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Abstract: Blanchability is an often overlooked, but important trait for peanut breeding. The process
of blanching, removing the skin, is an important step in the processing of raw nuts for manufactur-
ing. Under strong genetic control and requiring considerable effort to phenotype, blanchability is
conducive for marker-assisted selection. We used QTL sequencing (QTL-seq) to identify two QTLs
related to blanchability using previously phenotyped breeding populations. To validate the QTLs,
we show that two markers can select for significantly increased blanchability in an independent
recombinant inbred line (RIL) population. Two wild introgressions from Arachis cardenasii conferring
strong disease resistance were segregated in the population and were found to negatively impact
blanchability. Finally, we show that by utilizing highly accurate sequence analysis pipelines, low
coverage sequencing can be used to genotype whole populations with increased power and precision.
This study highlights the potential to mine breeding data to identify and develop useful markers
for genetic improvement programs, and provide powerful tools for breeding for processing and
quality traits.

Keywords: blanchability; QTL-seq; polyploid

1. Introduction

Quantitative trait locus sequencing (QTL-seq) is a genetic analysis that takes advantage
of the ever-decreasing cost in whole genome sequencing (WGS). The two seminal papers
describing the simple approach of bulk segregant analysis were first published in 1991 [1,2].
The markers being used were restriction fragment length polymorphism (RFLP) or random
amplified polymorphic DNA (RAPD), and in the absence of genome sequences, identifying
new markers was difficult within mapping populations. After an interval was initially
mapped to control a trait of interest, it was not possible to fine map the interval further
in the absence of polymorphic markers. The method of bulk segregant analysis (BSA)
rested on the hypothesis that markers linked to the trait of interest will segregate with the
phenotype in a segregating population. The individuals exhibiting the extreme tails of the
phenotypic distribution will be differentiated by only those markers that were physically
within the genomic region of interest. In the case of the original methods, random oligos
could be screened in the bulked DNA until polymorphic markers were found. This was
how new markers could be identified and placed on the genetic map to fine map the trait
to a higher resolution.
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The application of BSA evolved as molecular markers became higher throughput.
Hybridization expression arrays were used in Arabidopsis to map mutations [3]. In
yeast, hybridization arrays and the ability to assay extremely large populations allowed
profiling the structure of complex traits controlled by many loci [4]. Whole genome
sequencing (WGS) using short reads resulted in more accuracy for mapping mutations in
Arabidopsis [5,6]. This was extended to plants without reference genomes as mapping-by-
sequencing [7]. Mapping mutations in crop plants with larger genomes was introduced as
MutMap, which was highlighted in rice [8], and extended to use mutants without crossing
back to a wild-type parent [9]. Using rice, BSA was used in combination with WGS to
map natural variation in crops in a technique named QTL-seq [10]. The application of
QTL-seq moved to more complex genomes; tomato [11], chickpea [12], cucumber [13],
oilseed rape [14], guinea yam [15], watermelon [16], and peanut [17–20].

The strengths of QTL-seq are its simplicity, efficiency of resource use, and flexibility to
utilize historical data. There are limitations however. If the parental genotypes used are
divergent from the reference genome, there is variation that short reads cannot account for.
This variation—insertions, deletions, duplications, and copy number variants—has major
consequences for the expression of phenotypes [21,22]. If one parent is more divergent from
the reference than the other parent, then reference bias can skew allele frequencies away
from the true frequency in the bulks [23]. For crop genomes, which are either polyploid
or have a polyploidization event in their evolutionary history, homeologous sequences
introduce an additional layer of noise [24,25]. The consequence is that short reads will pile
up in regions that are duplicated in the bulks, but not in the reference, resulting in incorrect
allele frequency for that physical location. Alternatively, homeologous sequences will map
incorrectly and create further noise in the signal.

For complex polyploid genomes like peanut (Arachis hypogaea), the analysis of the
bulk sequence data has relied on generating high quality parental sequence data first, and
then utilizing it to either modify the reference genome to be parental-specific [17,19,20],
or to call SNPs between the parents with specialized pipelines to use in the analysis of
the bulks [18,26]. In heterozygous crops, like Brassica rapa, a strategy was devised that
used sequences from parents and F1 hybrids to identify SNPs that were homozygous in
the parent of interest [27]. In the case of peanut, the results have been useful, but still
exhibit noise to the extent that the precise structure of the identified loci are not clear. The
higher noise to signal ratio also precludes identifying minor effect QTL. In cases where
the parents of a population are ambiguous, or when using breeding populations with
complex pedigrees, it is more useful to be able to call SNPs directly from the bulk sequence
without needing parental sequence. Relying on parental sequence is not cost effective, and
it also limits the genetic material that can be used to map traits. For complex genomes, it is
imperative to be able to analyze QTL-seq datasets from the bulk sequence alone.

A useful outcome for QTL-seq analyses is that markers can be developed straight
from breeding populations to be used directly within those breeding programs [17,18,26].
A good example of this is rust resistance in the breeding programs at ICRISAT in India [17].
The markers developed from QTL-seq analysis have been included in a SNP panel that
is being used in the global peanut breeding community to select for rust resistance. In
this case, it was the discovery of a wild introgression that conferred resistance and was
amenable to marker-assisted selection with markers that could select for the introgression
on chromosome A03 [17]. A trait that is important for peanut processing and is time
consuming to measure is blanchability [28,29]. Blanching consists of heating peanuts to
a temperature that removes the skins without damaging the kernel. It is very important
to blanch peanuts for quality control (removal of damaged kernels, including aflatoxin
contamination) and for processing applications (peanut butter, confectionery). Wright and
colleagues (2018) [28] found that the blanching percentage was under strong genetic control
with very low genotype × environment (G × E) interactions. Peanut breeding programs
generally do not select for blanching percentage due to the high labor investment needed to
test. Additionally, a large number of seeds are needed to test blanching percentage, which
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precludes selection at early generations. Current uniform trials in the United States do
not test for blanching percentage (https://www.ars.usda.gov/southeast-area/dawson-ga/
national-peanut-research-laboratory/docs/uniform-peanut-performance-tests-uppt/, ac-
cessed on 28 October 2021). Despite not having information on the blanching percentage of
different cultivars, the cost savings for manufacturers would be substantial. After blanch-
ing, any unblanched kernels are discarded as waste, sold as less valuable products, or
crushed for oil. The combination of strong genetic control, small G × E effect, and laborious
measurement makes blanching an excellent target for marker assisted selection (MAS) in
peanut [28,29].

Wild species represent a critical source for alleles that confer strong resistance to
disease and tolerance to stress, and peanut is no exception [30–32]. Three introgressions
from Arachis cardenasii have recently been discovered to contribute strong resistance to
important fungal diseases [17,33,34]. These introgressions have been so successful that
they were shared all over the world by breeders as “silent” sources of strong resistance and
were just recently discovered [35]. The introgressions, two on chromosome A02 and one
on chromosome A03, are physically not large, but contain many genes. There is potential
linkage drag associated with them that manifests in unexpected ways.

In this study, we use a novel pipeline, Khufu, to de novo analyze a new dataset focused
on blanching in peanut. We identify two QTL controlling blanching percentage in peanut.
We validate those QTL in an independent recombinant inbred line (RIL) population. We
also investigate the effect of Arachis cardenasii introgressions on blanching and these QTL.
Finally, we benchmark Khufu on previously published datasets in peanut and discuss the
potential for genotyping applications in crops with complex genomes.

2. Materials and Methods
2.1. Blanching QTL-seq and Validation

Good and poor blanching lines were selected from data generated in Wright et al., 2018.
Each line was extracted for DNA individually and quantified using a Qubit fluorometer.
Equal concentrations of each were pooled into ‘good blanching’ and ‘poor blanching’ DNA
pools. The pools were sequenced by Novogene using Illumina HiSeq 2 × 150 bp sequencing.
After filtering, a total of 193,712,311 reads from the good blanching pool were mapped
(100%; 94.9% properly paired) and 248,926,026 reads from the poor blanching pool (100%;
94.9% properly paired). Analysis of sequenced bulks was carried out using the Khufu
pipeline (https://www.hudsonalpha.org/khufudata/, accessed on 28 October 2021).

2.2. Development of RIL Population and Marker Validation

A recombinant inbred line (RIL) population was developed by crossing Middleton x
Sutherland cultivars, comprising of 406 individual lines (RILs) at the Peanut Company of
Australia (PCA), Kingaroy, Queensland, Australia. Middleton is a reliable high yielding
commercial cultivar and has been used extensively in the Australian Peanut Breeding Pro-
gram (APBP). The pedigree of the resistant parent, Sutherland, is (B123 (F1) × CS22) × D45-
p37-102, and is tolerant to multiple foliar diseases; late leaf spot (Phaeoisariopsis personata),
peanut rust (Puccinia arachidis) and web blotch [36]. Hybridization between parental lines
was performed in 2014 and the single seed descent (SSD) method was employed under
field conditions from the F2 to the F6 generation. Extracted DNAs from 406 RIL lines were
used for marker validation. Blanching percentage was performed as described in Wright
et al., 2018 [28]. Kompetitive allele specific PCR (KASP) markers were designed from the
most significant SNPs from the QTLs on B11 and A06 (Table S3). Two methods were used
to assess the significance of each identified locus to blanching percentage. The blanching
data were transformed into ranks and ANOVA’s were run using each marker alone and
the combination of both markers in R. LSMeans for each marker and combinations of them
were calculated using the lsmeans package in R. An additional test using a Kruskal–Wallis
non parametric test was performed using Kruskal.test in R.

https://www.ars.usda.gov/southeast-area/dawson-ga/national-peanut-research-laboratory/docs/uniform-peanut-performance-tests-uppt/
https://www.ars.usda.gov/southeast-area/dawson-ga/national-peanut-research-laboratory/docs/uniform-peanut-performance-tests-uppt/
https://www.hudsonalpha.org/khufudata/
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2.3. Analysis of Published Datasets

Sequences from published datasets were downloaded from public databases (NCBI
SRA and DDBJ Bioproject). Raw fastq files were not processed further and were subjected
to the Khufu pipeline as downloaded.

2.4. Post-Khufu Filtering

We implemented a shiny app to facilitate final polishing post-Khufu processing. It
can be freely accessed here: https://w-korani.shinyapps.io/khufu_var2/ (accessed on
28 October 2021). This allows filtering in real time so the user can identify trends within
potential noisy groups of SNPs. There are minimum and maximum depth filters. Low
depth loci estimate allele frequencies poorly and loci with depths more than twice the
estimated read coverage can signal regions of paralogous read mapping. The minor allele
frequency filter was first suggested by Takagi et al., (2013) [10] as a mechanism to filter
erroneous base calls if a particular alternative allele was in low frequency in both bulks.
We implemented an “interval” filter which filters out potential SNPs clustered closely
together (<100 bp). This indicates repetitive content and reads from many loci overlapping
one locus.

The shiny app takes as input R objects that are created as output from the Khufu
analysis pipeline. In the supplement we have included the R objects for the full Blanching
data set, and the down sampled 5×, 10×, and 20× sets.

3. Results and Discussion
3.1. Blanchability QTL-seq

To identify QTLs associated with blanchability in peanut, we sequenced two bulks of
breeding lines from three populations with related parents (Table 1). The parents with high
blanching percentage were Walter and Redvale and the low blanching parents were Suther-
land and a sister line of Sutherland [28]. Redvale is a selection from a cross with Walter
as a parent. We first analyzed the data by calling parent-specific SNPs by re-sequencing
Walter, Redvale, and Sutherland and identifying SNPs where Walter and Redvale shared an
allele and Sutherland had an alternate allele. We used these SNPs to analyze the QTL-seq
dataset and identified two QTLs on chromosomes A06 and B11 (Figure 1A). Markers were
developed from the most significant SNPs within the identified peaks on A06 and B11.
We next used a recombinant inbred line (RIL) population to validate the putative QTL.
The parents of the population are Sutherland (poor blancher; 74.5%) and Middleton (good
blancher; 89%). Middleton is not related to Walter or Redvale and so represents a good
source to test the markers in unrelated populations where blanching is segregating. Both
markers could select for increased blanching percentage in an unrelated RIL population,
with A06 having a stronger effect (F = 6.73; df = 176; RANK ANOVA p = 0.0002; Kruskal
p = 0.0003; Effect 9.8%; Median = 73.4%; R2 = 10.3%) than B11 (F = 3.5; df = 176; RANK
ANOVA p = 0.01; Kruskal p = 0.005; Effect 8.03%; Median = 74%; R2 = 5.6%). The two
markers combined were additive (F = 5; df = 176; RANK ANOVA p < 0.0001; Effect 19.7%;
Median = 76.9%; R2 = 14.8%). The lsmean estimate when both alleles are beneficial is 79.3%,
and when both alleles are non-beneficial is 59.6%. Selecting with the two markers shifts the
median blanching percentage from 62.8% to 83.9% (21% increase).

We used Khufu (https://www.hudsonalpha.org/khufudata/, accessed on 28 Ocotber
2021) to re-analyze the blanching QTL-seq dataset using de novo discovered SNPs from
the bulk data (Figure 1B). The QTL on A06 has a stronger signal overall with the smoothed
average above 0.6 with Khufu compared to 0.5 using parental sequence. The QTL on
B11 is much stronger with the peak smoothed average reaching 0.85 compared to 0.65
using parental data. The results support that QTL-seq can be analyzed straight from bulk
sequence even in crops with complex genomes, without the need to generate parental
sequence when suitable informatic pipelines are utilized.

https://w-korani.shinyapps.io/khufu_var2/
https://www.hudsonalpha.org/khufudata/
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Table 1. Phenotypes for selected lines for bulk sequencing.

Genotype Blanching Pedigree Bulk

P24-p188-93 55.4 Tingoora × D147-p3-115 Poor Blancher
P13-p07-219 59.6 Sutherland × Walter Poor Blancher

P24-p187/205-97 71.5 Tingoora × D147-p3-115 Poor Blancher
P23-p157-65 74.1 Redvale × D147-p3-115 Poor Blancher
P13-p45-235 76.7 Sutherland × Walter Poor Blancher

P23-p157-64 84.0 Redvale × D147-p3-115 Good Blancher
P13-p23-233 85.2 Sutherland × Walter Good Blancher
P23-p153-62 85.8 Redvale × D147-p3-115 Good Blancher
P13-p21-223 91.0 Sutherland × Walter Good Blancher
P23-p171-85 91.0 Redvale × D147-p3-115 Good Blancher

Walter 92.2 Good Blanching Parent
Redvale 93.3 Walter × D45-p37-102 Good Blanching Parent

Sutherland * 75.4 Poor Blanching Parent
* Data from 2019.
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difference in allele frequency between the good blanching bulk and the poor blanching bulk—is 0 to 1, where 1 is good
blanching allele. (B) The same QTLs identified with Khufu de novo from bulk sequence. Because allele parentage is not
discerned, delta SNP is set from 0 (equal frequency between bulks) to 1 (complete segregation between bulks). (C) Validation
of markers in an independent RIL population. Violin/Jitter/Box plots show the blanching% of RILs with the high blanching
allele at A06 only, B11 only, both A06 and B11, and both poor (low blanching) alleles. Black dots show median values,
and red dots are the mean. Selecting for either marker alone is significant compared to selecting for both poor alleles, and
selecting for the good blanching allele at both loci provides the highest blanching percentage and skews the distribution
towards 100%. (D) Representative pictures of a good blanching sample (left) and a poor blanching sample (right).
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3.2. Linkage Drag from Wild Introgressions

Sutherland is known to have introgressions on chromosomes A02 and A03 derived
from Arachis cardenasii [35]. The lines that were chosen from QTL-seq should have inherited
these introgressions independent of their blanching percentage. However, there were two
peaks on chromosome A02 that corresponded to the introgressed regions (Figure 2A). The
RIL population used for validation was also genotyped using a 10 SNP chip that assayed
the introgressions. Initially, we used only those lines without introgressions in the RIL
population for validation (Figure 1; 180 lines). On their own, the introgressions on the
top of A02 and the bottom of A03 significantly affect blanching percentage (Figure 2B
and Table 2). Selecting against the introgressions raises the mean and median blanching
percentage by 10.7% and 11.6%, respectively (Table 2 and Figure 2C). If the introgressions
are not taken into account and selection in the population is just with the A. hypogaea QTL
identified in this study, the effect is lessened. Finally, the QTL on B01 and A06 only have
a small effect if selecting in a population that has both introgressions fixed (Table 2 and
Figure 2D).
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the QTLs on A06 and B11 have little to no effect on blanchability.
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Table 2. Effect of A. cardenasii introgressions on blanching percentage.

A02 A03 A06 + B01 Blanching
(Lsmeans)

Blanching
(Median)

Number of
Individuals

car car Good 63.4 63.8 52
car hyp Good 68.0 70.4 60
hyp car Good 69.5 71.1 38
hyp hyp Good 74.3 78.9 92

car car Poor 56.5 60.4 27
car hyp Poor 60.9 69 23
hyp car Poor 57.7 67.2 12
hyp hyp Poor 57.1 62.6 34

car car - 63.4 62.6 79
car hyp - 68.0 69.2 83
hyp car - 69.5 69.7 56
hyp hyp - 74.1 74.2 126

3.3. Improving QTL-seq Analysis in Polyploid Crops

There are two current methods that are employed to analyze QTL-seq data in poly-
ploid crops, with a special focus on peanut. One is to use a specialized pipeline to
identify high quality SNPs from the parental sequence, as in Cui et al., (2020) [26] and
Clevenger et al., (2018) [18]. The other is to use parental sequence to generate population-
specific reference genomes and then analyze the QTL-seq data using those modified
genomes while filtering for high quality, uniquely mapping reads, and depth. Both meth-
ods were successful in identifying significant QTL, although the noise in the data obscured
the genetic structure of the loci. Further, sequencing parents to high coverage depth incurs
additional substantial cost and requires the use of biparental populations where the parents
are known and available.

Cui et al., (2020) [26] used QTL-seq to identify QTLs contributing to stem rot resistance
in the field in peanut. From stem rot bulks sequenced to high depth (>40 × genome
coverage), there were two QTLs identified on chromosomes A05 and A01 that could
explain about 21% of the variance observed. The strategy used in Cui et al., (2020) [26]
was to identify putative parental SNPs from the parental sequence (using the polyploid-
specific pipeline SWEEP [18]) that were then used in the bulks to calculate allele frequency.
Using Khufu, we analyzed the same bulk sequence de novo and identified the peaks
on chromosomes A01 and A05 (Figure S1). Khufu identified two additional peaks on
chromosomes A04 and A07 that were not identified previously (Figure S2). We developed
kompetitive allele specific PCR (KASP) markers to assay the new QTL on A04 in the
validation populations used in Cui et al., (2020) [26]. These markers were able to increase
the ability to select for stem rot resistance (Figure S2). The QTL on A07 was also identified
in Luo et al., (2020) [37].

To test the feasibility of using lower coverage sequence data, we re-analyzed a QTL-seq
dataset focused on late leaf spot resistance in peanut where the bulks were sequenced to
approximately 10× genome coverage [18]. Khufu successfully identified the three QTL de
novo from bulk sequence that were validated in Clevenger et al., (2018) [18] and Chu et al.,
(2019) [38] (Figure S3). The QTL on B03 (on Arachis hypogaea known as B13) has a clear
peak in the Khufu analysis indicating potential to develop more tightly linked markers
to resistance.

Pandey et al., (2020) [39] used QTL-seq to identify QTLs associated with fresh seed
dormancy in peanut. Using Khufu, we identified those same QTLs de novo from the
bulked sequence (Figure S4). As was the case with the stem rot dataset, the Khufu peaks
had a higher smoothed average on chromosome B05, reaching 0.75 in the region from
which Pandey and colleagues (2020) [39] developed a marker to select for the trait. Zhao
and colleagues (2020) [20] used QTL-seq to identify a candidate gene for purple testa color
in peanut on chromosome A10 using the parental sequence to analyze the bulk sequence
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data. Without the parental sequence, Khufu identified the same QTL and the predicted
peak region (107,280,934 to 110,087,506) contained the most likely candidate gene which
was functionally shown to control anthocyanin accumulation in tobacco [20] (Figure S5).

Bertioli et al., (2020) [40] estimated that the rate of polymorphism between two peanut
accessions is, on average, 1 SNP per 10,000 bp by comparing two reference-quality genome
sequences. One advantageous aspect of QTL-seq is the theoretical ability to have access
to all SNP polymorphisms segregating in the population. The result is that the SNP or
group of SNPs that are most closely linked to the functional variation (or are the functional
variation) are available. In contrast, the probability that a SNP array with fixed markers
includes the most closely linked SNPs is low and decreases with low throughput marker
types. Khufu identified 244,329 SNPs in the dormancy dataset (1 SNP per 10,395 bp),
372,611 SNPs in the stem rot dataset (1 SNP per 6816 bp), and 225,029 SNPs in the purple
testa dataset (1 SNP per 11,287 bp). The number of SNPs Khufu filtering identifies de novo
from the bulk sequences is within the estimate of polymorphic SNPs between any two
A. hypogaea accessions. The filtering procedure of Khufu should be applicable for other
genotyping applications using short reads in crops with complex genomes.

3.4. Potential for Genotyping Using Skim Sequencing

For crops with large, complex genomes, genotyping large populations still relies heav-
ily on fixed SNP arrays. These arrays are incredibly useful, yet suffer from ascertainment
bias. Reduced representation methods allow de novo SNP discovery yet only access a
small portion of the genome. The accuracy of profiling SNPs within bulked samples should
be useful for genotyping applications using sequencing. As a reference set of SNPs, we
identified variants by comparing two published peanut genomes, Tifrunner [41], and Shi-
touqi [42]. Using Illumina sequencing of the two genotypes that were sequenced, we called
SNPs using Khufu at different depths of coverage (Table S1). Across all levels of depth,
Khufu calls alleles with more than 99% accuracy (according to the allele in the reference
genome sequence). Above 10× coverage, Khufu identifies more than 95% of the SNPs. At
lower coverage, Khufu identifies more than 71% at 5× coverage and 46% at 3×.

We tested if it were possible to identify de novo SNPs in the parents of a population
sequenced at 10× coverage and then call alleles in the progeny sequenced at 1× or even
0.5× coverage (Table S2). At 1× coverage, 27% of the possible SNPs could be called at
100% allele accuracy. At 0.5× coverage, 14% of possible SNPs could be called at 100% allele
accuracy. With an estimate of 1 SNP per 10 kilobases polymorphic between any two peanut
accessions, we can expect to call an average 67,000 SNPs with 1× coverage and 37,500 with
0.5× coverage. This represents genome-wide distribution of markers.

Finally, we analyzed a RIL population that was genotyped using WGS re-sequencing [43].
Using 5× coverage WGS of the progeny, Agarwal and colleagues mapped 11,106 SNPs
using SWEEP_GOLD (https://github.com/w-korani/SWEEP_GOLD, accessed on 28 Ocot-
ber 2021). Using Khufu, we identified and called 86,987 SNPs in the progeny after down
sampling to <3× coverage. Analysis of physical maps color-coded for parental allele
illustrates the accuracy of Khufu at low coverages (Figure S6).

3.5. Future Considerations for QTL-seq Using Low Coverage Sequence Data

Analysis of sequence data in tetraploid peanut has been difficult and relied on special-
ized pipelines [25,44]. Accurate analysis of low coverage sequencing data for a polyploid
crop such as peanut has not been viable until now. We were intrigued by the possibility
of thinking about QTL-seq in a different way. The process of sequencing a bulk of 20
individuals to 20× genome coverage is akin to computationally bulking 20 fastq files that
were sequenced to 1× genome coverage. If then, in a population of 300 individuals that
was segregating strongly for multiple traits, each individual was sequenced to 1× coverage,
QTL-seq could be carried out for all of the traits at once. We tested this concept using the
RIL population from Agarwal et al., (2019) [43]. We used bulks representing 10, 20, 30, and
40% of the population (Figure 3). We successfully identified the TSWV (tomato spotted

https://github.com/w-korani/SWEEP_GOLD
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wilt virus) QTL on chromosome A01 with high resolution. The signal was most strong
with the smaller bulks, but the variance and noise were very low when bulking 40%.
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4. Conclusions

Blanchability is an important processing trait for peanut. There is a considerable
energy requirement and significant additional costs to remove seed coats from poor blanch-
ing varieties as a result of lost kernels during processing and sorting. In contrast, if the
processing application requires skin, it would be beneficial to utilize varieties that are
resistant to blanching. As a breeding target, blanchability presents a challenge in that it is
labor intensive and requires a large seed input which precludes testing at early generations.
These considerations make blanchability an excellent target for marker assisted selection.
In this study, we identified two strong QTL for blanchability and validated them in an inde-
pendent population. Markers selecting for these QTL are available for breeding programs.
We discovered linkage drag associated with two prominent A. cardenasii introgressions
that confer disease resistance and also increase blanching resistance. Although for many
applications this would be deleterious, it presents a unique opportunity to develop disease
resistant and blanching resistant cultivars that are uniquely suitable for confectionery.
Finally, we highlight the power of low coverage sequencing of whole populations to carry
out QTL-seq experiments instead of using sequenced bulks.
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Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/agronomy11112201/s1, Figure S1: (A) Original dSNP plots from Cui et al., 2020, where
SNPs were identified from parental sequence first and then assayed in the bulks (B) dSNP plots from
khufu showing more clear identification of QTLs without parental sequence; Figure S2: Validation
of additional minor QTLs identified. Top—Additional potential QTLs identified by Khufu on A04
and A07. Bottom—Two measures of stem rot resistance in a population grouped by the putative
beneficial (R) allele and susceptible (S) allele in the QTL region on A04 (red are individuals with the
R allele, green are heterozygous, and blue have the S allele). WMCP represents the percentage of
plants in a plot with a stem rot rating of 0 or 1 (no symptoms or one small lesion). WMA represents
a disease score (0–10) of inoculated plants where 0 is no symptoms and 10 is a deceased plant.
Scores are LSMeans from three years of data (2013, 2014, 2015) and three replicates per year. More
information on the population and phenotypes available in Cui et al., 2019. For the WMCP trait,
the QTL on A04 is significant using an ANOVA on ranks (F = 6.95; p = 0.001) and a Kruskal–Wallis
non-parametric test (p = 0.001). For the WMA trait, the QTl on A04 is significant using an ANOVA
(F = 3.16; p = 0.046) and a Kruskal–Wallis test (p = 0.036); Figure S3: Scatter plots from Clevenger
et al., 2017, with validated QTL on A05 (05), B05 (now Arachis hypogaea B15), and B03 (now Arachis
hypogaea B13) using the parental sequence. Khufu analysis straight from bulk sequence; Figure S4:
Figure from Pandey et al., 2020, showing the identification of a QTL controlling fresh seed dormancy
on chromosome B05 (15) using parental sequence as a guide. The same data analyzed de novo with
Khufu. Additional QTL were identified on chromosome 10 (shown) and 9 which were not reported
in Pandey et al., 2020; Figure S5: Figure from Zhao et al., 2020, showing the identification of a QTL
controlling purple testa color on chromosome A10 (15) using parental sequence as a guide (left).
The same data analyzed de novo with Khufu (right); Figure S6: Representative physical map of
133 RIL individuals. Shown is chromosome A01. Red represents parent 1 allele, yellow represents
heterozygous, and blue represents parent 2 allele. White is missing data. Individuals are clustered
by similarity for visualization. Alleles are unfiltered out of the Khufu pipeline other than missing
data < 25%. Markers in order of physical position are rows and individuals are columns; Table S1:
Accuracy of allele calls using Khufu at different depths. Using SNPs identified from comparing
reference genome sequences as a validation set, Khufu was used to call alleles using Illumina data at
different coverages; Table S2: Polymorphic SNPs were called between Tfrunner and Shitouqi using
10× coverage Illumina sequence. To simulate “progeny”, we downsampled the sequence to 0.5× and
1× coverage and called alleles based on the “parental” SNP sites; Table S3: KASPar marker sequence
for Blanching percentage.
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