermore, it stands out that there is only a very slight difference between groundwater
and tertiary water rates, which in the cheapest scenario for tertiary water are higher than
or equal to the groundwater, but never lower. Furthermore, the very slight difference in
the return rate of groundwater and treated wastewater in the most expensive scenario for
this last resource should be noted, as it is in no case higher than 0.9%. With this analysis, as
happens with NPV, the worst case scenario for treated wastewater is in all cases better than
that of desalinated water regardless of price or crop.

Table 9. IRR of three different crop alternatives with diverse water alternatives.

IRRGW IRRDW IRRTW

Selling Price WP (€/m3) 0.3 0.3 1 0.44 0.62

Tomato Min: 0.196 - - - - -
Med: 0.506 6.6% 6.6% 3.4% 6.0% 5.2%
Max: 0.763 26.4% 26.4% 24.2% 26.0% 25.4%

Cucumber/Zucchini Min: 0.186/0.196 - - - - -
Med: 0.432/0.537 13.0% 13.0% 9.8% 12.3% 11.6%
Max: 0.927/1.446 75.9% 75.9% 73.3% 75.4% 74.7%

Pepper/Melon Min: 0.444/0.358 - - - - -
Med: 0.705/0.472 11.7% 11.7% 8.2% 11.0% 10.1%
Max: 1.005/0.742 32.7% 32.7% 29.8% 32.1% 31.4%

IRR: Internal Rate of Return; WP: Water Price depending on the source; IRRGW: Internal Rate of Return with Groundwater; IRRDW: Internal
Rate of Return with Desalinated Water; IRRTW: Internal Rate of Return with Treated Wastewater.

3.4.3. Payback Period (PP)

PP reflects the time it will take for an investment to be recovered, and suggests that the
shorter the payback, the more profitable it will be [87]. In the case of the three alternatives
studied, considering medium prices during the 2018/2019 crop season and the fact that the
useful life of a greenhouse is at least 20 years, all water sources evaluated are profitable
and have enough benefits to face the investment required. The payback period among the
water alternatives shown in Table 10, deserves special attention given that in the cheapest
scenario for all of them the PP is quite similar, with a maximum variation of 1.3 years
in only one situation and little or no variation in the rest (between 0 and 0.4). It is also
important to highlight that valuing the least desirable situations for the grower facing the
highest prices for each resource, treated wastewater has in all scenarios a shorter PP and
would be more interesting from a financial point of view than desalinated water.
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Table 10. PP of three different crop alternatives with diverse water alternatives.

PPGW (Years) PPDW (Years) PPTW (Years)

Selling Price WP (€/m3) 0.3 0.3 1.0 0.4 0.6

Tomato Min: 0.196 - - - - -
Med: 0.506 9.1 9.1 14.4 11.5 12.3
Max: 0.763 3.7 3.7 4.1 3.8 4.0

Cucumber/Zucchini Min: 0.186/0.196 - - - - -
Med: 0.432/0.537 7.0 7.0 8.6 7.3 7.7
Max: 0.927/1.446 1.3 1.3 1.4 1.3 1.7

Pepper/Melon Min: 0.444/0.358 - - - - -
Med: 0.705/0.472 7.6 7.6 9.7 8.0 8.5
Max: 1.005/0.742 3.1 3.1 3.3 3.1 3.8

PP: Payback Period; WP: Water Price depending on the source; PPGW: Payback Period with Groundwater; PPDW: Payback Period with
Desalinated Water; PPTW: Payback Period with Treated Wastewater.

4. Conclusions

The use of properly treated wastewater has widely shown that its implementation
in agriculture enhances the reduction of freshwater resource depletion and sea spills.
Moreover, it helps in achieving the recovery of aquifers and soil quality improvement.
Despite the previously stated benefits, putting this alternative resource into effect is proving
to be too slow a process if present and future needs in terms of water demand are taken
into account. In the case of Almeria, a Mediterranean region with an intensive agricultural
system known worldwide for its efficiency and its vastly cultivated area as a reference, can
help many countries to learn from its example. The results of this research where tertiary
water has been constantly used in an area since 1997 show the environmental and economic
benefits of its implementation.

After studying a surface area of more than 31,000 hectares from a financial perspective,
highlighting the importance of water, analyses have proved how expenditures directly
related to water use in an area of greenhouse agriculture exploitation have a relatively
short reach. Apparent productivity in terms of water efficiency in the diverse crops studied,
and shutdown and breakeven points show how efficient crops are in terms of water
consumption. This also implies that there is still a wide margin for using tertiary water
to maintain the economic viability of farms. Analyses developed in this research prove
that costs associated with water and how they differ to the alternatives provided are of
secondary importance, due to almost insignificant role that water has in a greenhouse
cost structure. Furthermore, it has been demonstrated that water costs, depending on
the source, have only a minimal effect in terms of recovery of the investment and project
profitability. Despite some numbers may slightly change in the future if there is a variation
in any of the raw materials needed for the greenhouse construction or for growing the
agricultural crops, data trends in the last decades show stability and gradual and minimum
price fluctuation, which would not change the conclusions derived from this research.

Analysing the results, it is possible to arrive at the conclusion that there is virtually no
difference in the alternatives provided for the research in terms of costs, which could mean
that both desalinated and tertiary water use are much the same. Nevertheless, the worst
case scenario for treated wastewater is in the analyses developed preferable to the worst for
desalinated water, which is probably the most common situation in other semi-arid areas
where desalinated water is not subsidised. This strengthens the idea that tertiary water is in
all cases the best alternative to face water depletion derived from irrigation. Furthermore,
its superiority in terms of benefits reinforces the need for developing infrastructures to
potentiate the implementation of reclaimed water, a resource that has proven to be a
sustainable and cost-effective alternative, more so than competing alternatives.

This Spanish case is of importance as it can be extrapolated to other countries where
desalinated water gets subsidies. The company Acuamed, which owns many of the most
important desalination plants in the areas where agriculture has a more relevant role,
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belongs to the government. This public ownership means that farmers avoid having to
pay the real cost of desalinated water, as at least 40% of it is assumed by subsidies. These
subsidies, provided in order to reduce the cost of this water alternative for farmers, have
deep economic consequences, as in 2018 Acuamed incurred direct losses calculated at EUR
582,000. Apart from increasing inequality amongst farmers who have their crops only a
few kilometers away and need to use private desalination plants due to their location, this
positive reinforcement is providing economic advantages only for some, for apparently no
reason. In order not only to eliminate this imbalance, but also to promote the alternative
that is more environmentally sensitive and cost efficient, iniquitous subsidies that result
in losses of thousands of euros could be eradicated. Therefore, money once used for this
purpose could be channeled into adequate infrastructure investment that guarantees an
appropriate distribution channel from wastewater treatment plants to farms.
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