Effects of Multifunctional Margins Implementation on Biodiversity in Annual Crops
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Experimental Design
2.3. Implantation of Species According to the Sowing Percentages
2.4. Weeds Reduction
2.5. Soil Fauna Biodiversity
2.6. Pollinator Biodiversity
2.7. Overall Analysis
- -
- Reduction in unwanted flora.
- -
- Biodiversity of soil arthropod fauna.
- -
- Pollinator biodiversity.
3. Results
3.1. Implantation of Species According to the Sowing Percentages
3.2. Weed Reduction
3.3. Soil Fauna Biodiversity
3.4. Pollinator Biodiversity
3.5. Overall Analysis
4. Discussion
4.1. Implantation of Species According to the Planting Percentages
4.2. Weed Reduction
4.3. Soil Fauna Biodiversity
4.4. Pollinator Biodiversity
4.5. Overall Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Foley, J.A.; DeFries, R.; Asner, G.; Barford, C.; Bonan, G.; Carpenter, S.R.; Chapin, F.S.; Coe, M.; Daily, G.C.; Gibbs, H.K.; et al. Global Consequences of Land Use. Science 2005, 309, 570–574. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ramankutty, N.; Mehrabi, Z.; Waha, K.; Jarvis, L.; Kremen, C.; Herrero, M.; Rieseberg, L. Trends in Global Agricultural Land Use: Implications for Environmental Health and Food Security. Annu. Rev. Plant Biol. 2018, 69, 789–815. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Foley, J.A.; Ramankutty, N.; Brauman, K.A.; Cassidy, E.S.; Gerber, J.S.; Johnston, M.; Mueller, N.D.; O’Connell, C.; Ray, D.K.; West, P.C.; et al. Solutions for a cultivated planet. Nature 2011, 478, 337–342. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tscharntke, T.; Klein, A.M.; Kruess, A.; Steffan-Dewenter, I.; Thies, C. Landscape perspectives on agricultural intensification and biodiversity–ecosystem service management. Ecol. Lett. 2005, 8, 857–874. [Google Scholar] [CrossRef]
- Hobbs, P.R.; Sayre, K.; Gupta, R. The role of conservation agriculture in sustainable agriculture. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2008, 363, 543–555. [Google Scholar] [CrossRef] [PubMed]
- Haddad, N.M.; Brudvig, L.A.; Clobert, J.; Davies, K.F.; Gonzalez, A.; Holt, R.D.; Lovejoy, T.E.; Sexton, J.O.; Austin, M.P.; Collins, C.D.; et al. Habitat fragmentation and its lasting impact on Earth’s ecosystems. Sci. Adv. 2015, 1, e1500052. [Google Scholar] [CrossRef] [Green Version]
- Newbold, T.; Adams, G.L.; Robles, G.A.; Boakes, E.H.; Ferreira, G.B.; Chapman, A.S.A.; Etard, A.; Gibb, R.; Millard, J.; Outhwaite, C.L.; et al. Climate and land-use change homogenise terrestrial biodiversity, with consequences for ecosystem functioning and human well-being. Emerg. Top. Life Sci. 2019, 3, 207–219. [Google Scholar] [CrossRef] [PubMed]
- Stoate, C.; Baldi, A.; Beja, P.; Boatman, N.; Herzon, I.; van Doorn, A.; de Snoo, G.; Rakosy, L.; Ramwell, C. Ecological impacts of early 21st century agricultural change in Europe—A review. J. Environ. Manag. 2009, 91, 22–46. [Google Scholar] [CrossRef] [PubMed]
- Reidsma, P.; Tekelenburg, T.; Berg, M.V.D.; Alkemade, R. Impacts of land-use change on biodiversity: An assessment of agricultural biodiversity in the European Union. Agric. Ecosyst. Environ. 2006, 114, 86–102. [Google Scholar] [CrossRef]
- Dale, V.H.; Polasky, S. Measures of the effects of agricultural practices on ecosystem services. Ecol. Econ. 2007, 64, 286–296. [Google Scholar] [CrossRef]
- Bommarco, R.; Kleijn, D.; Potts, S.G. Ecological intensification: Harnessing ecosystem services for food security. Trends Ecol. Evol. 2013, 28, 230–238. [Google Scholar] [CrossRef]
- Nabhan, G.P.; Buchmann, S.L. Services provided by pollinators. In Nature’s Services: Societal Dependence on Natural Ecosystems; Daily, G., Ed.; Island Press: Washington, DC, USA, 1997; pp. 133–150. [Google Scholar]
- Tittonell, P. Ecological intensification of agriculture—Sustainable by nature. Curr. Opin. Environ. Sustain. 2014, 8, 53–61. [Google Scholar] [CrossRef]
- Tscharntke, T.; Bommarco, R.; Clough, Y.; Crist, T.O.; Kleijn, D.; Rand, T.A.; Tylianakis, J.; van Nouhuys, S.; Vidal, S. Conservation biological control and enemy diversity on a landscape scale. Biol. Control. 2007, 43, 294–309. [Google Scholar] [CrossRef]
- Gaba, S.; Lescourret, F.; Boudsocq, S.; Enjalbert, J.; Hinsinger, P.; Journet, E.-P.; Navas, M.-L.; Wery, J.; Louarn, G.; Malézieux, E.; et al. Multiple cropping systems as drivers for providing multiple ecosystem services: From concepts to design. Agron. Sustain. Dev. 2015, 35, 607–623. [Google Scholar] [CrossRef] [Green Version]
- Gaba, S.; Gabriel, E.; Chadœuf, J.; Bonneu, F.; Bretagnolle, V. Herbicides do not ensure for higher wheat yield, but eliminate rare plant species. Sci. Rep. 2016, 6, 30112. [Google Scholar] [CrossRef]
- Hackett, M.; Lawrence, A. Multifunctional Roel of Field Margins in Arable Farming. In Report for European Crop Protection Association by Cambridge Environmental Assessment 2014; ADAS UK Ltd.: Malton, UK, 2014. [Google Scholar]
- Haaland, C.; Naisbit, R.; Bersier, L.-F. Sown wildflower strips for insect conservation: A review. Insect Conserv. Divers. 2010, 4, 60–80. [Google Scholar] [CrossRef]
- Reichenberger, S.; Bach, M.; Skitschak, A.; Frede, H.-G. Mitigation strategies to reduce pesticide inputs into ground- and surface water and their effectiveness; A review. Sci. Total. Environ. 2007, 384, 1–35. [Google Scholar] [CrossRef]
- Neve, P.; Vila-Aiub, M.; Roux, F. Evolutionary-thinking in agricultural weed management. New Phytol. 2009, 184, 783–793. [Google Scholar] [CrossRef] [Green Version]
- Oerke, E.C. Crop losses to pests: Centenary review. J. Agric. Sci. 2006, 144, 31–43. [Google Scholar] [CrossRef]
- Azpiazu, C.; Medina, P.; Adán, Á.; Sánchez-Ramos, I.; del Estal, P.; Fereres, A.; Viñuela, E. The Role of Annual Flowering Plant Strips on a Melon Crop in Central Spain. Influence on Pollinators and Crop. Insects 2020, 11, 66. [Google Scholar] [CrossRef] [Green Version]
- Viñuela, E.; Adanl, A.; Rodriguez, J.; Hernando, S.; Doradoz, J. Provision of ecological infrastructures to increase pollinators and other beneficial organisms in rainfed crops in Central Spain. IOBC/Wprs Bull. 2012, 75, 229–233. [Google Scholar]
- Aguado Martín, L.O.; Ferreres Castiel, A.; Viñuela Sandoval, E. Guía de Campo de Los Polinizadores de España; Mundiprensa: Madrid, Spain, 2015; 369p. [Google Scholar]
- Haines-Young, R.; Potschin, M. The links between biodiversity, ecosystem services and human well-being. In Ecosystemecology: A New Synthesis; Raffaelli, D., Frid, D., Eds.; Cambridge University Press: Cambridge, UK, 2010. [Google Scholar]
- Pfiffner, L.; Luka, H.; Jeanneret, P.; Schupbach, B. Effects of ecological compensation areas on the carabid fauna. Agrarforschung 2000, 7, 212–217. [Google Scholar]
- Franin, K.; Barić, B.; Kuštera, G. The role of ecological infrastructure on beneficial arthropods in vineyards. Span. J. Agric. Res. 2016, 14, 0303. [Google Scholar] [CrossRef] [Green Version]
- Aviron, S.; Herzog, F.; Klaus, I.; Luka, H.; Pfiffner, L.; Schupbach, B.; Jeanneret, P. Effects of Swiss agri-environmental measures on arthropod biodiversity in arable landscapes. Asp. Appl. Biol. 2007, 81, 101–109. [Google Scholar]
- Pérez-Bote, J.L.; Romero, A.J. Epigeic soil arthropod abundance under different agricultural land uses. Span. J. Agric. Res. 2012, 10, 55–61. [Google Scholar] [CrossRef] [Green Version]
- Molina, G.A.; Poggio, S.L.; Ghersa, C.M. Epigeal arthropod communities in intensively farmed landscapes: Effects of land use mosaics, neighbourhood heterogeneity, and field position. Agric. Ecosyst. Environ. 2014, 192, 135–143. [Google Scholar] [CrossRef]
- Stout, J.; Finn, J.A. Recognizing the value of insects in providing ecosystem services. Ecol. Entomol. 2015, 40, 1–2. [Google Scholar] [CrossRef] [Green Version]
- Klein, A.-M.; Vaissière, B.E.; Cane, J.H.; Steffan-Dewenter, I.; Cunningham, S.A.; Kremen, C.; Tscharntke, T. Importance of pollinators in changing landscapes for world crops. Proc. R. Soc. B Biol. Sci. 2007, 274, 303–313. [Google Scholar] [CrossRef] [Green Version]
- Bartomeus, I.; Bosch, J. Pérdida de polinizadores: Evidencias, causas y consecuencias. Ecosistemas 2018, 27, 1–2. [Google Scholar] [CrossRef] [Green Version]
- Garibaldi, L.A.; Carvalheiro, L.G.; Vaissière, B.E.; Gemmill-Herren, B.; Hipólito, J.; Freitas, B.M.; Ngo, H.T.; Azzu, N.; Sáez, A.; Åström, J.; et al. Mutually beneficial pollinator diversity and crop yield outcomes in small and large farms. Science 2016, 351, 388–391. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sánchez, J.A.; Carrasco, A.; La-Spina, M.; Ibáñez, H.; Canomanuel, G.; Ortiz-Sánchez, F.J.; Lacasa, A. Edges of natural vegetation to increase the diversity of wild bees in agricultural field margins. IOBC-WPRS Bull. 2014, 100, 117–121. [Google Scholar]
- Swift, M.J.; Heal, O.W.; Anderson, J.M. Decomposition in Terrestrial Ecosystems; Blackwell Scientific Publications: Oxford, UK, 1979. [Google Scholar]
- Jost, L. Entropy and diversity. Oikos 2006, 113, 363–375. [Google Scholar] [CrossRef]
- Jost, L.; González-Oreja, J. Midiendo la diversidad biológica: Más allá del índice de Shannon. Acta Zoológica Lilloana 2012, 56, 3–14. [Google Scholar]
- Shannon, C.E.; Weaver, W. The Mathematical Theory of Communication; University of Illinois Press: Urbana, IL, USA, 1949. [Google Scholar]
- Aguilera, G.; Roslin, T.; Miller, K.; Tamburini, G.; Birkhofer, K.; Caballero-Lopez, B.; Lindström, S.A.; Öckinger, E.; Rundlöf, M.; Rusch, A.; et al. Crop diversity benefits carabid and pollinator communities in landscapes with semi-natural habitats. J. Appl. Ecol. 2020, 57, 2170–2179. [Google Scholar] [CrossRef]
- Valdés, B.; Talavera, S.; Fernández-Galiano, E. Flora Vascular de Andalucía Occidental; Ketreseditora: Barcelona, Spain, 1987. [Google Scholar]
- Cabezudo, B.; Cueto, M.; Salazar, C.; Morales Torres, C. Flora Vascular de Andalucía Oriental; Blanca, G., Ed.; Junta de Andalucía, Consejería de Medio Ambiente: Sevilla, Spain, 2009. [Google Scholar]
- Pywell, R.; Warman, E.; Hulmes, L.; Hulmes, S.; Nuttall, P.; Sparks, T.; Critchley, C.; Sherwood, A. Effectiveness of new agri-environment schemes in providing foraging resources for bumblebees in intensively farmed landscapes. Biol. Conserv. 2006, 129, 192–206. [Google Scholar] [CrossRef]
- Carvell, C.; Meek, W.R.; Pywell, R.F.; Goulson, D.; Nowakowski, M. Comparing the efficacy of agri-environment schemes to enhance bumble bee abundance and diversity on arable field margins. J. Appl. Ecol. 2006, 44, 29–40. [Google Scholar] [CrossRef]
- Thomas, C.; Marshall, E. Arthropod abundance and diversity in differently vegetated margins of arable fields. Agric. Ecosyst. Environ. 1999, 72, 131–144. [Google Scholar] [CrossRef]
Species | Family | Flower Color |
---|---|---|
Borago officinalis | Boraginaceae | Blue |
Glebionis coronarium | Asteraceae | White-yellow |
Coriandrum sativum | Apiaceae | White |
Sinapis alba | Brassicaceae | Yellow |
Trifolium resupinatum | Fabaceae | Pink |
Vicia sativa | Fabaceae | Purple |
Species | Family |
---|---|
Bromus diandrus | Poaceae |
Bromus rubens | Poaceae |
Centaurea diluta | Asteraceae |
Chenopodium album | Chenopodiaceae |
Convolvulus arvensis | Convolvulaceae |
Conyza sp. | Asteraceae |
Helminthotheca echioides | Asteraceae |
Lactuca serriola | Asteraceae |
Lavatera cretica | Malvaceae |
Lolium rigidum | Poaceae |
Malva hispanica | Malvaceae |
Papaver rhoeas | Papaveraceae |
Phalaris paradoxa | Poaceae |
Ridolfia segetum | Apiaceae |
Scolymus hispanicus | Asteraceae |
Silybum marianum | Asteraceae |
Sonchus oleraceus | Asteraceae |
MFM | February 2019 | May 2019 | October 2019 | Average |
---|---|---|---|---|
ADVEN | 7 | 11 | 10 | 9 |
HONEY | 6 | 15 | 13 | 11 |
ENVIR | 7 | 13 | 12 | 11 |
MAKED | 8 | 16 | 12 | 12 |
Family | Order | Number of Species |
---|---|---|
Halictidae | Hymenoptera | 6 |
Sphecidae | Hymenoptera | 1 |
Apidae | Hymenoptera | 12 |
Andrenidae | Hymenoptera | 11 |
Vespidae | Hymenoptera | 2 |
Megachilidae | Hymenoptera | 3 |
Crabronidae | Hymenoptera | 3 |
Scoliidae | Hymenoptera | 2 |
Colletidae | Hymenoptera | 2 |
Ichneumonidae | Hymenoptera | 2 |
Bombyliidae | Diptera | 6 |
Muscidae | Diptera | 1 |
Syrphidae | Diptera | 6 |
Tachinidae | Diptera | 1 |
Calliphoridae | Diptera | 2 |
Tabanidae | Diptera | 1 |
Cetoniidae | Coleoptera | 5 |
Cantharidae | Coleoptera | 1 |
Cerambycidae | Coleoptera | 3 |
Meloidae | Coleoptera | 1 |
Malachidae | Coleoptera | 2 |
Melyridae | Coleoptera | 1 |
Pieridae | Lepidoptera | 5 |
Hesperidae | Lepidoptera | 1 |
Nymphalidae | Lepidoptera | 6 |
Sphyngidae | Lepidoptera | 1 |
Lycaenidae | Lepidoptera | 5 |
Number of Species | Degree of Threat |
---|---|
Hymenoptera | |
1 | Iberian endemism and included in the IUCN Red List |
18 | Included in the IUCN Red List |
2 | Iberian Endemism |
Lepidoptera | |
1 | Iberian Endemism |
Coleoptera | |
2 | Iberian Endemism |
1 | Andalusian Endemism, included in the National Catalog on Threatened Species |
Monitored Appearance | ADVEN | HONEY | ENVIR | MAKED | F | p |
---|---|---|---|---|---|---|
Reduction in unwanted flora | C | B | A | AB | 10.95 | 0.0009 |
Biodiversity of soil arthropod fauna | C | BC | B | A | 15.56 | 0.0018 |
Pollinator biodiversity | B | A | B | B | 8.46 | 0.0027 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moreno-García, M.; Repullo-Ruibérriz de Torres, M.Á.; Carbonell-Bojollo, R.; López-Tirado, J.; Aguado-Martín, L.Ó.; Rodríguez-Lizana, A.; Ordóñez-Fernández, R. Effects of Multifunctional Margins Implementation on Biodiversity in Annual Crops. Agronomy 2021, 11, 2171. https://doi.org/10.3390/agronomy11112171
Moreno-García M, Repullo-Ruibérriz de Torres MÁ, Carbonell-Bojollo R, López-Tirado J, Aguado-Martín LÓ, Rodríguez-Lizana A, Ordóñez-Fernández R. Effects of Multifunctional Margins Implementation on Biodiversity in Annual Crops. Agronomy. 2021; 11(11):2171. https://doi.org/10.3390/agronomy11112171
Chicago/Turabian StyleMoreno-García, Manuel, Miguel Ángel Repullo-Ruibérriz de Torres, Rosa Carbonell-Bojollo, Javier López-Tirado, Luis Óscar Aguado-Martín, Antonio Rodríguez-Lizana, and Rafaela Ordóñez-Fernández. 2021. "Effects of Multifunctional Margins Implementation on Biodiversity in Annual Crops" Agronomy 11, no. 11: 2171. https://doi.org/10.3390/agronomy11112171
APA StyleMoreno-García, M., Repullo-Ruibérriz de Torres, M. Á., Carbonell-Bojollo, R., López-Tirado, J., Aguado-Martín, L. Ó., Rodríguez-Lizana, A., & Ordóñez-Fernández, R. (2021). Effects of Multifunctional Margins Implementation on Biodiversity in Annual Crops. Agronomy, 11(11), 2171. https://doi.org/10.3390/agronomy11112171