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Abstract: Reference evapotranspiration (ETo) estimations may be used to improve the efficiency of
irrigated agriculture. However, its computation can be complex and could require numerous weather
data that are not always available for many locations. Different methods are available to estimate
ETo when limited data are available, and the assessment of the most accurate one can be difficult
and time consuming. There are some standalone softwares available for computing ETo but none of
them allow for the comparison of different methods for the same or different datasets simultaneously.
This paper aims to present an application for estimating ETo using several methods that require
different levels of data availability, namely FAO-56 Penman–Monteith (PM), the Original and the
three modified Hargreaves–Samani (HS and MHS1, MHS2 and MHS3), Trajkovic (TR) and the single
temperature procedure (MaxTET). Also, it facilitates the comparison of the accuracy estimation of
two selected methods. From an example case, for where the application was used to compute ETo for
three different locations, results show that the application can easily and successfully estimate ETo
using the proposed methods, allowing for statistical comparison of those estimations. HS proves to
be the most accurate method for the studied locations; however, the accuracy of all methods tends to
be lower for costal locations than for more continental sites. With this application, users can select
the best ETo estimation methods for a specific location and use it for irrigation purposes.

Keywords: reference evapotranspiration; VBA tool; alternative methods; data availability

1. Introduction

The computation of reference evapotranspiration (ETo), if accurate, may serve as a
basis for decision-making in irrigated agriculture such as water management, irrigation
system design and management, irrigation scheduling and crop modelling [1–9]. From all
the methods available for estimating ETo, the FAO-56 application of the Penman–Monteith
(PM) equation [4] is widely regarded as the most accurate. The method provides consistent
ETo values in many regions and climates [10,11], and it can be used globally without the
need for additional parameter estimations. It is well documented, has been implemented,
has been extensively validated and, when compared with other methods, it has been
accepted as an accurate ETo estimator [12–18]. The main constraint of the PM equation is
the requirement of numerous weather data (air temperature, windspeed, relative humidity
and solar radiation) that are not always available. The availability and reliability of weather
datasets of radiation, relative humidity and wind speed may be limited in many regions of
the globe, especially in developing countries. This limitation compelled different studies to
develop simpler methods where only data on maximum and minimum air temperature and
extra-terrestrial radiation are required, such as the Hargreaves and Samani [19], modified
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Hargreaves–Samani [20,21] and Trajkovic [22] methods. These methods were widely
compared with PM by different authors [15,18,23–28]. However, without a computer
application, this assessment is time consuming, even more so if one wants to compute ETo
using different methods.

There are a few standalone softwares available for computing ETo, such as REF-
ET [29], DailyET [30] and DSS ET [31], that allow for referencing ET estimations using
several methods. However, besides all of them being Windows-based standalone software,
none allow computing ETo for two datasets at the same time and easily comparing the
obtained results.

The objective of this paper is to develop an application for (1) estimating reference
evapotranspiration using several methods that require different levels of data availability
and (2) to easily compare the estimation accuracy of two selected methods, namely compar-
ing less weather data demanding methods. The theoretical basis of the application and its
primary features are presented in this paper; an example of the use of the application, using
observed and reanalysis data, is presented in the companion paper [32]. The application is
available for download at https://bit.ly/ETo_Tool_app and a tutorial video can be found
at https://youtu.be/B6snPkYu89I.

2. Conceptual Model and Accuracy Indicators
2.1. App Concept

The application has been programmed using the Visual Basic for Application (VBA)
language and implemented as a Microsoft Excel© (Albuquerque, NM, USA) macro-enabled
spreadsheet designated ETo Tool. This allows it to be run on any computer operating
system, only requiring Microsoft Excel© and related Analysis ToolPak. ETo Tool computes
reference evapotranspiration (ETo) at various time steps (daily to monthly) based on seven
methods, which are described below. The estimation of ETo for two different locations
at the same time can easily be done, enabling the statistical comparison of both resulting
outputs. The user can choose to use the same location and ETo estimation method for both
datasets, for the same location and two different methods or for two different locations
and methods. The user may also choose to estimate ETo for the entire year or select a
shorter period. We opted to give the user total flexibility for the task to be performed. The
simplified flow chart of the ETo Tool is shown in Figure 1.Agronomy 2021, 11, x FOR PEER REVIEW 3 of 13 
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The application allows for estimating ETo using the following methods with varying
degrees of data requirement:

(a) FAO-56 Penman–Monteith (PM)
The method, as proposed by Allen et al. [4], is expressed by:

ETPM =
0.408∆(Rn −G)+γ 900

T+273 u2(es − ea)

∆+γ(1 + 0.34u2)
(1)

where ETPM is the grass reference evapotranspiration (mm day−1); Rn is the net radiation
(MJ m−2 day−1); G is the soil heat flux density (MJ m−2 day−1), considered as null for
daily estimates; T is the daily mean air temperature (◦C) at 2 m, based on the average of
maximum and minimum temperatures; u2 is the average wind speed at 2 m height (m s−1);
es is the saturation vapor pressure (kPa); ea is the actual vapor pressure (kPa); (es − ea) is the
saturation vapor pressure deficit (∆e, kPa) at temperature T; ∆ is the slope of the saturated
vapor pressure curve (kPa ◦C−1); γ is the psychrometric constant (0.0677 kPa ◦C−1). The
computation of all data required for calculating ETo follows the procedure proposed by
Allen et al. (1998).

(b) Hargreaves–Samani (HS)
The Hargreaves–Samani method [19] estimates ETo using only the observed maximum

and minimum temperatures and the estimation of the extraterrestrial radiation, and is
expressed by:

ETHS = 0.0135 × 0.408Rs × (Tavg + 17.8) (2)

or
ETHS = 0.0135 × kRs × 0.408Ra × (Tavg + 17.8) × (Tmax − Tmin)0.5 (3)

where ETHS is the grass reference evapotranspiration (mm day−1); Rs is the solar radiation
(MJ m−2 day−1); Ra is the extraterrestrial radiation (MJ m−2 day−1), 0.0135 is a factor
for conversion from American to the International system of units; Tavg is the average
air temperature (◦C); Tmax is the maximum air temperature (◦C); Tmin is the minimum
air temperature (◦C); kRs is the radiation adjustment coefficient (◦C−0.5). The empirical
coefficient kRs was originally considered as 0.17 ◦C−0.5 (Hargreaves and Samani, 1985).
The use of a seasonal or monthly kRs is allowed.

(c) Modified Hargreaves–Samani 1 and 2 (MHS1 and MHS2)
Droogers and Allen [20] proposed two modifications of the original HS methods in

order to improve ETo estimations. Those methods are expressed by:

ETMHS1 = 0.0030 × 0.408Ra × (Tavg + 20) × (Tmax − Tmin)0.4 (4)

ET MHS2 = 0.0025 × 0.408Ra × (Tavg + 16.8) × (Tmax − Tmin)0.5 (5)

(d) Modified Hargreaves–Samani 3 (MHS3)
Berti et al. [21] modified the original HS method as follows:

ETMHS3 = 0.00193 × 0.408Ra × (Tavg + 17.8) × (Tmax − Tmin)0.517 (6)

(e) Trajkovic (TR)
Trajkovic [22] proposed modified the original HS method as follows:

ETTr = 0.0023 × 0.408Ra × (Tavg + 17.8) × (Tmax − Tmin)0.424 (7)

(f) Single temperature procedure (MaxTET)
The maximum temperature-based evapotranspiration (MaxTET) procedure, as pro-

posed by Rodrigues and Braga [33], only uses maximum temperature to estimate ETo:

ETTmax= kTmax× Tmax (8)
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where ETTmax is the reference crop evapotranspiration (mm day−1), kTmax is the tempera-
ture adjustment coefficient (mm ◦C−1) and Tmax is the maximum air temperature (◦C). The
use of monthly kTmax that is locally calibrated is advisable.

Figure 2 shows a snapshot of the application interface. The application offers the
possibility of manually inputting the weather data or to select the folder path where one
or multiple dataset files are available may be uploaded into the spreadsheet. The data
files must be in a standardized *.xlsx format; the first row must include the following
information (one per column): date (dd/mm/year), maximum temperature (◦C), mini-
mum temperatures (◦C), mean relative humidity (%), mean wind speed (m s−1) and solar
radiation (MJ m−2 d−1). The required inputs also include the geographical location of each
station (latitude, longitude and elevation), the period of analysis and the method of ETo
estimation to be used (as well as related coefficients, if required). For ETo estimation using
temperature-based methods, maximum and minimum temperatures are mandatory. In this
case, the remaining weather variables may be left blank. If the PM method is selected, mean
relative humidity, mean wind speed and solar radiation are also required. In order to ease
the use of the application, a help sheet (Figure 3) is avaiblable, with a step-by-step guide.
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The results are presented in two different sheets: one with the computed results
and scatter plot (Figure 4a); another with the accuracy indicators and statistical analysis.
(Figure 4b)
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2.2. Accuracy Indicators

The estimation accuracy of each variable was assessed through the metrics listed
below, where FDi and SDi (i = 1, 2, . . . , n) represent pairs of values of ETo for the first
and second datasets, respectively, FD and SD are the respective mean values and n is the
number of samples of each dataset:

• The coefficients of regression and determination, relating the first and second dataset,
b and R2, respectively, are defined as:

b =
∑n

i=1 FDiSDi

∑n
i=1 FDi

2 (9)
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R2 =

 ∑n
i=1
(
FDi – FD

)(
SDi – SD

)[
∑n

i=1
(
FDi – FD

)2
]0.5[

∑n
i=1
(
SDi – SD

)2
]0.5


2

(10)

Henseler et al. [34] defines that R2 values of 0.25, 0.50 and 0.75 match weakly, moder-
ately and significantly fit, respectively.

• The root mean square error, RMSE and its normalization, NRMSE, which characterizes
the variance of the estimation error can be defined as:

RMSE =

[
∑n

i=1(FDi – SDi)
2

n

]0.5

(11)

NRMSE =
RMSE

FD
× 100% (12)

RMSE measures overall discrepancies between both datasets’ values and the smaller
they are, the better accuracy. NRMSE is dimensionless, allowing comparison of its values
for different variables, assuming a good fit with a normalization below 15%.

• The mean bias error, MBE, and its normalization, NMBE, that measures the systematic
error between the second dataset and first dataset values can be defined as:

MBE =
∑n

i=1(SDi − FDi)

n
(13)

NMBE =
MBE

FD
× 100% (14)

The MBE and NMBE measure if the second dataset is over or under estimated with its
positive or negative values, respectively. MBE intends to indicate the average interpolation
bias [35].

• The Nash and Sutcliffe [36] modelling efficiency, EF, that is the ratio of the mean square
error to the variance of the first dataset, subtracted from unity, can be defined as:

EF = 1.0 − ∑n
i=1(FDi − SDi)

2

∑n
i=1
(
FDi − FD

)2 (15)

As suggested by Legates and McCabe [37], if the square of the differences between the
second and first datasets is as large as the variability in the observed data, then EF tends
toward 0.0 and FD is as good a predictor as the model, while negative values indicate that
FD is an even better predictor than the model. EF can vary between −∞ and 1.

The application also performs a one-way ANOVA, F-Test, t-Test and a descrip-
tive statistics analysis, allowing for a more detailed comparison between both datasets
(Figure 4b).

3. Example Case

In order to illustrate the use of ETo Tool, different mutilple runs, as presented in
Figure 5, were performed for three different sites—Odemira, Beja and Elvas—to include
coastal (Odemira), midland (Beja) and inland (Elvas) locations of Portugal (Table 1). For
each location, three different years were selected: humid, average and dry. Assuming
a normal distribution for each dataset, the years when the ETo (during the irrigation
months) is not exceeded with probabilities of 20, 50 and 80% were identified to represent
low, average and high climatic demand, representing humid, average and dry years,
respectively. The dataset for each location includes maximum and minimum temperature,
solar radiation, relative humidity and wind speed.
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Table 1. Location coordinates, elevation and distance to the sea.

Weather Station Latitude
(N) Longitude (W) Elevation (m) Distance to

the Sea (km)

Beja 38◦02′15′ ′ 07◦53′06′ ′ 206 79
Elvas 38◦54′56′ ′ 07◦05′56′ ′ 202 160

Odemira 37◦30′06′ ′ 08◦45′12′ ′ 92 4

Tables 2–4 summarize the accuracy indicators for the entire irrigation season for
Odemira, Beja and Elvas, respectively, when comparing PM ETo with ETo estimated using
all the methods available in the application, for three reference years–humid, average and
dry. Results show that, when comparing ETo estimations, the accuracy of each method is
dependent on the climatic demand and location. For a coastal location (Table 2)–Odemira—
and a humid year, MH3 (lowest b and NMBE and highest EF) tends to lead to the best
results, followed by TR and MaxTET. However, for ETo estimations in an average and dry
year, the method that leads to the most accurate results is HS using a monthly kRs for both
years. Differently, for Beja (Table 3)–a midland location—the HS (using Rs) method leads
to the best results for all years. As for an inland location (Table 4)–Elvas—the accuracy
results are similar to the ones for Beja, with the HS (using Rs) method outperforming the
remaining methods. However, all methods for all years and locations present a moderate
fit with R2 higher than 0.5. Similar results were found by Rodrigues and Braga [28] for
these locations.
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Table 2. Accuracy indicators for the relationship between daily ETo estimated by the Penman–Monteith equation, by the
temperature-based equations for Odemira and for three different years–humid, average and dry.

Year ETo Estimation Method
Accuracy Indicators

b R2 NRMSE (%) NMBE (%) EF

Humid

HS
Using Rs 1.29 0.73 34.81 30.60 −0.98

Using Seasonal kRs 1.12 0.62 22.82 12.60 0.15
Using Monthly kRs 1.08 0.61 20.55 9.40 0.31

MHS1 1.20 0.63 28.60 21.97 −0.33
MHS2 1.18 0.62 28.01 19.31 −0.28
MHS3 0.98 0.62 17.33 −1.25 0.51

Tr 0.93 0.63 16.92 −6.43 0.53
MaxTET 1.07 0.60 18.51 8.89 0.44

Average

HS
Using Seasonal kRs 1.18 0.84 24.00 18.72 0.31
Using Monthly kRs 0.99 0.75 14.58 1.01 0.75
Using Seasonal kRs 0.96 0.73 15.13 −1.99 0.73

MHS1 1.08 0.75 17.80 10.43 0.62
MHS2 1.05 0.75 16.27 6.94 0.68
MHS3 0.87 0.75 18.73 −11.53 0.58

Tr 0.83 0.75 21.78 −15.57 0.43
MaxTET 0.95 0.67 17.27 −1.81 0.64

Dry

HS
Using Rs 1.17 0.80 22.95 17.07 0.29

Using Seasonal kRs 1.01 0.75 14.58 1.52 0.71
Using Monthly kRs 0.97 0.72 14.85 −1.58 0.70

MHS1 1.09 0.78 17.00 10.38 0.61
MHS2 1.07 0.74 17.02 7.57 0.61
MHS3 0.88 0.74 17.78 −11.02 0.57

Tr 0.84 0.77 20.29 −15.40 0.44
MaxTET 0.96 0.73 14.44 −1.66 0.72

HS—Hargreaves-Samani method; MHS1—Modified Hargreaves-Samani 1 method; MHS2—Modified Hargreaves-Samani 2 method;
MHS3—Modified Hargreaves-Samani 3 method; Tr—Trajkovic method; MaxTET—Single temperature procedure; Rs—solar radiation;
kRs—radiation adjustment coefficient; b—coefficient of regression; R2—coefficient of determination; NRMSE—normalized root mean
square error; NMBE—normalized mean bias error; EF—Nash and Sutcliffe modelling efficiency

Results also show that, for coastal locations, the accuracy of all methods tends to
be lower than for more continental sites. Similar results were found by Martinez and
Thepadia [38], as they found that HS performs worse for coastal regions of Florida than
compared with other methods. Also, and since all methods are temperature-based, the
effects of wind and relative humidity are not taken into account when estimating ETo. This
can also explain the underperformance of HG using Rs for Odemira. Estévez et al. [39]
obtained similar results, concluding that relative humidity data are relevant for accurate
ETo calculations in coastal locations. These conclusions suggest that a sensitivity analysis
of the impacts of wind, relative humidity and solar radiation on ETo estimations would
be advisable.

Nonetheless, results show that the application allows for easily computation of ETo
using different estimation methods and to statistically compare the results.
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Table 3. Accuracy indicators for the relationship between daily ETo estimated by the Penman–Monteith equation, by the
temperature-based equations for Beja and for three different years–humid, average and dry.

Year ETo Estimation Method
Accuracy Indicators

b R2 NRMSE (%) NMBE (%) EF

Humid

HS
Using Rs 1.01 0.99 8.13 1.58 0.99

Using Seasonal kRs 1.05 0.88 14.16 6.15 0.84
Using Monthly kRs 1.05 0.88 13.96 5.97 0.85

MHS1 1.09 0.88 16.70 10.89 0.78
MHS2 1.11 0.88 18.55 12.67 0.73
MHS3 0.93 0.88 14.03 −6.39 0.85

Tr 0.85 0.88 19.54 −13.95 0.70
MaxTET 1.04 0.82 16.65 6.68 0.78

Average

HS
Using Rs 1.04 0.91 12.61 4.83 0.89

Using Seasonal kRs 1.08 0.85 18.32 10.34 0.77
Using Monthly kRs 1.08 0.85 18.32 10.22 0.77

MHS1 1.11 0.85 21.17 14.94 0.70
MHS2 1.14 0.85 23.32 17.20 0.63
MHS3 0.95 0.85 15.36 −2.67 0.84

Tr 0.87 0.85 19.50 −10.65 0.74
MaxTET 1.08 0.82 19.96 11.51 0.73

Dry

HS
Using Rs 1.01 0.95 8.75 1.22 0.94

Using Seasonal kRs 1.04 0.87 14.66 5.79 0.84
Using Monthly kRs 1.04 0.88 14.34 5.55 0.85

MHS1 1.08 0.87 17.11 10.48 0.78
MHS2 1.11 0.87 18.83 12.37 0.74
MHS3 0.92 0.87 14.85 −6.72 0.84

Tr 0.84 0.87 20.32 −14.18 0.70
MaxTET 1.05 0.83 16.98 7.83 0.79

Table 4. Accuracy indicators for the relationship between daily ETo estimated by the Penman–Monteith equation, by the
temperature-based equations for Beja and for three different years–humid, average and dry.

Year ETo Estimation Method
Accuracy Indicators

b R2 NRMSE (%) NMBE (%) EF

Humid

HS
Using Rs 1.03 0.94 9.93 4.50 0.93

Using Seasonal kRs 1.07 0.83 18.39 9.35 0.76
Using Monthly kRs 1.04 0.82 17.18 5.74 0.79

MHS1 1.17 0.83 25.91 20.47 0.52
MHS2 1.21 0.83 29.22 23.41 0.39
MHS3 1.00 0.83 15.86 2.57 0.82

Tr 0.91 0.83 17.19 −6.26 0.79
MaxTET 1.04 0.80 18.43 7.29 0.76

Average

HS
Using Rs 0.97 0.92 10.82 −2.14 0.91

Using Seasonal kRs 1.02 0.79 17.28 4.35 0.77
Using Monthly kRs 0.98 0.80 16.22 0.79 0.80

MHS1 1.11 0.79 22.59 15.18 0.61
MHS2 1.15 0.79 24.89 17.70 0.53
MHS3 0.95 0.79 16.90 −2.13 0.78

Tr 0.87 0.79 20.36 −10.49 0.69
MaxTET 0.99 0.79 17.07 2.07 0.78

Dry

HS
Using Rs 0.90 0.86 17.00 −8.98 0.81

Using Seasonal kRs 0.95 0.75 19.39 −2.28 0.75
Using Monthly kRs 0.92 0.77 19.25 −5.75 0.75

MHS1 1.04 0.76 20.48 7.56 0.72
MHS2 1.07 0.75 22.30 10.29 0.66
MHS3 0.89 0.75 21.10 −8.33 0.70

Tr 0.81 0.76 25.69 −16.28 0.55
MaxTET 0.93 0.79 18.36 −4.09 0.77
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4. Conclusions

In this paper, an application for estimating reference evapotranspiration using seven
different methods has been presented. It allows for the computation of ETo for two different
datasets and to statistically compare the resulting estimations. This is simple and user-
friendly Microsoft Excel© macro-enabled spreadsheet and is available for free download.
This application facilitates (1) the calculation of ETo for two locations at the same time and
(2) the calculation of ETo using the same or different estimation methods for both datasets,
without any specific Operating System, and may be run on any platform. The FAO-56
PM equation is recommended as the standard for computing reference evapotranspiration.
However, and since the use of this method may be limited due to the availability of data
in areas where meteorological information is scarce, the application allows the user to
choose from six different temperature-based methods with different levels of required data.
Results indicate that the application can successfully estimate ETo using different methods,
allowing statistically comparison of the estimations.

The application allowed comparing ET estimations from all methods for three locations
(costal, midland and inland) of Portugal for three years of different climatic demand—
humid, average and dry. Results show that the accuracy of each method is dependent on
the climatic demand and location. For a coastal location, the Hargreaves–Samani method
allows for accurate estimations of ETo when compared with the FAO-56 Penman–Monteith
method. Results also show that, for coastal locations, the accuracy of all methods tend to
be lower than for more continental sites. This may be due to the fact that, since all methods
are temperature-based, the effects of wind and relative humidity are not taken into account
when estimating ETo. These conclusions suggest that a sensitivity analysis of the impacts
of wind, relative humidity and solar radiation on ETo estimations would be advisable.

It can be concluded that ETo Tool can be recommended for ETo estimations. Future
work will be based on adding more methods, a feature that allows computing ETo with
PM from reduced datasets and data visualization and a web version of this ETo estimation
Tool for further simplification of use.
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