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Abstract: Climate change is a serious threat, and it is necessary to prepare for the future climate
conditions of grazing areas. Dung beetle species can help mitigate global warming by contributing
to intense nutrient cycling and reduction in greenhouse gas emissions caused by cattle farming.
Additionally, dung beetles increase soil quality through bioturbation and reduce nematodes and
hematophagous flies’ abundance in grasslands areas. There are several dung beetle species inhabiting
South American pastures, however, the effects of climate change on their spatial distribution are
still unknown. Here, we aimed to predict the potential effects of future climate change on the
geographical spatial distribution of the four most important (“key”) pastureland dung beetle species
that are native to South America. We used niche-based models and future climate simulations to
predict species distribution through time. Our findings show radical reduction in the spatial range of
dung beetle species, especially in recently opened areas, e.g., the Amazon region. We suggest that the
consequences of these species’ spatial retraction will be correlated with ecosystem services depletion
under future climate conditions, urgently necessitating pasture restoration and parasite control, as
the introduction of new alien species is not encouraged.

Keywords: livestock; grassland; Amazon; global warming; Scarabaeinae

1. Introduction

Grassland environments need a number of active ecosystem services in order to
maintain their herd capacities and both economic and ecological sustainability. Ecosystem
services are benefits that ecosystems naturally provide and people take advantage of.
Diversity and ecological benefits are positively related [1,2], which means that the higher
number of species in a certain place increases the possibility of different niches, likewise
increasing the possibilities of providing ecosystem services [3].

The current biodiversity loss is directly affected by species extinctions derived from
deforestation and climate change [4,5]. Landscape modification, habitat conversion, and cli-
mate change are strong drivers for biodiversity losses and changes in correlated ecosystem
services [6,7]. The effects of future global warming are clear, species spatial distributions
may move to higher altitudes and latitudes towards suitable environmental conditions [5].
Under the future spatial redistribution, it is common that species reduce their area of
occurrence [8,9]. Moreover, different species compositions can be formed as a result of
species spatial redistribution [5,10], and yet these new communities are unknown, as well
as the correlated ecosystem services provided by them. The understanding of the effects of
climate change on ecosystem services provided by key species is crucial to the conservation
of service provision and political decisions, mainly in highly impacted regions and/or
countries with high deforestation and biodiversity loss.
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Brazil is a continental country that occupies much of South America; it has one of the
greatest beef cattle herds in the world, and the second biggest commercial production [11].
The beef cattle market in Brazil represents 30% of the national income in agribusiness.
The costs to maintain this productive and successful chain are extremely high, especially
with regard to animal nutrition and veterinarian care. The economic loss to Brazilian
livestock production due to cattle parasitism is approximately USD 13.9 billion per year,
of which USD 10.35 billion is due to gastrointestinal nematodes and horn flies [12]. Both
gastrointestinal nematodes and horn flies have a stage of their life cycle in cattle dung, thus
the more dung available in pastures, the more parasites likely to exist in that area. To study
species that are related to this level of food security is of the highest importance to create a
sustainable production system.

The burial of cattle feces is an extremely valuable ecosystem service for pastures that is
directly dependent on the presence, abundance, and diversity of dung beetle species [13–15].
Dung beetles are insects of the subfamily Scarabaeinae (Coleoptera, Scarabaeidae) that
feed and nest on mammal feces and other decomposing material [16]. By mixing and
incorporating organic matter into the soil, dung beetles promote bioturbation, enhancing
soil physicochemical characteristics, and consequently, the growth and nutritional value
of plants [17,18]. The role of dung beetles in pastures also has economic benefits, as
they minimize the cost of pharmaceuticals to control nematodes and hematophagous
flies [19,20]. Additionally, there is a reduction in the amount of greenhouse gas emission
of 7% in dung pads and 12% in pasture ecosystems—mostly related to methane CH4 that
forms in anaerobic conditions and is reduced through oxygenation of pads from dung
beetle activities [21,22].

More than 70 dung beetle species are reported to occur in South American grassland
areas, but only a few are both highly frequent and broadly distributed, and these few are
considered of the highest importance to ecosystem services in Brazilian pastures [23]. These
key species are Digitonthophagus gazella (Fabricius, 1787), Dichotomius nisus (Olivier, 1789),
D. bos (Blanchard, 1843), Ontherus appendiculatus (Mannerheim, 1829), Onthophagus ptox
Erichson, 1847, Trichillum externepunctatum Preudhomme de Borre, 1880 and Canthon
lituratus (Germar, 1813) [23]. Here, we aimed to predict the potential effects of future climate
change on the spatial distribution of four of these species: D. nisus, D. bos, O. appendiculatus,
and T. externepunctatum, those are, among the key species, the only four that combine
both good present taxonomic status (no problems of misidentification), expansive spatial
ranges, high local abundances and are native to their present range. D. nisus, D. bos,
and O. appendiculatus are paracoprid (tunneller) species, this means that they bury feces
deep below the dung pad; T. externepunctatum is an endocoprid (dweller) species, living
inside the dung pad and disintegrating feces from the inside. We did not include the
introduced African species Digitonthophagus gazella in our analysis because it has been
studied before [24]. We also provisionally use the predicted presence of those main species
as a proxy for the number of dung beetle species that likewise provide ecosystem services
in priority areas for grazing intensification. As grasslands and pastures are somewhat
similar to savannas and prone to be drier under future climate conditions [25], we expect a
reduction in the spatial distribution, a possible depletion of correlated ecosystem services
provided by these dung beetle species, and a reduction in the number of species per location
providing services.

2. Materials and Methods
2.1. Dung Beetles Data Source

Occurrence records were obtained from the CEMT database (Setor de Entomologia
da Coleção Zoólogica da Universidade Federal de Mato Grosso), by far the biggest dung
beetle collection in South America, and published revisions: Ontherus appendiculatus [26],
Trichillum externepunctatum [27], Dichotomius bos [28], and D. nisus [29]. All occurrence
records with an absence of date and/or spatial site information, duplicate data, and
centroid coordinates of municipalities were excluded. We compiled a total of 995 (D. bos,
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225 records; D. nisus, 202; O. appendiculatus, 298; T. externepunctatum, 270) occurrence
records for the 1970–2019 period, which were mapped to a 2.5-min grid (approximately
4.5 × 4.5 km resolution at the Equator).

2.2. Climatic Variables and Future Climate Simulations

We constructed a niche-based model to infer climatic processes driving the species
spatial distribution. To characterize the environmental climatic space of the niche model,
we used the 19 bioclimatic variables available in the WorldClim database v. 1.4 [30], at a
spatial resolution of 2.5 min cell size (approximately 4.5 × 4.5 km resolution at the Equator).
Because their variables are derived from temperature and precipitation, they are correlated
to each other, requiring a variable selection process to decrease multicollinearity among
the variables [31]. Here, we applied a factorial analysis [32] with a maximum rotation that
resulted in five variables: Annual mean temperature (Bio 1), mean diurnal range (Bio 2),
isothermality (Bio 3), precipitation of wettest quarter (Bio 16), and precipitation of driest
quarter (Bio 17). To test the effects of future climate on the potential spatial distribution of
species we used future climate simulations for 2050 (the midpoint for the period 2041–2060)
and 2070 (the midpoint for the period 2061–2080) from the IPCC AR-CMIP 5/RCP 8.5
emission scenario: maximum power requirement, balanced emissions from fossil fuels and
non-fossil fuels [33].

2.3. Niche-Based Model Building

We used a niche-based model approach to test the effect of future climate change
on the dung beetle spatial distributions. The models were generated using the “dismo,”
“raster,” and “kernlab” packages in the statistical programming software R [34–37]. As the
combined use of multiple niche-model algorithms increases the accuracy of predictions
by considering different niche estimates [38,39], we used the mathematical algorithms
of presence only, and presence and background categorizations: (i) Bioclim (Envelope
Score; [40]), (ii) Domain (Gower Distance; [41]), (iii) Mahanalobis distance [42], (iv) Random
Forest [43], (v) Maximum Entropy (MAXENT v3.3.3 k; [44], e (vi) Support Vector Machines
(SVM) [45].

To evaluate the model performance, we randomly subdivided the occurrence records
into k-fold (2) subsets: training (consisting of 75% of the records) and testing consisting
of 25% of the records). We repeated this procedure 10 times, resulting in 60 models. For
each model, we calculated the maximum specificity and sensitivity threshold (Max Sens
Spec), following [46], to calculate the True Skill Statistics (TSS) values as model evaluation.
The TSS values vary from −1 to 1, with values above 0.4 representing good-fit models.
Afterward we ran the ensemble forecasting approach to overlap all maps into a final
map [47]. We used the approach of [31] that set the “10-percentile threshold” (10 PT) as
a decision threshold rule, which makes the distinction between suitable (≥10 PT) and
unsuitable (<10 PT) areas. We ran the models separately for each species. The models were
built in the current climate conditions and projected for each future climate scenario.

2.4. Priority Areas for Livestock Intensification in Brazil

We considered priority areas for livestock intensification as those defined by Barbosa et al.
2015 [48]; this work defined priority areas only for Brazil. The definition and evaluation
of these areas were based on (a) reduction in pasture areas as a result of agricultural
expansion, (b) herd demographics, (c) logistics to major slaughterhouses, and (d) proximity
to grain-producing areas. The priority areas were classified in minimum, low, intermediary,
high and maximum priority (Figure 1). The spatial layer data of priority areas for livestock
intensification in Brazil has a resolution of 0.5 × 0.5 km.
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Figure 1. Priority areas for livestock intensification in Brazil sensu Barbosa et al. 2015 [48].

2.5. Effects of Climate Change on Key Dung Beetle Species Spatial Distributions and Livestock
Priority Areas

To test the hypothesis of future dung beetle species loss in important priority areas
for beef cattle intensification, we summed binary presence/absence maps of dung beetle
species in each climate scenario to obtain maps of the number of dung beetle species
(varying from 0 to 4) in Brazil. As the livestock priority areas have higher spatial resolution
than species distribution maps, we resample the species maps by livestock priority areas
by the mean using the ‘resample’ function of the raster R package [35]. We then used
the Friedman test to assess the significance of the change in the number of species across
climate scenarios in each livestock intensification priority class. Despite the large number
of individual cells (~10 million pixels), we construct each Friedman test using 1000 times of
1000 random pixels to reduce the computational demand and because p-values are strongly
correlated with the number of samples. We also calculated the effect size of the Friedman
test using Kendall’s W, which varies from 0 (indicating no relationship) to 1 (indicating
a perfect relationship) with interpretation guidelines of 0.1–<0.3 (small effect), 0.3–<0.5
(moderate effect) and ≥0.5 (large effect) [49]. Note that Kendall’s W is not affected by the
number of samples. The same process was applied to identify the pairwise difference of
scenarios with the Wilcoxon paired test with an effect size r, calculated as the Z statistic
divided by the square root of the sample size.

2.6. Effects of Climate Change on Extent of Occurrence and Area of Species Occupancy

To test latitudinal and altitudinal shifts in species spatial distribution for each future
climate scenario, we used the values of latitude (decimal degrees) and elevation for each
site and the predicted presence of species for each climate scenario (present, 2050 rcp 8.5
and 2070 rcp 8.5). We used nonparametric Kruskal–Wallis tests followed by a post hoc
Dunn test, to test if dependent variables (latitude and elevation) differ between times
(present, 2050 rcp 8.5 and 2070 rcp8.5). To identify the magnitude of shifts over time in
dependent variables we use the effect size measured by the eta-square (η2) value provided
by the Kruskal–Wallis test. The eta-squared estimate assumes values from 0 to 1 and
when multiplied by 100 indicates the percentage of variance in the dependent variable
explained by the independent variable, the interpretation values are: 0.01–<0.06 (small
effect), 0.06–<0.14 (moderate effect), and ≥0.14 (large effect).

Additionally, we calculated the area in km2 for species present in each climatic scenario.
The elevation and slope values were obtained through the EarthEnv Digital Elevation
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Model (http://www.earthenv.org/DEM, accessed on 14 July 2021). The Kruskal–Wallis
was built using the “kruskal.test” function of stats R package [37], the Dunn Test was
calculated with “dunnTest” function with Bonferroni p-values adjustment within the
FSA R package [50]. Graphics were generated using the “ggplot” function from the
ggplot2 package [51]. All analyses were performed in the R program [37] considering a
significance of α < 0.05 and map projections were performed in the Qgis program [52]
(QGIS Development Team 2020).

3. Results
3.1. Key Dung Beetles Spatial Distribution in the Present

Our models were all well fitting (TSS values > 0.4) (Figure S1). The geographic
occurrence of the four species is similar, following a wide distribution in tropical dry areas
and savannas of South America (Ecoregions: Llanos, Caribe lowlands, Chaco, Cerrados—
including Pantanal, Caatinga, Pampa [53], and pastures) (Figure 2). The Andes limit their
distribution to the west, while Patagonia is the limit to the south (Figure 2). None of them
are found in forests, but they are present in open areas caused by deforestation of some
regions of the Amazon and Atlantic Forest.
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Dichotomius nisus and Ontherus appendiculatus are found in open areas both south and
north of the Amazon River (Figure 2). Dichotomius bos and Trichillum externepunctatum
are not found north of the Amazon River, their northern range limits being the savanna
enclaves south of the Amazon (Figure 2). None of those are present in ombrophilous forests.

3.2. Effects of Climate Change on Key Dung Beetles Range

The four species presented a reduction of 50% or more in their occurrence areas
between the present and the 8.5 RCP 2070 scenario (Figure 3) and there is no expansion
into new areas (Figure 3).
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Dichotomius bos has the worst scenario among key species. Our projections show a
reduction of 70.7% in its area of occurrence by 2070, from 3,076,729 km2 in the present to
1,387,037 km2 and 904,217 km2 in 2050 and 2070, respectively. Dichotomius nisus may lose
52.6% of its current area of occurrence, from 5,237,129 km2 to 3,227,568 km2 in 2050 and
2,486,240 km2 in 2070. Ontherus appendiculatus is projected to lose 52.1% of its area of occur-
rence in the future, from 3,434,034 km2 in the present to 2,081,253 km2 and 1,648,320 km2 in
2050 and 2070, respectively. Trichillum externepunctatum has the lowest projected loss in the
area of occurrence, nevertheless, a reduction of 49.9% was estimated, from 3,602,200 km2

in the present to 2,463,608 km2 in 2050 and 1,805,550 km2 in 2070.

4. Discussion

Our findings suggest a catastrophic future scenario for dung beetle species in Brazilian
grasslands. The future spatial retraction within the Southeast of Brazil indicates that key
dung beetle species will be restricted to areas with minimum priority for livestock inten-
sification (Figures 3 and 4). Dichotomius bos and D. nisus are the species with the greatest
reduction in suitable areas, the former with an impressive 70.7% loss of occurrence area.
We believe that these species may be more prone to lose suitability due to their large size
and longer reproductive cycle [54,55]. Moreover, O. appendiculatus and T. externepunctatum
can be found during the entirety of the summer rains (October to March), while D. bos is
collected mainly at the beginning of the rainy season and D. nisus is collected throughout
but is more common at its end [56].
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panel) (See Figure S2). Priority areas for livestock intensification (sensu Barbosa et al., 2015) [48] and
dung beetle species suitability for present, 8.5. RCP 2050 and 2070 scenarios (lower panel).

The species studied here are common in most South American grasslands (Figure 2)
and are not usually found in forests. Our findings suggest that future suitable sites for the
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most common dung beetles would be in the Atlantic Forest region that is a non-priority
region for livestock intensification (Figure 4). However, its highly endangered native
vegetation is protected and controlled by law [57]. Therefore, while climatically suitable,
this area has less suitable landscapes for grassland-related dung beetles.

The area occupied by livestock farming in Brazil includes almost 150 million hectares
of pastures [58], mostly concentrated in biomes characterized by natural open areas as
Pampa, Pantanal, Caatinga, and Cerrado and, more recently, in the Amazon [58]. The
Amazon has been the biggest target of deforestation to create extensive pastures; Pará
state has the second-largest grazing area in Brazil, with more than 20 million hectares of
pastures [59]. In our projections, there is no future suitability for key native pastureland
dung beetle species in the Amazon region (mainly Pará and Mato Grosso states), which is
the area in Brazil that has the biggest pastures and herds [58].

There are more than 800 known native dung beetle species in Brazil [60], but the
number of native species collected in Brazilian pastures has been smaller through the
years [56]. The reduction in dung beetle species was observed in the state of Mato Grosso
do Sul, Brazil, on a farm surveyed weekly for 26 years [61]. In the first years of sampling,
the dung beetle community was composed of 40 native species, mainly tunnellers (dung
beetles that bury feces from 10 to 120 cm below the dung pad) [60]. In the fourth year,
D. gazella, a medium-sized tunneller, was introduced, and the dung beetle community
changed drastically; native tunnellers became nearly extinct locally. A few years later, the
population density of D. gazella started to decrease, but the species composition was not
the same as before [61]. The number of native tunnellers was drastically reduced and, as
a consequence, the amount of dung buried decreased significantly. This could have been
avoided if native species were well studied prior to the introduction of D. gazella [61–63].

The burying activities of different dung beetle species delay the need for pasture
restoration as they promote bioturbation from 0 to over 150 cm [64], which reduces soil
compaction and improves permeability [16,18]. Again, without dung beetle activities,
pastures will accumulate dung, limiting space for grass growth and increasing the need
for more pesticides to control. With fewer species in pastures, fewer services will be
provided. The suggestion of intensification in certain areas is relevant, particularly for
pasture restoration and semi-intensive encouragement. Deforested areas that are not
suitable for livestock intensification can be turned into reforestation regions or integrated
crop-livestock-forest systems (ICLF). Besides other potential benefits for the herd and the
environment, dung beetles occurring in silvopastoral systems are the same species that are
common in pastures [65].

Dung beetles have been evolving and surviving different climate conditions since the
megafauna extinction and Pleistocene climate oscillations; what dung beetles have not
been supporting or surviving is the amount of chemicals present in livestock feces. Studies
have shown that avermectins cause the death of dung beetle larvae or strong reductions
in reproductive capabilities [66–75]. The consequences for this are pastures filled with
dry and compacted dung pats that limit the space for cattle to forage [76], reduce overall
pasture productivity [77], and increase the frequency of pasture restoration.

It is unsure how much recent climate change, deforestation, release, and subsequent
spread of Digitonthophagus gazella, and intensive use of parasiticides and pesticides in Brazil
have been responsible for the present observed reduction in native dung beetle diversity
and abundance in pasturelands. Even D. gazella, presented as suitable climatically to occupy
the southern and eastern Amazon regions [24], has been collected in those regions on few
occasions and with fewer specimens; Dichotomius bos, D. nisus, O. appendiculatus and T.
externepunctatum have not been found in the same areas or, when present, are mostly found
dead near spotlights [65]. Our data suggest that climate change is part of the problem,
but as avermectins have been used for 40 years, and the introduction of D. gazella over
30 ago also contributed to the decrease of native species in pastures observed over the last
20 years [56,61]. We suggest that new protocols for pesticides must be proposed and tested,
especially in areas of semi-intensive livestock production.
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5. Conclusions

Suitable areas for key dung beetle species are much smaller under future climate
conditions. Key native dung beetle species are not likely to be present within the highest
priority areas for livestock intensification in Brazil. This indicates the possible depletion of
ecosystem services provided by these species in cattle farming regions. Climate change
is the main cause for range reduction, but we also highlight the possibility of a stronger
negative effect when global warming is correlated with the use of chemicals that are toxic
to dung beetles. We suggest that studies on the use of anti-parasitics associated with
rotation and/or silvopastoral systems be conducted, in order to achieve more effective and
sustainable cattle production.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/agronomy11102033/s1, Figure S1: True skill statistic (TSS) values for niche-based modeling of
Dichotomius bos, Dichotomius nisus, Ontherus appendiculatus, and Trichillum externepunctatum. Figure S2:
Number of key dung beetle species on priority areas for livestock intensification (sensu Barbosa
et al., 2015) in the present, 8.5 RCP 2050 and 2070 scenarios. Figure S3: Effects of future climate
change across latitude and elevation for dung beetles. *** Indicate pairwise significance of p < 0.001
between scenarios.
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