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Abstract: Organic amendment (OA) additions may profoundly regulate the turnover behaviours of
soil organic carbon (SOC). Explicit understanding of such role of OA is crucial for accurately assessing
the potential of carbon sequestration in agricultural soils. To explore the effects of OA additions
on the detailed SOC stabilization and destabilization processes, we collected SOC measurements
from 29 trials with experimental duration ranging from 14 to 85 years across the globe. Using these
datasets, we constrained a soil carbon model to analyse SOC turnover and built-up processes as
impacted by OA additions. We found that OA generally decreases microbial carbon use efficiency
(CUE) and the fraction of inert SOC that is resistant to decomposition (finert), but has divergent effects
on the decay rate of humic SOC (khum). Across the sites, there was great variability in the effects of
OA on CUE, khum, and finert, which can be largely explained by local soil and climate conditions
and the quantity and quality of OA. Long-term simulations suggested that, without considering the
effects of OA on CUE, khum, and finert, the effectiveness of OA additions for carbon sequestration
could be largely overestimated. Our results suggest that the strong site-specific regulations of OA on
SOC dynamics as demonstrated in this study must be properly considered and better constrained by
observational data when assessing SOC sequestration in agricultural soils under the management of
OA additions.

Keywords: soil organic carbon; residue management; manure; soil carbon model; microbial carbon
use efficiency; carbon sequestration

1. Introduction

Agricultural soils are on the frontline of sequestering carbon to mitigate climate change
and maintain soil fertility. The international initiative “4 per 1000” targets a yearly 4‰
increase of soil organic carbon (SOC) in global agricultural soils to ensure soil fertility and
mitigate climate change [1,2]. To meet this target, increasing efforts have been made to iden-
tify suitable management practices that benefit SOC sequestration. In these management
practices, increasing carbon input into soil, mainly organic amendments (OA, e.g., crop
residue retention, manure and biochar application), has been widely recommended [3–5]
for its direct contribution to the SOC pool. However, the effectiveness of OA for carbon
sequestration depends not only on the fate of OA itself, but also on how OA affects SOC
stability. Both processes are highly variable depending on local soil and climate conditions.
Consequently, elucidating the effects of OA management on SOC turnover and stabilization
processes is of great importance for evaluating the feasibility of the “4 per 1000” goal.

Carbon (C) input (e.g., OA) has substantial effects on some key processes controlling
SOC dynamics, e.g., the microbial C use efficiency (CUE)—the ratio of microbial growth to
total C uptake [6]. As a key parameter affecting SOC turnover, changes of CUE induced
by OA additions may have significant consequences on long-term SOC dynamics [7]. It
has been suggested that CUE increases with decreasing carbon: nitrogen (N) ratios of C

Agronomy 2021, 11, 2134. https://doi.org/10.3390/agronomy11112134 https://www.mdpi.com/journal/agronomy

https://www.mdpi.com/journal/agronomy
https://www.mdpi.com
https://orcid.org/0000-0002-4141-4395
https://orcid.org/0000-0002-6744-6491
https://doi.org/10.3390/agronomy11112134
https://doi.org/10.3390/agronomy11112134
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/agronomy11112134
https://www.mdpi.com/journal/agronomy
https://www.mdpi.com/article/10.3390/agronomy11112134?type=check_update&version=2


Agronomy 2021, 11, 2134 2 of 18

inputs [8], demonstrating the importance of substrate quality. Apart from substrate quality,
CUE is also dependent on environmental conditions such as temperature [9], resource
availability, and microbial community structure [10]. However, limited data on CUE are
available due to the difficulty of simultaneous measuring of microbial growth rate and
respiration rate in situ together with complexities added by soil environment and climate.
Given the importance of CUE in regulating the overall SOC turnover, the effect of OA on
CUE must be properly addressed in order to provide reliable predictions of SOC dynamics
under different OA quantities and qualities.

OA additions could also lead to diverse consequences on overall SOC sequestration
through altering some other detailed SOC formation and decomposition processes (e.g.,
decay rates of different SOC fractions, and the accessibility for microbial utilization). For
example, Kuzyakov [11] reported that OA management can lead to positive or negative
changes in SOC decomposition rates (e.g., khum), i.e., the priming effect (PE). If the PE is
positive, increased khum will offset the positive effect of C inputs on SOC sequestration [12].
In addition, continuous organic matter inputs may liberate the initial physically protected
SOC (which is defined as inert carbon) to decomposition [13,14], thus it can potentially
change the overall fraction of inert C (finert). Understanding these detailed soil C turnover
processes is propitious to manage SOC sequestration in a more effective way.

The turnover processes (e.g., decay rates and CUE) of SOC are regulated by complex
interplays between management practices and environmental variables. Exploring detailed
SOC dynamics and their interactions with management and environmental conditions via
conducting field experiments are difficult, if not impossible, particularly across large scales.
Process-based SOC models, however, can capture the dynamic interactions between these
attributes. Once the process-based SOC models are properly constrained by high quality
observational data, they can provide valuable information on SOC decomposition processes
and long-term SOC dynamics that otherwise are difficult to be detected in the field [15].

In this study, we used long-term records (14~85 years) and field measurements of C
inputs and SOC observations (Figure 1) to constrain a modified version of the RothC model
(sourced from Rothamsted Research, Herts, UK) [16] to capture SOC dynamics under
different OA treatments. The RothC model is one of the most classic SOC models and it can
represent well most of the existing pool-based SOC models [17,18]. More importantly, the
structure of the RothC model is relatively concise and this facilitates model modifications
and predictions across large spatiotemporal scales. In general, most long-term experiments
were conducted with contrasting treatments of OA additions, i.e., OA addition (i.e., +OA)
vs. zero (or less) OA addition (i.e., −OA). To constrain the key model parameters using
these datasets and explore the effects of OA additions on the parameters, we modified the
RothC model. Specifically, in model complexity-reduction, we firstly relaxed the control of
soil and climate over CUE and decomposition rate of pools. Then, in order to mediate the
widely debated stability of inert organic matter (IOM) [19,20], we re-defined the model’s
structure on IOM by assuming that its fraction in total SOC (finert) can vary in response
to environmental changes. These modifications allowed us to assess whether and how
CUE and finert correlate to soil and climate conditions and OA treatments. Using the data
from each treatment (i.e., OA addition (+OA) vs. zero (or less) OA addition (−OA)), we
optimized the modified RothC model focusing on the most important model parameters
regulating SOC predictions (see Section 2.2). Based on these optimized parameters, we
analysed whether and how these influential parameters change in response to −OA and
+OA under different climate and soil conditions. Finally, we evaluated uncertainties in SOC
projections across sites and under different OA treatments considering the uncertainty in
model parameters. Specifically, this study aimed to: (1) assess how OA additions influence
model parameters regarding SOC turnover and stabilization processes, focusing mainly
on microbial C use efficiency (CUE), the decay rate of humic organic C (khum), and the
fraction of inert (finert); (2) investigate the variability of these parameters across sites under
different climate and soil conditions and detect the underlying drivers; and (3) quantify



Agronomy 2021, 11, 2134 3 of 18

the consequences of different SOC turnover and stabilization processes under different OA
treatments on long-term (e.g., 30 years) SOC predictions.

Figure 1. The location of field experiments at 15 sites across the globe.

2. Materials and Methods
2.1. Datasets

We obtained SOC observations from 29 long-term trials at 15 sites across global agricul-
tural regions (Table 1 and Figure 1). These sites cover a wide range of soil and climate con-
ditions, with annual mean temperature and precipitation ranging from 3.5 to 24.5 ◦C and
from 310 to 1014 mm, respectively. The initial SOC stocks range from 17.7 to 111 Mg C ha−1

in the 0–30 cm soil layer. The soil clay fractions range from 3% to 37%. The duration of
all trials is longer than ten years, with an average of 29 years ranging from 14 to 85 years.
Depending on the trial, the frequency and time of SOC measurements were variable, but
there were three SOC measurements at least. Across sites, there were generally two con-
trasting treatments with (i.e., +OA) and without or with less organic amendments (i.e.,
−OA) incorporated into the soil (Table 1). The +OA treatment in these experiments had an
average annual C input rate ranging from 0.7 to 6.5 Mg C ha−1 yr-1 across different sites.
Table 1 shows the detailed climate and soil conditions and mean annual C input rates for
all experiments.

Table 1. Summary of soil, climate, and experimental information at each study site.

Site Initial Soil Properties Climatic Attributes Time Span Carbon Input Source

SOC0 pH Clay MAT MAP (Mg C ha−1 year−1)

(Mg ha−1) (%) (◦C) (mm) −OA +OA

Bad Lauchstädt (BL) 65.5 7.0 21 9.0 458 1906–1990 2.9 4.0 [21]
Bologna (BG) 23.7 6.9 28 13.7 752 1966–2001 0.8 1.7 [22]

Changwu (CW) 22.0 8.4 24 11.4 589 1984–2002 0.6 5.8 [23]
Fengqiu (FQ) 17.7 8.7 9 13.5 650 1990–2003 0.2 6.5 [24]
Gibson (GB) 33.1 5.6 3 16.6 467 1977–1994 0.5 - [25]
Harbin (HR) 51.3 7.2 25 3.5 533 1979–2002 0.8 1.5 [26]

Lethbridge (LB) 111.0 7.0 10 5.3 362 1910–1990 0.9 1.0 [27]
Ludhiana (LH) 18.7 7.6 13 24.5 695 1988–1999 1.6 6.4 [28]

Prague (PG) 43.2 6.2 27 8.7 477 1972–1992 1.4 2.4 [29]
Suining (SN) 31.6 8.6 24 17.4 1014 1981–1998 1.0 4.0 [30]
Tarlee (TL) 39.9 8.5 14 16.9 464 1979–1996 0.6 0.7 [25]

Ultuna (UT) 55.8 6.6 37 5.6 519 1956–1991 0.5 2.5 [31]
Urumqi (UQ) 31.2 8.1 21 7.7 310 1990–2005 0.4 4.4 [32]
Yangling (YL) 21.4 8.6 17 13.0 575 1989–2003 0.8 2.7 [33]

Zhengzhou (ZZ) 21.3 8.3 13 14.3 632 1990–2005 0.5 3.6 [34]

Note: The capital letters in brackets are abbreviations for the site names. SOC0 is the initial soil organic C density at the start of the
experiment. MAT and MAP are the mean annual temperature and precipitation, respectively.
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Some trials reported only SOC concentration (%, SOCC), and we converted SOCC
to SOC density (SOCD, Mg ha−1) by using the reported bulk density and soil sampling
depth in the source literatures. In some experiments, SOC was only measured in the top
10 or 20 cm soil layer. In this case, following Jobbagy and Jackson [35], the SOC density in
the top 30 cm soil layer was estimated based on the SOC vertical distribution assumption.

At each site, we assumed that C enters soil through crop straw and root residues
and/or the application of organic manure. Here, we roughly classified the OA treatments
to four groups according to the type of OA applied: S—crop straw only; NPKS—crop
straw with N, P, and K fertilizers; MS—manure plus crop straw; NPKMS—manure plus
crop straw with N, P, and K fertilizers. These four OA groups to some extent reflect
the overall OA quality. In determining the C input rates, for the sites reporting annual
crop yield only, we first calculated the quantity of aboveground biomass using the re-
ported harvesting index for the crop (i.e., dividing yield by harvesting index). In the next
step, the amount of crop straw was estimated as the difference between aboveground
biomass and yield. The harvesting indices for different crops (e.g., wheat and maize) were
derived from Huang et al. [36]. Root mass was estimated based on the belowground to
aboveground biomass ratio, which was also obtained from Huang et al. [36]. Following
Skjemstad et al. [37], C content in residue and root mass was assumed to be 45% of total
mass. The amount of C entering to the soil from organic manure was estimated from
the rate of manure application and C content in the manure [38]. It should be noted that
both the quantity and quality of C input under −OA and +OA treatments were different
across different sites. Specifically, −OA represents that treatment without or with less
organic amendment, e.g., control (CK) at Bad Lauchstädt (BL), Bologna (BG), Changwu
(CW), Fengqiu (FQ), Gibson (GB), Harbin (HR), Ludhiana (LH), Prague (PG), Suining (SN),
Ultuna (UT), Urumqi (UQ), Yangling (YL), and Zhengzhou (ZZ); fallow-wheat (FW) at
Lethbridge (LB) and Tarlee (TL). On the contrary, +OA indicates the treatment with or
with more organic amendment, e.g., inorganic fertilization plus manure application at BL,
CW, SN, UQ, and ZZ; manure application (M) at BG, FQ, HR, LH, and PG; straw return at
Ultuna and YL; and continuous wheat (CW) at LB and TL.

2.2. The RothC Model and Sensitivity Analysis

The RothC model [16] is a widely used SOC decomposition model simulating SOC
changes in agricultural soils under various environmental conditions, crop rotation regimes,
and management practices [37,39–41]. In the RothC model, SOC is partitioned into five
conceptual pools, i.e., decomposable plant material (DPM), resistant plant material (RPM),
microbial biomass carbon (BIO), humified organic carbon (HUM), and inert organic carbon
(IOM). Except IOM, the decomposition of each pool follows a first-order decay process at a
decay rate modified by climatic variables (e.g., temperature and moisture) and clay content.

Before conducting the simulations, a global sensitivity analysis was performed to
identify the most influential model parameters on simulated SOC dynamics. In total,
seven parameters were selected for the sensitivity analysis, i.e., the fraction of initial mi-
crobial biomass pool (fbio, i.e., the fraction of BIO in total SOC) and its decomposition
rate (kbio), the fraction of inert carbon pool (finert, i.e., the fraction of IOM to total SOC),
the ratio of resistant plant material (RPM) to humified organic carbon (HUM) (frpm.hum),
the decomposition rates of HUM (khum) and RPM (krpm), and microbial C use efficiency
(CUE, the ratio of microbial growth to total carbon uptake). Here, it should be noted that
the original RothC model does not directly define CUE. Rather, it defines the partition-
ing of C between that lost from the soil and that remaining during decomposition (i.e.,
CO2-C/(BIO+HUM)). To ease interpretation, we focused on CUE and recalculated it as
(BIO+HUM)/(CO2−C+BIO+HUM). As the relative importance of those model parameters
is independent of climate and soil [42], the data from a long-term field experiment under
continuous wheat cropping at Broadbalk, UK [16] were used to conduct the sensitivity
analysis. The R package multisensi was used to perform the sensitivity analysis; the first
order (which measures the effect of varying a typical model parameter on model outputs
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while keeping other parameters constant) and total-effect (which measures the contribu-
tion to the model output variance of a typical model parameter, including all variance
caused by its interactions with other model parameters) sensitivity indices were calculated.
Both first-order and total-effect indices were further normalized by the total variance,
which suggested that CUE, khum, and finert are the three most important model parameters
influencing soil C dynamics in the model (Figure 2).

Figure 2. Generalized sensitivity of soil C dynamic to model parameters in the RothC model.
The climate and soil data from a long-term field experiment under continuous wheat cropping at
Broadbalk, UK were used to perform the sensitivity analysis. CUE, microbial C use efficiency; khum,
decomposition rate of humified organic carbon; finert, the fraction of inert organic C and physio-
chemically protected soil organic carbon; frpm.hum, the proportion of initial resistant plant material
(RPM) to humified organic matter (HUM); fbio, the initial fraction of microbial biomass (BIO) to total
soil organic carbon; kbio, the decomposition rate of microbial biomass (BIO).

2.3. Model Modification and Complexity Reduction

Focused on the three most influential parameters (i.e., CUE, khum, and finert; Figure 2),
we reduced the complexity of the RothC model by simplifying the formulation of model
parameterisation while maintaining the core model structure. It should be noted that a
complexity-reduced model can help to improve the computational efficiency and remove
the impacts of other interacting model parameters, and similar approaches have already
been widely adopted in other studies [43,44]. Specifically, in the original RothC model, CUE
ranges from 0.15 to ~0.24 depending on soil clay content. However, increasing evidences
indicate that CUE might have a much larger variability ranging from less than 0.2 to more
than 0.8 [6,42], although studies using the isotopic labelling of soil water generally report a
much smaller viability in CUE [45] than those based on the labelling of the C substrate [6].
More importantly, a series of environmental factors rather than clay content alone regulate
CUE [6,7]. Consequently, in this study, we removed the effect of soil clay content on CUE
originally used in the model and determined site- and treatment-specific CUE (see Model
optimization section). This modification implicitly assumed that CUE could vary across
space and treatments due to variable soil and climate conditions, and energy and substrate
availability for microbial growth.

Moreover, the fraction of inert C in total SOC (finert) is one of the key parameters
determining long-term soil C dynamics (Figure 2). IOM is traditionally defined as the C
with chemical structure that is resistant to decomposition, i.e., chemical recalcitrance [16].
However, growing evidences show that physical protections of SOC also play a significant
role in controlling the accessibility of SOC to microbial attack [13,46]. As pools in the
RothC model are conceptual, here, we define IOM as the fraction of organic matter that is
protected from decomposition due to any reasons. With the change of the environment,
this protection would be lost and parts of the previous IOM would become decomposable.

The third modification on the model was to dismiss environmental scalars modifying
khum (one of the identified three most influential parameters on SOC dynamics; Figure 2),
i.e., an apparent khum was used in this study, which is totally different from the maximum
potential decay rates of HUM as defined in the default RothC model. In the original RothC
model, soil moisture (a key factor determining actual khum) has to be determined, which is
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usually estimated by considering the potential evapotranspiration (PET). In arid regions,
however, it had been suggested that the RothC model underestimates decomposition and
thus overestimates soil C accumulation, resulting in unrealistic high SOC stocks because of
very small khum [47]. The study sites in our study distribute across the globe (Figure 1), and
the climates at some sites are much drier than the marine humid climate in Rothamsted
where the experimental data were used to develop/test the RothC model. To avoid this
possible bias, we used the apparent khum in this study, rather than the pre-defined potential
decay rates further modified by environmental attributes as widely used in the traditional
researches. Another reason is that functions modifying decay rates in the RothC model
may not precisely capture their responses to climate and/or soil attributes. Overall, the
complexity reduction of the RothC model provides an opportunity to explicitly quantify
how the optimized CUE, khum, and finert (see the Model optimization section) correlate to
local climate and soil conditions, as well as to OA treatments.

The original model structure of RothC have been described in [16] and the equations
in the model have been documented and coded (as an example of SOC turnover models)
by Sierra et al. [48] in the R software (i.e., SoilR package). The modifications on RothC in
this study are based on the codes included in SoilR package.

2.4. Model Optimization

Focusing on the three most influential model parameters, we used the observed SOC
data obtained from the 29 long-term trials to constrain them. Default values were adopted
for other parameters. The prior distributions of the three parameters were assumed to be
uniformly distributed within a range based on current knowledge. We adopted similar
ranges used by Luo et al. [42], namely 0.20 to 0.80 for CUE, 0.002 year−1 to 0.2 year−1 for
khum (equivalent to residence time of 5 to 500 years), and 0.1 to 0.8 for finert. We optimized
the three parameters using a Bayesian approach at each site and under each treatment
(i.e., optimized site- and treatment-specifically). In brief, the optimization performed a
random walk through the multi-dimensional parameter space to find the parameter set
that can produce the best match between predicted and observed SOC by minimizing
the rooted mean squared error (RMSE). The optimization was performed in R 3.6.1 using
high-performance computers in State Key Laboratory of Atmospheric Boundary Layer
Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy
of Sciences. For all trials, the modified RothC model was run for 100,000 times using
100,000 ensembles of parameters randomly sampled from their prior distributions. The top
100 ensembles of parameters with the lowest RMSE were chosen as optimized parameters.

2.5. Drivers of CUE, khum, and finert Changes

A one-way ANOVA was used to test the treatment effect (grouping variable is treat-
ment, i.e., −OA and +OA) on the mean of each of the three parameters (i.e., CUE, khum,
and finert) at each trial. Then, a pairwise multiple comparison (Tukey test) was used to com-
pare the treatment effects of +OA and −OA at each site. Meanwhile, a two-way ANOVA
was used to test the variability of CUE, khum, and finert under +OA and −OA treatments
across different sites. These assessments allow us to address that whether the variability of
optimized CUE, khum, and finert is treatment- and/or site-dependent.

Furthermore, we assessed the impacts of some key soil and climate variables and
management practices on the variations in CUE, khum, and finert using linear mixed-effect
regression. Soil properties included soil pH (pH) and clay content (Clay), and climatic
attributes included mean annual temperature (MAT) and mean annual precipitation (MAP)
during the trial. C input rate was calculated as the multi-year average (C input) during the
trial and was also assumed to influence CUE, khum, and finert. In the linear mixed-effects
regression, pH, Clay, MAT, MAP, and C input were treated as fixed effects, while OA
treatments (i.e., S, NPKS, MS, and NPKMS) were treated as a random effect (a random
slope + random intercept model was fitted). Before fitting the model, all predictor variables
were standardized, and the median of the optimized CUE, khum, and finert was used in the
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modelling (see the Model optimization section). The linear mixed-effect regression was
performed using the lmer function in the arm package in R 3.6.1 [49].

2.6. Consequences of OA Addition on Long-Term SOC Dynamics

The potential distinct long-term SOC dynamics under different OA treatments have
been rarely assessed taking into account the effect of OA additions on SOC turnover
processes. A normal modelling practice is that the same set of model parameters is
shared when predicting SOC dynamics under different management scenarios. The data
and modelling in this study provide the opportunity to test the credibility of this type
of modelling practices. More importantly, based on the constrained model parameters,
we can assess the long-term consequence of OA additions on SOC sequestration and
the relevant uncertainties induced by model parameter equifinality and collinearity [50].
To do so, we specifically focused on +OA treatments in the trials in order to assess the
consequence of OA additions on soil C sequestration, but using optimized parameters
under both +OA and −OA treatments. At each site, the model was run for 30 years
using the two groups of parameters (i.e., the model parameters constrained by +OA and
−OA treatments, respectively), resulting in a total of 200 simulations (i.e., 100 parameter
ensembles × 2 groups of parameters (+OA and −OA)). The SOC density at the start of the
simulation was assumed the same as that at the beginning of each trial. The long-term
yearly C input data were produced by averaging historical annual C input rate under +OA
treatment. The changes in SOC at the end of the simulation relative to initial SOC at the
start of the simulation were calculated (i.e., relative soil C changes).

3. Results
3.1. Performance of the Modified RothC Model

The modified RothC model captured the variation in SOC dynamics under different
treatments at each site using the optimized CUE, khum, and finert (Figure 3). Pooling all
data together, the RMSE between simulated and observed SOC was 0.11 Mg ha−1. The site-
and treatment-specifically optimized parameters enabled the model to explain ~99% of the
variance of SOC measurements. At each site, simulated temporal SOC dynamics were also
consistent with the dynamics of the long-term field measurements under different treat-
ments (Figure 4). Under the −OA treatment, SOC generally decreased (Figure 4b,d,f,l,m,o)
or kept relatively stable (Figure 4c,h–j,n). On the contrary, soil generally accumulated C
under +OA (Figure 4a–c,f,h–j,m–o). Although failed to increase soil C at Harbin (Figure 4f)
and Ultuna (Figure 4l), +OA reduced SOC losses compared with −OA. At Lethbridge and
Tarlee, SOC under both treatments generally decreased due to the relatively low C input
rates at the two sites (Figure 4g,k, Table 1).
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Figure 3. The performance of the RothC model. The site- and treatment-specific model parameters
constrained against the observations were used. R2 is the coefficient of determination, p shows the
associated significance level, and RMSE is the rooted mean squared error. Solid and dashed lines
show the linear regression and 1:1 line, respectively. A dot with error bars shows the mean and
standard deviations of data for a given site. BL: Bad Lauchstädt; BG: Bologna; CW: Changwu; FQ:
Fengqiu; GB: Gibson; HR: Harbin; LB: Lethbridge; LH: Ludhiana; PG: Prague; SN: Suining; TL:
Tarlee; UT: Ultuna; UQ: Urumqi; YL: Yangling; ZZ: Zhengzhou.

Figure 4. The temporal changes in soil organic C (SOC) simulated using the optimized best 100 combinations of model
parameters. −OA: treatments without or with less organic amendment; +OA: treatments with or with more organic
amendment. Dashed lines are the predicted temporal changes in SOC using the 100 optimized combinations of model
parameters (see Model optimization section). Dots show the observations.
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3.2. Microbial Carbon Use efficiency (CUE)

The optimized parameters under OA treatments across the sites showed different
distributions (Figure 5). The optimized CUE was significantly different between +OA
and −OA, and across the studied sites (Table 2). Across the sites, CUE under +OA at
12 of the 14 sites was lower than that under −OA (Figure 5a). For example, at Ultuna
(UT) and Yangling (YL), +OA significantly decreased CUE from 0.72 and 0.42 to 0.42 and
0.31 under −OA, respectively. At two other sites (FQ and LH), however, +OA increased
CUE compared with those under −OA. Averaged across all sites, +OA decreased CUE
by ~30% (from 0.33 under −OA to 0.22 under +OA) relative to −OA. Focusing on the
median of the optimized CUE, the linear mixed-effects regression suggested that soil pH,
clay content, MAT, MAP, and the quantity and quality (which is represented by the four
OA groups) of OA could explain 58% of the variance in CUE under all treatments and
across all sites (Figure 6a). Specifically, soil clay content exerted the largest effect, positively
influencing CUE. The fixed-effects coefficients of soil pH, MAT, MAP, and OA amount (i.e.,
carbon input) were generally insignificant. However, the quality of OA (i.e., the four OA
groups) significantly modulated the effects of all five predictor variables to higher or lower
magnitudes (Figure 6a).

Figure 5. Distribution of CUE (a), khum (b), and finert (c) under two OA treatments. CUE, microbial C use efficiency; khum,
the decomposition rate of humic organic carbon; and finert, the fraction of inert organic C that physically or chemically
protected against decomposition. Boxplots show the median and interquartile range, with whiskers extending to the most
extreme data point within 1.5 × (75–25%) data range. Lower-case letters under the boxplots show that the difference
between the means of parameters under different treatments at each site is significant (ab) or is not significant (aa) at
p < 0.05. −OA, without or with less organic amendment; +OA, with or with more organic amendment. See Table 1 for the
site abbreviations.
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Table 2. ANOVA analysis of three optimized model parameters under different treatments at
different sites.

Parameters Source of Variation SS df MS F

CUE Sites (S) 46.90(56%) 14 3.350 518.0 ***
Treatments (T) 14.41(17%) 7 2.059 319.0 ***

S × T 3.82(5%) 7 0.546 84.7 ***
Residuals 18.53 2871 0.006

khum Sites (S) 4.466(41%) 14 0.3190 312.4 ***
Treatments (T) 1.319(12%) 7 0.1885 184.6 ***

S × T 2.102(27%) 7 0.3003 294.2 ***
Residuals 2.931 2871 0.0010

finert Sites (S) 28.03(22%) 14 2.002 118.9 ***
Treatments (T) 28.27(22%) 7 4.038 239.8 ***

S × T 25.90(20%) 7 3.700 219.7 ***
Residuals 48.34 2871 0.017

Note: SS = sum of squares; df = degree of freedom; MS = mean square; F = the value of the Fisher statistic test,
*** indicate p < 0.001. Percentage values in the parenthesis show the proportion of variance explained by the
corresponding variation source.

Figure 6. Coefficients of the fitted linear mixed model for predictions of the constrained median
CUE (a), khum (b), and finert (c). Intercept, the intercept of the linear mixed regression model; pH,
soil pH; Clay, soil clay content; MAT, mean annual temperature; MAP, mean annual precipitation;
Input C, the average annual C input rate. Error bars show the standard errors. R2 is the coefficient of
determination and p shows the associated significance level.
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3.3. Decomposition Rate of Humic Organic Matter (khum)

Similar to CUE, the decomposition rate of humic organic matter (khum) was also
significantly different between OA treatments and across the studied sites (Table 2). Across
the sites, khum at eight of the 14 sites under +OA was generally lower than that under −OA
(Figure 5b). The linear mixed-effects regression showed that soil pH, clay content, MAT,
MAP, and the quantity and quality of OA could explain 61% of the variance in khum under
all treatments and across all sites (Figure 6b). Although, on average (i.e., the fixed effects),
only soil pH had significant effect on khum, the fixed effects of clay, MAT, and C input were
significantly modulated by the quality of OA (i.e., the four OA groups, Figure 6b).

3.4. The Fraction of Inert Organic Matter (finert)

The results indicated that finert was also significantly different between OA treatments
as well as across the studied sites (Table 2). Similar to CUE, finert under +OA in 11 of the
14 sites was lower than that under −OA (Figure 5c). On average, finert decreased from
0.42 under −OA to 0.31 under +OA. The linear mixed-effects regression showed that soil
pH, clay content, MAT, MAP, and the quantity and quality of OA could explain 49% of
the variance of finert under all treatments and across all sites (Figure 6c). Among these
variables, on average, soil pH and C input had the largest influence, negatively affecting
finert. The effects of clay, MAT, and MAP were dependent on the quality of OA (i.e., the
four OA groups, Figure 6c).

3.5. Long-Term SOC Dynamics under + OA

Using the optimized two groups of model parameters under −OA and +OA respec-
tively, the modified RothC model projected significantly different SOC changes at most
sites during a 30-year simulation using C input rate of +OA treatment (Figure 7). Using
model parameters derived from −OA, on average, the projected annual SOC change rate
across the 14 sites (excluding Gibson because there was no +OA treatment) was 16.6‰
(i.e., SOC accumulation), while it was 9.4‰ if using parameters derived for +OA treatment
(Figure 7). Despite the general overestimation of SOC accumulation rate using model
parameters derived from −OA treatment, there was large variability across different sites.
Specifically, at nine sites, the predicted SOC change rate using parameters derived from
−OA treatment was higher than that using parameters derived from +OA treatment
(Figure 7a,c,d,g–i,k,m,n), while it was lower in four other sites (Figure 7b–f,j).
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Figure 7. Relative changes of SOC stock in the last year of simulation to that in the first year under
+OA treatment predicted using parameters derived from the two OA treatments (i.e., −OA- and
+OA-derived parameters, respectively). At each site, the only difference for the two simulations
is the use of different parameter ensembles derived from the two OA treatments. Boxplots show
the median and interquartile range of 100 simulations using the 100 optimized model parameter
ensembles for each OA treatment, with whiskers extending to the most extreme data point within
1.5 × (75–25%) data range. −OA, without or with less organic amendment; +OA, with or with more
organic amendment. See Table 1 for the site abbreviations.

4. Discussion
4.1. Effects of OA on CUE

Our results indicated that +OA in general has consistent, negative, and significant
effects on microbial C use efficiency (CUE). This may be explained by the stoichiometric
controls on CUE [6,7]. In general, OA usually has a much higher C to nutrient (e.g.,
nitrogen) ratio, i.e., poor quality for microbial utilization, than soil organic matter in the
soil. Considering that microbial community has a conservative C to nutrient ratio of
microbial biomass, microbes therefore have to respire more C as CO2 to the atmosphere
when utilizing OA to keep stoichiometric balance, thus decreasing CUE. On the contrary, if
the quality of OA is high or under application of fertilizers, nutrient limitation for microbial
growth will be decreased, resulting in higher CUE [51]. Indeed, some experiments have
revealed that the application of inorganic N fertilizers can increase CUE [52,53].

Despite the general negative effect of +OA on CUE, the magnitude of the changes
in CUE induced by +OA varied among the studied sites. A major reason would be that
the background soil nutrient availability may be different across different sites. If the
soil has reserved sufficient nutrients (e.g., due to fertilizer application), microbes would
take nutrients directly from the soil pool to compensate the nutrient requirement when
assimilating C substrates with low nutrient content (e.g., crop residues) [51]. Another
reason may be related to the difference in nutrient content in OA at different sites. For
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example, some OA were applied together with inorganic fertilizers while some others were
not. In fact, our results suggested that the responses of CUE to several environmental and
management variables were further modified by OA types (Figure 6a). For example, our
results demonstrated that clay content has a significant effect on CUE, and the effects of
almost all predictor variables (including Clay) were significantly modulated by the quality
of OA applied (i.e., the random effects represented by four OA groups) (Figure 6a). Overall,
our results demonstrated the importance of environmental and stoichiometric factors for
controlling CUE [7]. In agricultural soils, the effects of OA on CUE should be systematically
considered with those environmental factors such as soil physiochemical properties and
climate, taking into account soil nutrient availability as well as nutrient content in OA itself.
Moreover, it should be noticed that the RothC model does not explicitly define CUE, which
in this study is calculated as (BIO + HUM)/(CO2-C + BIO + HUM) to ease interpretation.
Here, the quantification of CUE is model-dependent, because different models may have
distinct structures. As such, our findings may not be universally applicable and different
CUE values and their responses to OA additions could be obtained if a different soil C
model is used.

4.2. Effects of OA on khum

Our results showed that OA treatments have significant effects on the decomposition
rate of humic organic matter (i.e., khum). This phenomenon may be largely explained
by the priming effect (PE) [51]. However, in situ quantification of the PE was rare. We
inferred the PE by comparing khum constrained under different OA treatments. We found
that both positive (i.e., OA stimulates khum) and negative (i.e., OA inhibits khum) PE
are possible (Figure 5b). This result is consistent with a data synthesizing study using
incubation datasets [12], which revealed that the magnitude and direction of the PE are
mainly controlled by the quantity and quality of added fresh C substrate and soil properties
which determine baseline energy and nutrient availability for microbial decomposition.
In this study, indeed, half of the PE induced by +OA involving manure application were
negative (Figure 5b). This may be mainly attributed to the fact that manure includes a
significant amount of nutrients, resulting in that microbial decomposition is more likely
limited by energy rather than nutrient. For this reason, microbes do not need to mine
nutrient from the nutrient-rich humic organic matter (which is one of the key reasons for
positive PE) to meet stoichiometric balance. Rather, microbes may shift their preferential
substrates to added fresh substrates which are usually energy-rich. This kind of shifting of
preferential substrate consequently leads to positive, neutral, or negative PE, depending
on the energy and nutrient content in the added substrates as well as in the soil.

4.3. Effects of OA on finert

At most sites, OA had a significant, negative effect on finert—the fraction of organic
C resistant to decomposition (Figure 5c). Based on its definition, inert C at a certain site
should be the same among OA treatments, because they share the same initial soil. The
requirement to adjust finert between treatments at a site (Figure 5c) suggested that the
inert fraction has been altered by OA treatments. The significant and negative correlation
between C input and finert (Figure 6c) supports our assumption that some of the inert
C could become decomposable with the change of environment (e.g., −OA and +OA
in this study). It has been reported that continuous organic matter inputs may liberate
initially physically protected SOC (which is inaccessible for microbial attack and thus
can be considered as inert organic carbon) to decomposition [14,46]. A modelling study
using global incubation datasets also found that fresh C input results in the liberation of
initially physically protected SOC to decomposition [13]. In addition, our linear mixed-
effects regression indicated that the type of OA regulates the association of finert with soil
and climate conditions, suggesting the importance of interactions between OA and soil
properties for regulating SOC stability, accessibility, and thus, decomposability. We also
noticed that the finert decrease accompanies decreased khum in some cases (Figure 5b,c).
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Except the collinearity between the two parameters, another possible explanation could
be that the liberated inert C might be reassigned into a pool with very slow decaying
rate. In addition, although the IOM is assumed to be biochemically recalcitrant, it has
been reported that all soil C components (including IOM) are actually decomposable [54],
which contradicts the default settings of the RothC model (i.e., decay rate of IOM equals
to zero). In this study, we have actually included the possible changes of IOM turnover
by modifying the fraction of IOM (finert). This is to consider the possible changes in the
accessibility of IOM induced by OA treatments [20]. The decay rate of IOM (kiom), however,
is not modified, because the time span of most experimental studies lasts only for several
years or a few decades. Considering that the possible turnover time of IOM can reach tens
of thousands of years, constraining kiom using such relatively short-term observations may
lead to large uncertainties.

4.4. Implications for Management Practices

The dependence of CUE, khum, and finert on OA treatments has significant conse-
quences on long-term SOC predictions. Our 30-year simulation using parameters derived
from −OA and +OA, respectively, showed large discrepancies in projected SOC under +OA
(Figure 7), highlighting that the detailed effects of OA on SOC decomposition processes and
thus, SOC changes must be considered. Otherwise, the prediction of SOC changes could
be largely biased. For example, a study focusing on the long-term effects of management
practices on SOC dynamics in Swiss reports that those practices (e.g., reside retention) pre-
viously expected to stimulate SOC accumulation do not always work [55]. We indeed found
that the annual average change in our assessed sites under +OA using the correspondingly
derived model parameters under −OA is 16.6‰, while the annual average change using
+OA parameters is 9.4‰. However, it must be highlighted that there are great variabilities
in the annual SOC changes across the sites. Six sites in this study have an initial SOC of
lower than 30 Mg ha−1 (Table 1). As expected, SOC accumulated in these sites, supporting
the idea that soil with lower initial SOC content may have higher SOC sequestration po-
tential [56]. Another phenomenon has to be highlighted. At most sites, using parameters
constrained under −OA, the model predicted much greater SOC stock compared to that
predicted using parameters constrained under +OA (Figure 7c,d,h n,o). Consequently, we
argue that, if we do not consider the effects of OA management on SOC dynamics, the SOC
sequestration potential under OA additions may be largely overestimated.

Our results have important implications for understanding SOC dynamics in agricul-
tural soils. The ‘4 per 1000’ initiative has been launched to increase global SOC stocks by
4‰ per year in the next 30 years as a compensation for the global anthropogenic emissions
of greenhouse gases [1,2]. Our simulations suggested that this 4‰ target can be reached
on average under the OA inputs assessed in this study, albeit some variability exists across
different sites. Indeed, the average SOC accumulation rate during the 30-year simulation
was 9.4‰, which is two times more than the target of 4‰. However, it must be noted
that the OA amount under +OA treatment in our dataset is high, up to 6.5 Mg C ha−1,
which is much higher than the estimated average C input rate of~2 Mg C ha−1 across
global croplands [57]. Considering the large spatial variability in C input across space and
possible SOC saturation in certain areas with initially high soil C, achieving the target of
‘4 per 1000’ initiative under actual farming management could be very challenging.

4.5. Limitations and Uncertainties

It should be noted that we did not empirically verify the modelled responses of CUE,
khum, and finert to OA management. Evidences from in situ observations on detailed soil
C turnover processes (e.g., CUE and soil C decay rates) in response to OA management
are required. We suggest that future studies should combine process-based modelling
with detailed in situ measurements to enhance the credibility of findings concluded by a
modelling approach. In addition, we used a complexity-reduced RothC model which does
not directly take into account some critical mechanisms underpinning SOC dynamics such
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as microbial decomposition processes and physical protection of SOC against decomposi-
tion. For example, microbial-explicit models may better represent processes influencing
CUE [58,59]. However, it should be noted that complex models usually need more detailed
input information for model initialization and parameterization. This detailed model input
information is normally not readily obtainable across large spatiotemporal scales. Besides,
complex models such as microbial-explicit models usually have much more parameters
that are difficult to empirically determine, resulting in great uncertainties in model outputs.
Overall, we choose to use a simplified RothC model rather than a more complex model
(e.g., microbial-explicit model), because we must carefully consider the trade-off between
model complexity and data availability.

We admit that our approach (using site- and treatment-specific parameterization
strategies) would sacrifice the model’s capability for large-scale applications, although
large-scale application is not the intention of this study. Taking advantage of process-based
modelling, our intention is to infer the potential effects of OA on soil C turnover processes
such as CUE, soil C decay rates, and the fraction of inert C across different sites and under
different trials, which otherwise are impossible to detect. To do so, we used site- and
treatment-specific parameterization strategies. Our findings provide valuable insights
into reliable SOC predictions across large scales. Models usually have to use the same
set of model parameters to facilitate large-scale application. Our results demonstrate that
this would be questionable and unrealistic. Here, we propose one potential implication
of our approaches/findings across large extents. Distinct sets of model parameters for
different management treatments (e.g., +OA and −OA in this study), soil types, OA
qualities (stoichiometry), and climate can be firstly obtained. Then, during large-scale
simulations across space, different model parameters can be used for different management
and environmental conditions. This modelling strategy would reduce the uncertainty
induced by model parameters, but more data is absolutely required to constrain the model
parameters under different conditions, as demonstrated in this study.

It has been reported that the collinearity among model parameters could be a major
source of uncertainty [50,60,61] and lead to unrealistic and biased model predictions
of future soil C dynamics [62]. Here, we found that correlation coefficients between
the constrained three parameters are all lower than 0.6 (data not shown), suggesting a
limited influence of collinearity on the model predictions [63]. Moreover, rather than
splitting the dataset into training and testing sub-datasets, in this study, we constrained
the model parameters using all observed data to maximally constrain parameters. This
can reduce uncertainty in model parameters as well as in model predictions [50]. In
fact, the uncertainty in model predictions is quite small, particularly at sites with more
available measurements (Figure 4), consisting with the inference by Luo et al. [50]. To limit
collinearity- and/or parameter equifinality-induced uncertainties, we only performed a
30-year simulation which is in general aligned with the average duration of the observed
data (i.e., 29 years, Table 1). We admit that the parameter equifinality and collinearity,
common challenges faced by modellers, do exist in our study. Rather than solving the
collinearity and equifinality issues (which need close collaborations between modellers
and experimentalists), we quantified their consequences on the simulation results.

5. Conclusions

Organic amendments have significant effects on microbial C use efficiency, the decom-
position rate of humic organic carbon, and the fraction of inert soil C resistant to microbial
attack, and these effects are site- and treatment-dependent. Local soil and climate condi-
tions as well as the quantity and quality of organic amendments could partially explain
such dependence. In order to provide a more reliable assessment of the SOC sequestra-
tion potential in agricultural soils, the effects of organic amendments on SOC turnover
and stability must be properly addressed, taking into account the quantity and quality of
added organic amendments as well as local soil and climate conditions. Otherwise, the
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soil C sequestration offered by improving the management of organic amendments would
be overestimated.
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