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Abstract: Long-term fertilization alters soil microbiological properties and then affects the soil
organic carbon (SOC) pool. However, the interrelations of SOC with biological drivers and their
relative importance are rarely analyzed quantitatively at aggregate scale. We investigated the
contribution of soil microbial biomass, diversity, and enzyme activity to C pool in soil aggregate
fractions (>5 mm, 2–5 mm, 1–2 mm, 0.25–1 mm, and <0.25 mm) at topsoil (0–15 cm) from a 27-
year long-term fertilization regime. Compared to CK (no fertilization management), NP (inorganic
fertilization alone) decreased all of the microbial groups’ biomass, while NPS and NPM (inorganic
fertilization plus the incorporation of maize straw or composted cow manure) significantly reduced
this negative effect of NP on microbial biomass and increased the microbial contribution to C pool.
The results show that microbial variables were significantly correlated with SOC content in >0.25 mm
aggregates rather than in <0.25 mm aggregates. Fungal variables (fungal, AM biomass, and F/B
ratio) and enzyme activities (BXYL and LAP) in >0.25 mm aggregates explained 21% and 2% of
C, respectively. Overall, organic matter addition could contribute to higher C storage by boosting
fungal community and enzyme activity rather than by changing microbial community diversity in
macro-aggregates.

Keywords: fertilization; soil aggregates; microbial properties; enzyme activity; SOC

1. Introduction

Terrestrial soils contain approximately three times the stock of carbon (C) of the at-
mosphere; hence, small changes in soil organic carbon (SOC) have a significant impact on
climate change [1]. Among the numerous drivers that regulate the SOC pool, microorgan-
isms are essential for SOC turnover [2]. Microorganisms have been reported to promote
the formation of macro-aggregates to physically protect C, and their residues are also
considered to constitute an important source of stable C. Simultaneously, microbe-driven
soil C decomposition plays a critical role in C cycling [3]. It is reported that over half of the
cumulative CO2-C emitted from soil was induced by microbial community [4]. In addition,
soil organic matter could be synthesized or degraded by soil enzyme activity [5], which was
linked to CO2 production [6]. As such, understanding the contribution of microorganissms
and enzymes to the accumulation or consumption of SOC in soil is of utmost importance
for regulating soil C and reducing the impact of CO2 on the climate system.
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Despite the direct role of microbe-driven decomposition in soil C cycling, the con-
tribution of microorganisms to C turnover is often overlooked in C cycle prediction [7].
Maintaining high richness and diversity of soil microorganisms is critical to mediate C
cycling. However, there is less consistency in the research regarding soil microbiological
properties, such as soil microbial diversity, microbial community, and enzyme activity.
With the most abundance in soil systems [8], microorganisms (e.g., bacteria and fungi) have
been reported to facilitate C cycling, through increasing metabolic actions and bonding
organic particles together or stimulating root secretion of OM [2]. Some studies found that
bacteria contribute to SOC storage more greatly than fungi in the rice and wheat system.
Differently, arbuscular mycorrhizal (AM) fungi have been thought not to be very important
in C decomposition [9]. Both microbial biomass C and diversity are suspected to play
a crucial role in influencing the SOC pool [10,11]. Another result shows that microbial
biomass had a significant influence on soil C cycling rather than its community composition
under manure application [12]. Additionally, soil enzymes, produced by soil microorgan-
isms, are reported to regulate the overall processing of SOC through degrading different
molecules [13] or depolymerizing macromolecular substrates [14]. Some enzymes (e.g.,
β-Glucosidase and β-Xylosidase activities) show a strong relationship with SOC content
and are generally reported to be good indicators of soil biological change [15,16]. It is
remarkable that, even if the complexity of SOC-related mechanisms is widely recognized,
most studies focused on a single factor, with fewer focused on multiple factors regulating
SOC. Moreover, the potential mechanisms by which microbiological properties are linked
to C regulation are ignored.

As the basic unit of soil, aggregate plays a key role in C cycling [17]. Containing
more than 90% of sequestered SOC, aggregate can be divided into macro- (>0.25 mm)
and micro- (<0.25 mm) aggregates [15,16]. Previous studies have shown that macro-
aggregate (>0.25 mm) contains more SOC content than micro-aggregate (0.053–0.25 mm),
the same as labile SOC [18]. As the basic element in soil structure, aggregate provides
spatially heterogeneous microenvironments for soil microorganisms [15,16]. Large variance
in environmental conditions in different sizes of aggregate, including water potential,
oxygen concentration, and resource availability [19], could result in diverse biomass and
community diversity for microorganisms [20–22] and affect their functions related to C
turnover [23]. It was reported that soil spatial heterogeneity could stimulate biodiversity by
limiting these specific or individualized microbial communities [21,22,24]. The distributions
of microbial biomass and enzyme activity in aggregate fractions were reported to be
primarily governed by the aggregate sizes [25], due to different availability of organic
substances [26]. Furthermore, fungi were found to contribute to the C turnover more
greatly and rapidly in macro-aggregates than in micro-aggregates [15,16]. There is extensive
evidence that aggregate sizes affect microbial community composition and enzyme activity.
However, to the best of our knowledge, few studies have investigated the mechanisms
linking aggregate size and multiple microbial properties with SOC turnover.

Regarding food demands, the application of inorganic and organic fertilizers in agri-
cultural systems is necessary to increase crop productivity in the world [27,28]. As two
of the most common organic amendments in fields, crop straw and manure application
could increase the unstable C contents (e.g., dissolved organic carbon (DOC) and readily
oxidizable organic carbon (ROC) contents [29]) that are the main C sources for microorgan-
isms. Several studies revealed that alterations in microbial activity could cause priming
effects due to the addition of substrate, which might simulate the turnover of natural
organic matter in soil [30]. These practices have exhibited high impacts on soil microor-
ganisms’ community structure and diversity [31]. They have also affected enzyme activity
through altering the habitat conditions for soil microorganisms. Some researchers also
have reported that soil C cycling is stimulated by changing microbial biomass rather than
its community composition under manure application [12]. During this process, soil en-
zyme activities influenced and were related to C cycling [5]. As the microhabitats for
microorganisms, the aggregates are greatly changed in their physical conditions under
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fertilization [32]. For example, soil moisture within aggregate was directly altered by
fertilizer application, which plays a key role in the survival of soil microorganisms [15,16].
The application of manure increased the microbial biomass in the form of phospholipid
fatty acids (PLFA) in macro-aggregates, e.g., bacterial, fungal, and AM fungal biomass,
while not significantly affecting biomass in micro-aggregates. Additionally, soil enzymes
are reported to react quickly to changes in most soil managements [15]. Thus, the aggre-
gate size plays a significant role in the relationships between microbial properties and
C cycling. Hence, a better understanding of the influence of microbial properties on C
cycling at aggregate scale under long-term fertilization regime is important, as it could
aid in developing suitable management practices to better increase C accumulation, while
simultaneously maintaining a healthier soil microbial environment.

The objective of this study was to investigate the effects of 27-year fertilizations (CK:
no fertilization management; NP: inorganic fertilizers application alone; NPS: inorganic
fertilization plus the incorporation of maize straw; NPM: inorganic fertilization plus the
incorporation of composted cow manure) on soil microbial community and enzyme activity
and their roles in influencing C at aggregate scale in the Loess Plateau of China. Here are
three hypotheses: (1) Different fertilization managements can induce differences in the
distribution of soil C and microorganism communities in aggregates; (2) the relationship
between soil microorganisms and enzymes, along with their contributions to C accumu-
lation, vary with aggregate size; (3) NPS and NPM could increase the contribution of
microorganisms to C accumulation through influencing the population of microorganism
community at aggregate scale.

2. Materials and Methods
2.1. Site Description and Soil Sampling

The study site is located in the Dryland Farming Experimental Station in Shanxi
province (112–113 ◦E, 37–38 ◦N) in northern China and was initiated in 1993. The site
is characterized by a continental monsoon climate, with an elevation of approximately
1100 m above sea level, annual rainfall of 520 mm, and average temperature of 7–8 ◦C.
Spring maize is the main crop grown under the one-crop-per-year cropping system. Soils
belong to a sandy clay loam cinnamon soil series, which is characterized as Calcaric-Fluvic
Cambisol (ISS-CAS, 2003; IUSS, 2006). At the start of the project, soil pH was on average
7.9, and SOC content was 15.0 g kg−1.

The long-term experiment had a randomized block design with three replicates. Four
treatments were chosen for this research, with three plots (each plot was 6 × 6 m) per
treatment. The four treatments included in this study were as follows: no fertilization
management (CK), inorganic fertilizers application alone (NP), inorganic fertilization
plus the incorporation of 3000 kg ha−1 maize straw (NPS), and inorganic fertilization in
combination with 1500 kg ha−1 composted cow manure (NPM). Each plot of the treatments
NP, NPS, and NPM had nitrogen 105 kg ha−1 and phosphorus 105 kg ha−1 applied
once a year, respectively, using urea (46% N) and calcium superphosphate (7% P) in a
ratio of N to P of 1:0.44. The mean proportions of organic matter, total nitrogen, total
phosphorus, and total potassium were 75%, 0.63%, 0.04%, and 0.72% in maize straw and
36%, 0.96%, 0.17%, and 0.74% in cattle manure, respectively. Maize straw, cattle manure,
and inorganic fertilizers were broadcasted and incorporated into the soil with conventional
tillage (plowing once each year at a depth of 20 cm) after harvesting in October. Seeding
was done at the end of April without any tillage and harvesting in October, with weeding
occurring twice during growth seasons every year. Table 1 shows the chemical and physical
properties of the soil in these treatments in 2018.
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Table 1. Soil physical and chemical properties for CK, NP, NPS, and NPM treatments in 0−15 cm
layer in 2018.

Indices CK NP NPS NPM

pH 7.80 7.83 7.79 7.77
Bulk density (g cm−3) 1.28 1.30 1.23 1.20

SOC (g kg−1) 12.35 18.26 17.67 17.15
CK: the control treatment without fertilization management; NP: the treatment with only inorganic fertilizer; NPS:
the treatment with inorganic fertilizer and maize straw addition; NPM: the treatment with inorganic fertilizer and
cattle manure.

Soil samples were obtained after harvesting (before fertilizer application) in October,
2018. For each treatment, five soil cores (10 × 10 cm in diameter) were collected randomly
at a depth of 0–15 cm in each plot, pooled together, and thereafter were placed on ice bag
and taken to laboratory immediately. The fresh soil was separated manually along the
natural cracks of fracture to obtain aggregate sizes of <6 mm and remove stones, plant
material, and visible soil fauna. In addition, undisturbed soil samples were taken by
stainless steel rings (100 cm3 volume) for soil bulk density analysis.

2.2. Aggregate Fractionation

We chose to separate aggregates into five size classes through dry-sieving of fresh soil,
because wet-sieving disrupts the in situ link between the aggregates obtained and their
indigenous microbial inhabitants. The undisturbed fresh soil samples were isolated by
dry-sieving of fresh soil (moisture content ca. 10%) on a series of four sieves and divided
into five aggregate sizes [18]. Sieves were mechanically shaken (amplitude 1.5 mm) for
2 min to separate soil by the mesh sieves (5 mm, 2 mm, 1 mm and 0.25 mm) on Retsch
AS200 Control (Retsch Technology, Düsseldorf, Germany). Then, the classified aggregates
(20 groups of aggregate samples in total) were divided in half: one half was immediately
stored at −80 ◦C for biochemical analysis, and the other half was kept at 4 ◦C for the
analysis of organic carbon contents. All aggregates were tested in 3 replicates.

In addition, the proportions of different aggregates were obtained by placing another
200 g of the soil mentioned above on mounted nested sieves. After removing the visible
impurities, 200 g samples (dried soil) were passed through a series of four sieves (5 mm,
2 mm, 1 mm, and 0.25 mm) and divided into five aggregate sizes, then weighed separately.

2.3. Determination of Soil Physical and Chemical Properties

Soil pH was analyzed using a pH meter (deionized water:soil, 2.5:1). Soil moisture
was determined at 105 ◦C to ensure constant weight following the oven-drying method.
Soil bulk density was calculated on an oven-dry basis by the core method. The SOC
was estimated from dried soil with an element analyzer (C/N Flash EA 112 Series-Leco
Truspec). Dissolved organic carbon (DOC) content was measured through detecting soil
extracted solution made by distilled water (1:5 w/v) using a C analyzer (Multi N/C 3100,
Analytic Jena, Germany). Readily oxidizable organic carbon (ROC) content was analyzed
by KMnO4 oxidation. Briefly, after passing through 0.15 mm sieve, the air-dried soil
(containing approximately 15–30 mg C) was added to 25 mL of 333 m mol L−1 KMnO4,
then shook and centrifuged. The supernatants were diluted with deionized water (1:250)
and detected by a UV spectrophotometer at 565 nm. Microbial biomass carbon (MBC)
content was measured using the fumigation–incubation method [33]. In detail, four aliquots
of freeze-dried soil samples (25 g each aliquot) were prepared, two aliquots being fumigated
with ethanol-free CHCl3 for 24 h in the dark at room temperature, while the other two were
kept untreated as control. Then, these samples were mixed into 100 mL of 0.5 mol L−1

K2SO4 solution, respectively, and shaken for 30 min at 200 r min−1. The supernatants were
diluted with deionized water and then detected by a total organic C (TOC) analyzer.
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2.4. Analysis of Enzyme Activity

In this study, activities of the four soil enzymes β-Glucosidase (BG), β-Xylosidase
(BXYL), N-acetyl-glucosaminidase (NAG), and leucine aminopeptidase (LAP) were esti-
mated following the method of previous studies [34,35]. 4-Methyllumbelliferyl (MUB) and
7-amino-4-methylcoumarin (AMC) were used as substrate to determine the activities of all
enzymes (MUB for BG, BXYL, and NAG; AMC for LAP). Firstly, 1 g of fresh soil was mixed
in 125 mL of NaHCO3 buffer (pH = 8) and stirred at 800 rpm for 2.5 min. Secondly, the
slurry was transferred into 96-well microplate using an eight-channel pipet, and substrates
were quickly added. Thirdly, all the microplates were incubated in a dark for 3 h at 25 ◦C.
Finally, the fluorescence of the supernatants was detected using a multilabel fluorescence
reader (Tecan Infinite F200/M200).

2.5. PLFA Extraction and Analysis

Phospholipid fatty acids (PLFA) were measured to calculate the soil microbial biomass
and diversity. The method’s details were described in previous research [36]. In brief,
aliquots of 3 g (freeze-dried) aggregate samples were extracted twice in 7.6 mL chloro-
form/methanol/citrate buffer (1:2:0.8 v/v/v) system. After that, phospholipids were
separated from neutral lipids and glycolipids with silica acid columns (Supelco Inc., Belle-
fonte, PA, USA). After methylation of the polar lipids, the fatty acid methyl esters (FAME)
were identified by Gas Chromatograph Agilent Series (GC 6890, Agilent Technologies,
Wilmington, DE, USA) and calculated by MIDI microbial identification system (MIDI, Inc.,
Newark, DE, USA). Nonadecanoic acid (19:0) was used as an internal standard.

PLFA were assigned to general bacteria (16:0, 17:0, 18:0, 20:0), gram-negative bacteria
(G−), gram-positive bacteria (G+), general fungi (18:2ω6c), arbuscular mycorrhizae (AM,
16:1ω5c) and actinomycetes (16:1ω5c). Cyclopropyl and monounsaturated fatty acids were
indicators for G-bacteria, whereas iso- and anteiso-branched fatty acids were biomarkers
for G+ bacteria.

2.6. Data Calculation and Statistical Analysis

The proportions of graded aggregates with different particle sizes were calculated as
following Equation (1):

Dry-pi = (Wi× 100%)/200 (1)

where Wi was the mass of i-th graded aggregates with different particle sizes, the constant
200 was the weight of all aggregates, and Dry-pi was the proportion of i-th graded aggre-
gates in total soil. MBC concentration was obtained by calculating the difference in OC
between fumigated and non-fumigated samples with 0.45 (the proportion of soil biomass
C extracted by K2SO4 after chloroform fumigation) using Equation (2):

MBC = (Fumigated−Un f umigated)/0.45 (2)

where Fumigated and Unfumigated were the OC extracted in K2SO4 from fumigated and
non-fumigated soil samples per gram of soil, and 0.45 was the conversion factor and was
used to the calculation of MBC [37]. Microbial community diversities were evaluated
using Shannon–Wiener diversity index (H′), Simpson evenness index (D), and Margalef
richness index (M). They were generally calculated as follow:

H′ = −∑s
i=1(pi× lnpi) (3)

D = 1−∑s
i=1 pi ˆ2 (4)

M = (S− 1)/lnN (5)

where H′, D, and M were Shannon–Wiener diversity index, Simpson evenness index, and
Margalef richness index, respectively; pi was the percentage of the peak area of i-th FAME
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to the total area in each sample; S was the total number of FAME in each sample; N was
the amount of total microbial PLFA.

Statistically, all data were obtained by SAS 9.4 in Windows 10. Two-way analysis
of ANOVA was used to examine fertilization treatment and aggregate size on all of the
soil physicochemical and microbial indicators. We detected heterogeneity using Levene’s
test before carrying out ANOVA, and the data for each variable met the heterogeneity
of variance criteria. Correlations with p-value lower than 0.05, 0.01, and 0.001 were con-
sidered. Spearman correlation was computed between microbial parameters and SOC
under each aggregate size and between soil physicochemical and microbial parameters in
>0.25 mm and <0.25 mm aggregates. Additionally, principal component analysis (PCA)
was performed to divide the microbial factors correlated with SOC into different groups in
>0.25 mm aggregates using Vegan package in R 3.2.2 (R, R Core Team, R Foundation for
Statistical Computing, Vienna, Austria), and variation partitioning analysis (VPA) was fur-
ther applied to quantify how much variation in SOC was explained by fungal community,
microbial diversity, and enzyme activity in the Vegan package of R 3.2.2.

3. Results
3.1. Soil Organic C and Moisturein Aggregate and Aggregate Proportions under
Different Fertilizations

As seen in Table 2, SOC and DOC contents varied with fertilization and aggregate
size, both of which were higher under NP, NPS, and NPM than under CK in almost all
aggregates (p < 0.05; Figure 1A,B). In CK, SOC contents in macro-aggregates (>0.25 mm)
were significant lower than in micro-aggregates (<0.25 mm). In NP, NPS, and NPM, there
were no differences in SOC contents among all aggregates.MBC and ROC contents were
significantly affected by fertilization and aggregate size, respectively (p < 0.001; Table 2).
The four treatments had no significant differences in ROC and MBC contents (Figure 1C,D)
in micro-aggregates (<0.25 mm), and a similar observation was also made concerning the
ratio of MBC to SOC content (Figure 2).

Table 2. Two-way ANOVA of fertilization treatment (T), aggregate size (A), and their interaction
(T×A) on soil C, enzyme activity, microbial variables, and aggregate properties.

Indices Treatment (T)
F P

Aggregate Size (A)
F P

T×A
F P

SOC 19.1 *** 4.81 ** 0.55
DOC 57.15 *** 8.01 *** 4.33 ***
ROC 14.82 *** 0.35 7.6 ***
MBC 2.08 17.73 *** 4.51 ***
BG 35.32 *** 5.54 ** 2.66 *

BXYL 39.34 *** 14.74 *** 2.11 *
NAG 12.23 *** 17.37 *** 1.61
LAP 4.08 * 54.97 *** 3 **

Total PLFA 35.05 *** 17.59 *** 3.00 **
Bacteria 22.39 *** 9.91 *** 3.22 **
Fungi 23.08 *** 12.23 *** 2.44 *
AM 46.27 *** 15.89 *** 2.18 *

Actinomycetes 21.84 *** 12.38 *** 1.72
G+ 20.73 *** 22.59 *** 0.99
G− 8.16 *** 5.17 ** 2.26 *

G+/G− 5.87 ** 10.33 *** 1.91
F/B 10.46 *** 1.69 1.56
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Table 2. Cont.

Indices Treatment (T)
F P

Aggregate Size (A)
F P

T×A
F P

H′ 0.95 6 *** 3.48 **
D 0.41 5.2 ** 2.11 *
M 1.92 2.13 2.62 *

Moisture 54.91 *** 137.16 *** 4.85 ***
Dry-p 0 879.68 *** 14.77 ***

BG: soil enzyme activities of β−Glucosidase; BXYL: β−Xylosidase; NAG: N−acetyl−glucosaminidase; LAP:
leucine aminopeptidase; AM: arbuscular mycorrhizal fungi; G+: Gram−positive bacteria; G−: Gram−negative
bacteria; G+/G−: the ratio of G+ and G− bacterial PLFA; F/B: the ratio of fungal and bacterial PLFA; H′:
Shannon–Wiener diversity index; D: Simpson evenness index; M: Margalef richness index; Dry-p: the proportions
of aggregates using dry sieving method. *: p < 0.05; **: p < 0.01; ***: p < 0.001; ns: not significant.
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Figure 1. The distribution of SOC (A), DOC (B), MBC (C), ROC contents (D) in different aggregates
under 4 fertilization managements (CK, NP, NPS, and NPM). SOC: soil organic carbon; DOC:
dissolved organic carbon; MBC: microbial biomass carbon; ROC: readily oxidizable organic carbon.
Vertical bars indicate the standard error of the mean (n = 3). Different lowercase letters indicate
significant difference at p < 0.05 among the different aggregate sizes. The differences in C contents
among the different fertilization managements are shown at *: p < 0.05, **: p < 0.01, ***: p < 0.001, and
ns: not significant.

Fertilization, aggregate size, and their interaction significantly affected the moisture in
aggregate (p < 0.001; Table 2). The moisture was lower in NP than in CK in almost all aggre-
gates (p < 0.05; Figure 3A). Compared to NP, NPS and NPM significantly increased moisture
in all aggregates (p < 0.05). The moisture was higher in macro-aggregates (>0.25 mm) than
in micro-aggregates (<0.25 mm) under the four treatments.
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Figure 2. The ratio of MBC to SOC in different aggregates under 4 fertilization managements (CK,
NP, NPS, and NPM). Different lowercase letters mean significant differences among aggregate size
fractions (p < 0.05). The differences in the ratio of MBC to SOC among the different fertilization
managements are shown at *: p < 0.05, **: p < 0.01, ***: p < 0.001, and ns: not significant.
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There was an extremely significant difference in aggregate mass proportions among
aggregate sizes (p < 0.001; Table 2). Compared to CK, NP significantly (p < 0.05; Figure 3B)
reduced the mass proportions of macro-aggregates (>2 mm) but increased the mass pro-
portions of micro-aggregates (<0.25 mm), while the results under NPS and NPM are the
opposite.

3.2. Soil Microbial Biomass and Diversity and Enzyme Activity

Soil microbial biomass was significantly impacted by fertilization and aggregate
size (p < 0.01; Table 2). Compared to CK (Figure 4A), NP (Figure 4C) decreased all
microbial indices, while NPS and NPM increased them (except fungi indices) in differently
sized aggregates (Figure 4B,D). Increases in fungal biomass (including AM) and F/B
ratio were observed only in micro-aggregates (<0.25 mm) under NPS and NPM relative
to CK. In micro-aggregates (<0.25 mm), the bacterial and fungal biomass were higher
under NPS treatment than under CK. Most of the microbial groups’ biomass increased
with the decreasing of aggregate size under NPS and NP, while there was no significant
difference in microbial biomass (except bacterial biomass) among any aggregates under
NPM. Additionally, the ratio of fungi:bacteria (F/B) and G+: G− (G+/G−) is also affected
by fertilization (Table 3), and there were no significant differences in the two ratios among
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all aggregate sizes under NPM. The biomass of different microbial groups was lower in
macro-aggregates (>0.25 mm) than in micro-aggregates (<0.25 mm) under fertilization. The
total PLFA was significantly associated with moisture in macro-aggregates (>0.25 mm).
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Table 3. Microbial PLFA biomass and ratios of the phospholipid acid biomarkers and microbial diversity in differently sized
aggregates.

Microbial Indices Soil Fraction (mm)
Fertilizer Management

p Value
CK NP NPS NPM

F/B >5 mm 21.71 ± 2.19 Ab 18.00 ± 5.07 Aa 18.75 ± 0.52 Ab 19.67 ± 2.80 Aa ns
2–5 mm 20.42 ± 0.18 Ab 19.72 ± 1.22 Aa 19.22 ± 0.20 Ab 18.59 ± 2.12 Aa ns
1–2 mm 22.53 ± 0.75 Aab 17.74 ± 2.29 Ba 19.09 ± 1.48 Bb 19.21 ± 1.02 Ba *

0.25–1 mm 25.17 ± 1.22 Aa 18.19 ± 0.46 Ba 19.78 ± 0.61 Bb 19.05 ± 0.99 Ba ***
<0.25 mm 21.68 ± 1.00 Ab 17.69 ± 1.11 Ba 22.86 ± 0.86 Aa 22.03 ± 1.36 Aa **

p value * ns *** ns
G+/G− >5 mm 0.37 ± 0.22 ABb 0.34 ± 0.04 Bb 0.45 ± 0.03 Ab 0.42 ± 0.06 ABa ns

2–5 mm 0.40 ± 0.02 ABb 0.39 ± 0.02 Bab 0.43 ± 0.01 Ab 0.40 ± 0.02 ABa ns
1–2 mm 0.36 ± 0.03 Ab 0.41 ± 0.05 Aa 0.44 ± 0.02 Ab 0.44 ± 0.05 Aa ns

0.25–1 mm 0.50 ± 0.06 Aa 0.42 ± 0.01 Aa 0.46 ± 0.02 Ab 0.42 ± 0.02 Aa ns
<0.25 mm 0.49 ± 0.03 Aa 0.44 ± 0.02 Ba 0.50 ± 0.01 Aa 0.50 ± 0.03 Aa ns

p value ** * * ns
Microbial diversity
Shannon–Wiener

(H′) >5 mm 3.21 ± 0.09 ABb 3.10 ± 0.07 Bc 3.26 ± 0.05 Aa 3.23 ± 0.08 ABb ns

2–5 mm 3.38 ± 0.03 Aa 3.16 ± 0.04 Bc 3.19 ± 0.13 Ba 3.25 ± 0.03 ABab *
1–2 mm 3.25 ± 0.07 Aab 3.28 ± 0.05 Ab 3.24 ± 0.05 Aa 3.25 ± 0.12 Aab ns

0.25–1 mm 3.23 ± 0.06 Bb 3.41 ± 0.02 Aa 3.26 ± 0.10 Ba 3.40 ± 0.05 Aa *
<0.25 mm 3.32 ± 0.09 Aab 3.38 ± 0.07 Aa 3.26 ± 0.05 Aa 3.29 ± 0.07 Aab ns

p value ns *** ns ns
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Table 3. Cont.

Microbial Indices Soil Fraction (mm)
Fertilizer Management

p Value
CK NP NPS NPM

Simpson (D) > 5 mm 0.94 ± 0.01 Aa 0.93 ± 0.006 Bb 0.95 ± 0.001 Aa 0.94 ± 0.006 ABa *
2–5 mm 0.95 ± 0.001 Aa 0.96 ± 0.01 Aa 0.96 ± 0.01 Aa 0.95 ± 0.005 Aa ns
1–2 mm 0.95 ± 0.005 Aa 0.94 ± 0.006 Aa 0.95 ± 0.004 Aa 0.94 ± 0.01 Aa ns

0.25–1 mm 0.94 ± 0.004 Ca 0.95 ± 0.001 Aa 0.95 ± 0.005 BCa 0.95 ± 0.001 ABa *
<0.25 mm 0.95 ± 0.006 ABa 0.95 ± 0.004 Aa 0.94 ± 0.002 Ba 0.95 ± 0.005 Ba ns

p value ns ** ns ns
Margalef (M) >5 mm 10.79 ± 0.48 Ab 11.25 ± 1.57 Ab 12.04 ± 0.83 Aa 11.83 ± 0.80 Aa ns

2–5 mm 13.59 ± 0.05 Aa 10.94 ± 0.43 Bb 11.12 ± 1.66 Ba 11.17 ± 0.92 Ba *
1–2 mm 11.93 ± 1.26 Aab 12.03 ± 0.70 Aab 10.73 ± 0.52 Aa 12.13 ± 2.07 Aa ns

0.25–1 mm 11.17 ± 1.29 Bb 13.34 ± 0.96 Aa 10.85 ± 1.42 Ba 13.45 ± 0.83 Aa *
<0.25 mm 12.89 ± 0.63 Aa 12.13 ± 0.22 Aab 12.33 ± 0.46 Aa 12.82 ± 0.90 Aa ns

p value * ns ns ns

B/F: the ratio of total bacterial and fungal PLFA; G+/G−: the ratio of G+ and G− bacterial PLFA. Capital and lowercase letters indicate
significant difference among fertilization and aggregate size, respectively, at p < 0.05. ***: p< 0.001; **: p< 0.01; *: p< 0.05; ns: not significant.

As shown in Table 2, significant (p < 0.05) interactive effects between fertilization
and aggregate size were observed in all indices of microbial diversity. The three indices
were affected significantly by fertilization, especially in 0.25–1 mm and 2–5 mm aggregates
(p < 0.05; Table 3), but not in micro-aggregates. Unlike CK and NP treatments, these three
indices had no significant difference among variably sized aggregates under NPS and
NPM. Based on Figure 5B, the microbial diversities of Shannon–Wiener (H′) and Simpson
(D) were respectively correlated with bacteria (including G+ and G−) and actinomycetes
in macro-aggregates (>0.25 mm).
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All of the four soil enzymes’ activities varied with fertilization and aggregate size
(p < 0.05; Table 2). In Figure 6, the four soil enzymes’ activities were higher under NPM
and NPS than under CK in all macro-aggregates (except 1–2 mm). NP increased those
activities only in 2–5 mm and 0.25–1 mm, while it decreased them in other aggregate sizes,
compared to CK. There were no differences under LAP and NAG between NPS, NPM,
and CK in micro-aggregates (<0.25 mm). The four soil enzymes’ activities were higher in
>0.25 mm than in <0.25 mm aggregates under NP treatment. The activities of NAG, LAP,
and BXYL were higher under NPS and NPM in >0.25 mm aggregates (except 2–5 mm)
than in micro-aggregates (<0.25 mm). Soil enzyme activity was positively correlated with
bacterial biomass and moisture in >0.25 mm aggregates (p < 0.05; Figure 5B).

1 
 

 
Figure 6. Histogram of N–acetyl–glucosaminidase (A), leucine aminopeptidase (B), β–glucosidase (C), and β–xylosidase
(D) activities in aggregates in different treatments. NAG: N–acetyl–glucosaminidase; LAP: leucine aminopeptidase; BG:
β–xylosidase; BXYL: β–xylosidase. Different lowercase letters mean significant differences among aggregate size fractions
(p < 0.05). The differences in the four enzymes’ activities across fertilization managements are shown at *: p < 0.05, **: p < 0.01,
***: p < 0.001, and ns: not significant.

3.3. Contributions of Microbial Community and Soil Enzyme to SOC Content

The correlations between SOC content and indicators of microbial community and en-
zyme activity in differently sized aggregates showed that microbial and enzyme indicators,
i.e., fungal and AM biomass, F/B ratio, BXYL, LAP, H’, and M, were significantly related
to SOC content in >0.25 mm aggregates, while no significant correlation was found in
<0.25 mm aggregates (Table 4). Soil microorganism and enzyme contributions to C storage
under different fertilizations were analyzed by PCA and VPA, considering the differences
in their compositions in >0.25 mm aggregates (Figure 7).
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Table 4. Correlative coefficients between SOC and soil biological properties for CK, NP, NPS, and
NPM in differently sized aggregates.

Index >5 mm 2–5 mm 1–2 mm 0.25–1 mm <0.25 mm

Total PLFA −0.14 −0.44 −0.22 0.01 0.003
Actinomycetes −0.17 −0.21 −0.3 −0.23 −0.13

Bacteria 0.02 −0.41 −0.05 0.22 0.14
Fungi −0.53 −0.43 −0.64 * −0.48 −0.17
AM −0.67 * −0.64 * −0.68 * −0.56 −0.46
F/B −0.76 ** −0.07 −0.73 ** −0.66 * −0.45

G+/G− −0.17 0.04 0.33 −0.32 −0.37
H′ −0.27 −0.75** −0.27 0.61 * −0.04
D −0.43 0.47 −0.44 0.56 0.03
M 0.06 −0.74 ** −0.14 0.50 −0.49
BG 0.12 0.17 −0.28 0.56 0.28

NAG −0.03 0.54 −0.37 0.26 −0.57
BXYL 0.05 0.83 *** −0.63 * 0.65 * −0.41
LAP −0.51 0.8 ** −0.32 0.66 * −0.48

Note: See Table 2 for abbreviations of some soil biological properties. *: p < 0.05. **: p < 0.01. ***: p < 0.001.
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conditions and nutrients for microbial survival [38,39]. In this study, there was a re-
markable reduction in the soil microbial biomass in all aggregates under NP compared 
to CK (Figure 4). Although inorganic fertilizer provided nutrients such as nitrogen and 
phosphorus, it reduced the moisture values in aggregate (Figure 3A), which affects the 
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Figure 7. PCA analysis (A) of soil microbial properties and enzyme activity in macroaggregates (>0.25 mm) under
4 fertilization managements (CK, NP, NPS, and NPM). Variation-partitioning Venn diagram (B) of SOC accumulation
variance partitioning among fungal indices (a), soil enzyme activity (b), and microbial diversity (c) predictor matrices in
macroaggregates (>0.25 mm). Figure 7A,B were created using R version 3.2.2 (“R: A Language and Environment for Statistical
Computing, R Core Team, R Foundation for Statistical Computing, Vienna, Austria (2016), https://www.R-project.org,
accessed on 15 March 2019). Fungal indices, soil enzyme activity, and microbial diversity contained three, two, and two
factors, respectively.

The PCA revealed that the predictors explained 63.9% of the variation in >0.25 mm
aggregates, and all of these indicators were clearly divided into three groups by the first
two principal components among all samples (Figure 7A). The Venn diagram (Figure 7B)
revealed that the fraction of C storage variation explained by the fungal indices was 21%
(fraction (a); p = 0.005). The soil enzyme component explained a lower proportion of
variation in SOC content in >0.25 mm aggregates ((b) = 2%, p = 0.013). Meanwhile, the
proportion explained by microbial diversity was far lower than that of fungal community
and enzyme activity, and it was not displayed in Figure 7B due to a value of less than zero.
Most of the SOC variation remained unexplained by the model variables (Residuals = 77%).

https://www.R-project.org
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4. Discussion

Long-term inorganic and organic fertilization was considered to be one of main fac-
tors affecting soil microbial community, because they change the microenvironmental
conditions and nutrients for microbial survival [38,39]. In this study, there was a remark-
able reduction in the soil microbial biomass in all aggregates under NP compared to CK
(Figure 4). Although inorganic fertilizer provided nutrients such as nitrogen and phospho-
rus, it reduced the moisture values in aggregate (Figure 3A), which affects the survival of
microorganisms inside [40]. Microbial community is sensitive to the increasing of avail-
able nutrients under organic matter application [41]. In comparison with NP, the organic
matter incorporation resulted in an increase in microbial biomass (i.e., PLFA, bacteria, and
actinomycetes) in almost all of the aggregates, which vary with the aggregate size and
organic matter type (Figure 4). This indicates that organic matter addition could alleviate
this negative effect of NP on the microbial community, and the effect of fertilization on
microbial biomass is associated with the soil aggregate size and nature of the organic matter.
Notably, the amount of fungi was only higher under NPS and NPM than under CK in
micro-aggregates, which indicates that fungi within macro-aggregate was more sensitive
to environmental perturbation than in micro-aggregates, because of the vulnerability of
microenvironment in macro-aggregate [42]. In particular, the amount of AM was slightly
higher in NPS than in NPM, due to the high decomposition ability of AM in cellulose [43].
This can also explain why lower F/B was found in macro-aggregates (>0.25 mm) than in
micro-aggregates (<0.25 mm) under the application of organic and inorganic fertilizers.
Therefore, the results support that organic matter incorporation can build a more suitable
environment for microbial survival.

Among the aggregate sizes, significant differences in microbial diversity were ob-
served under NP and CK, while no difference was observed under NPS and NPM. Organic
matter addition could promote higher bacterial richness or evenness among all fractions
and enhance the microbial community resistance to disturbance relative to inorganic fertil-
ization alone or no fertilization [44]. Based on these findings, the results suggest that the
biomass and diversity of microbial community were changed with the application of fertil-
ization, which was obviously (p < 0.05) associated with soil aggregate size [15,16]. Relative
to CK, NPM and NPS increased soil enzyme activities in almost all macro-aggregate sizes
(except for 1–2 mm), due to the increasing substrates for soil enzymes provided by the
addition of OM and the increasing microbial population [45,46]. Soil enzyme activities were
suggested to be suppressed by the inorganic fertilization [47]; however, they were favored
in 2–5 mm and 0.25–1 mm aggregates under NP, in order to provide C or nitrogen nutrients
for the survival of microorganisms [48]. In all of the aggregates, soil enzyme activities
were correlated to the distribution of microbial community and moisture [49]. Therefore,
our results indicate that the effects of fertilization regime on soil microbial community
were associated with the balance between microbial nutrient requirements and secretion of
enzymes, and they varied with soil aggregate size.

It is documented that microorganisms and enzymes affect C cycling. As Table 2
shows, almost all soil microbial community and enzyme indices were associated with
aggregate size. Meanwhile, it is subsequently confirmed, as shown in Table 4, that soil
microbial and enzyme indices were significantly related to SOC in >0.25 mm but not in
<0.25 mm. This indicates that micro-aggregates could protect SOC from being decomposed
by microorganisms [50], whereas macro-aggregates enhance SOC sequestration due to
their greater stability by the adhesion of microorganisms and secretions [51].

As a primary elemental energy source for microorganism, ROC was positively corre-
lated with microbial biomass in <0.25 mm aggregates (Figure 5A), i.e., bacteria, fungi, and
actinomycetes. This indicates that the microbial activity may be limited by ROC, supported
by the research that limited labile C is one of the main factors restricting the growth of soil
heterotrophic microorganisms [52]. It indicates that microbial biomass C may have been
saturated in micro-aggregates, supporting the findings that higher quality and protection of
SOC in macro-aggregate are more conducive to the growth of microorganisms compared to



Agronomy 2021, 11, 2126 14 of 18

micro-aggregate [53,54]. However, SOC content increased in micro-aggregates (<0.25 mm)
under fertilizations, which indicates that other processes significantly contributed to C
accumulation except microbial processes. For instance, the processes of chemical bonding
to minerals or physical protection contribute to the mineral-associated organic C formation,
which is one of the main components of organic C [55,56].

In >0.25 mm aggregates, the PCA analysis divided the indices that have a significant
(p < 0.05) impact on SOC into three groups, and Venn models revealed that fungi-related
factors were more important than microbial diversity and enzyme activities in affecting the
SOC in macro-aggregates (Figure 7). This is largely due to the structural heterogeneity of
the macro-aggregate and the strong viability of fungal community [57,58]. In particular, as
the dominant mycorrhizal type, AM fungi were reported to alter the C storage through
enhancing litter decomposition [59] or reducing the rhizosphere priming effect to increase
C retention [15,16]. Microbial diversity had no significant (p > 0.05) relationship with SOC
in macro-aggregates (>0.25 mm), the same trend as bacterial biomass (Figure 5B). Some
research reported that bacterial diversity increased more greatly than fungi with higher
pH values [60]; thus, bacterial community plays a key role in microbial diversity. This
was in line with our result that the microbial diversity of H′ was correlated (p < 0.05)
with the bacterial biomass in >0.25 mm aggregates. Inconsistent with our results, the
abundance of bacteria was supported as contributing to the rapid decomposition of soil
C [61]. Similarly, soil enzyme activities were significantly and positively correlated with
bacterial and actinomycetic biomass, which supported that the diversity and composition
of bacterial community could be partially reflected by the soil enzymes [62]. It also can
explain why no significant contribution of enzyme activity to SOC was observed. The
high unexplained residuals suggest that important aspects driving C dynamics were
not included in this analysis, such as physical and chemical approaches. Our results
confirm that microbial variables had greater impact on SOC in >0.25 mm macro-aggregates
under different fertilizations, whereas no significant effect was found in <0.25 mm micro-
aggregates. The total effect of fungi-related indicators’ contribution was higher than other
microbial indices [63]. More in-depth studies are needed to detect fungal reaction and
variation resulting from fertilization and should be incorporated in the main causes of
microbial approach that affect C accumulation.

Soil C redistribution and microbial habitat condition were altered under manure
and crop residues inputs. Previous studies confirmed that different fertilization manage-
ments might affect the soil biological processes, through changing the soil environment,
the nutrients, and turnover of aggregate, which could directly or indirectly affect C stor-
age [15,16]. This study shows that NP caused a significant reduction in the microbial
biomass (Figure 4C), i.e., fungal and bacterial biomass, and led to a stronger decrease in
C decomposition by microorganisms than NPS and NPM. The main reason may be that
long-term inorganic fertilizer inhibited the growth of microorganisms through affecting
the soil pH or moisture condition [64–66], which lead to the weakened microbial decompo-
sition of C. It also might be one of the reasons for the higher ROC content in NP than in
CK. The ratio of MBC/SOC and the mass proportions of macro-aggregates (>2 mm) were
lower under NP than CK, whereas the total SOC content was higher, indicating that the
contribution of microbial process and physical protection to C reduced under inorganic
fertilization [50]. Therefore, other important aspects should contribute more greatly to
C accumulation than microbial process under inorganic fertilization. For example, the
chemical process of the interaction between C and soil minerals has been known as an
important pathway of mechanisms of C sequestration [55]. Simultaneously, the combined
application of organic matter significantly reduced the impact of inorganic fertilizers on
the growth of microbial community, due to the improvement of water condition and ag-
glomeration (Figure 3) and a large number of substrates available to microorganisms. For
dryland agriculture, periodic rainfall causes soil to be in a long-term alternating state of dry
and wet, causing periodic fluctuations in soil water contents. In this study, the application
of organic matter alleviated the fluctuation of moisture and maintained it at a relatively
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high level, which is conducive to microbial activity [67,68]. This is consistent with the
result that MBC content (Figure 1C) was higher under NPM and NPS than under NP in
macro-aggregates (except 0.25–1 mm). The fungal biomass were positively (p < 0.05) related
to macro-aggregates’ proportion (>0.25 mm), which promotes the physical protection of C
sequestration [50]. However, both ROC and SOC contents have no significant differences
between inorganic and organic fertilizations, which were negatively (p < 0.05) correlated
with fungal biomass. This indicated that the C content was in dynamic equilibrium under
the inorganic and organic fertilizations during the process of C sequestration and decompo-
sition in macro-aggregate, in which fungi are key regulators [15,16]. A similar observation
was that fungi were affected more greatly by fertilization in macro-aggregates than in
micro-aggregates [15,16], with great ability to degrade complex C polymers [69]. The lower
F/B under fertilization than no fertilization in macro-aggregates suggests that bacteria were
more able to adapt to fertile environment. Both of actinomycetes and bacteria, including
G+, G− and G+/G−, had no significant relation-ship with C among all treatments, which
was supported by the study finding that low net accumulation of C was found in fertile
soils that are dominated by bacterial community [61]. Therefore, this indicate that the
effect of fertilization management on the contribution of fungal community to C is more
pronounced in macro-aggregates, compared to other microbial community.

5. Conclusions

Microbiological properties play an important role in C reserves at aggregate scale
under different fertilization regimes. We emphasized that the alteration of microorganism
community (i.e., fungal and AM biomass and F/B ratio) and enzyme activities (BXYL and
LAP), rather than microbial diversity, contributed greatly to C storage in macro-aggregates
(>0.25 mm). However, the influence of microbial factors in C storage was not significant in
micro-aggregates. Compared to inorganic fertilization, combined application of organic
and inorganic fertilizer increased the microbial contribution to C storages. Our study
indicated that the contribution of microbial processes to C accumulation depends not
only on the aggregate size but also on the variety of the microbial properties and their
interrelationships under different fertilization regimes. Future research is needed to reduce
the negative impact of inorganic fertilizers on soil flora by using organic matter application
while maximizing the soil C accumulation in agroecosystems.
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