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Abstract: Cereal crops have starch in their endosperm, which has provided calories to humans and
livestock since the dawn of civilization to the present day. Starch is one of the important biological
factors which is contributing to the yield of cereal crops. Starch is synthesized by different enzymes,
but starch structure and amount are mainly determined by the activities of starch synthase enzymes
(SS) with the involvement of starch branching enzymes (SBEs) and debranching enzymes (DBEs). Six
classes of SSs are found in Arabidopsis and are designated as soluble SSI-V, and non-soluble granule
bound starch synthase (GBSS). Soluble SSs are important for starch yield considering their role in
starch biosynthesis in cereal crops, and the activities of these enzymes determine the structure of
starch and the physical properties of starch granules. One of the unique characteristics of starch
structure is elongated glucan chains within amylopectin, which is by SSs through interactions with
other starch biosynthetic enzymes (SBEs and DBEs). Additionally, soluble SSs also have conserved
domains with phosphorylation sites that may be involved in regulating starch metabolism and
formation of heteromeric SS complexes. This review presents an overview of soluble SSs in cereal
crops and includes their functional and structural characteristics in relation to starch synthesis.

Keywords: amylopectin; cereals; starch synthase; phosphorylation

1. Introduction

Starch is the primary source of energy for human nutrition and is a main product of
plant photosynthetic C fixation [1]. Higher plants synthesize storage starch in the form of
granules and store in the seeds and tubers. Starch present in these organs and accumulate
during the developments of these organs and its stable for long period of time in dry
condition. Most of the starch in seeds store in the endosperm tissue with little amount
of starch store in embryo and pericarp. Transitory starch present in leaves of plants and
is derived from surplus sugar produced during photosynthesis [2]. Natural sugar which
is actually a glucose, development in plants is due to degradation of transitory starch
which is transported into the cytosol. Starch plays an essential role in plant physiology
and alteration of starch levels affect plant growth, seed yield, and flowering time [3]. The
degradation of starch occurs during respiration in plants and contributes to the formation
of sucrose. This sucrose is transported to the rest of the plant to provide energy in plant
growth [4].
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Starch is the major polysaccharide in plants, and is composed of two glucan polymers,
amylose, and amylopectin. Amylose is a smaller polymer of α-1,4-linked glucose. While
amylopectin is highly branched molecule and major component with α-1,4-linked glucose
linear chains and α-1,6-linked branched points. The contribution of amylopectin in starch
granule is 75% [5]. Starch is formed from the activated nucleotide diphosphate sugar
precursor adenosine-5′-diphosphoglucose (ADP-Glc). ADP-Glc is used for elongation of
glucan chains by soluble starch synthase (SS) and non-soluble granule bound SS (GBSS)
in amylopectin and amylose synthesis, respectively. These α-1,4-linked glucan chains
are branched by the introduction of α-1,6-linked branch points with the coordination of
starch branching enzymes (SBE). By trimming at specific points in the nascent granules
through starch debranching enzymes (DBE), crystalline starch granules are produced.
It is accepted that amylopectin branching frequency and pattern is non-random. These
glucan chains are categorized with in each molecule on the basis of their connection to
other glucan chains: the external chains that have no branches themselves are A-chains.
Similarly, B-chains have one or more clusters (B1, B2, B3). The C chain is the part of B-chain
in a molecule with free reducing end. The frequency distribution of chain length shows
that mostly chains consist of 20–30 glucose units and these are A- and B1-chains in the
cluster of amylopectin [6] (Figure 1). Similarly, there are protein targeting to starch (PTST)
enzymes (PTST2 and PTST3) which take part in granule initiation in plants and loss of these
enzymes causes reduced number of granules in chloroplast. In plants, SSs are GT-B-fold
glycosyltransferases, classified within family GT5 in the CAZy database. The archaeal and
bacterial GS are the closest counterparts of plant SSs in the GT5 family [7], implying that
this family is ancient. All of them use ADP-glucose as nucleotide donor sugar. However,
GS in other eukaryotes, such as fungi, yeast and animals, are distantly related to plant SSs,
and belong to the GT3 family in the CAZy classification, using UDP-glucose as donor [8].
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Figure 1. A schematic of enzyme-mediated reactions involved in the formation of starch, amylose, and amylopectin. The
diagram represents the interconnection of non-linear reactions of different enzymes during starch biosynthesis. Each
class is highlighted with an arrow that is showing each stage of starch biosynthesis with different enzymes. The red
arrows mentioned the enzymes of different stages and blue arrows mentioned the relation of different stages during
starch formation. ADPglucose pyrophosphorylase: AGPase; ADPglucose pyrophosphorylase small subunit: AGPase ssu;
Isoamylase-type debranching enzyme 1, 2, 3: ISA1, ISA2, ISA3; Starch synthase I, IIa, IIb, III, IV: SSI, SSIIa, SSIIb, SSIII,
SSIV; Protein targeting to starch: PTST2, PTST2; Starch phosphorylase: SP; Starch branching enzyme I, IIa, IIb: SBEI, SBEIIa,
SBEIIb; Granule bound starch synthase: GBSS.
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Most of the enzyme classes described have multiple isoforms with overlapping func-
tions [9]. Soluble SSs (SSI, SSII, SSIII, and SSIV) function in the process of starch synthesis
have been elucidated by mutant analysis of monocots by using cereal models and of dicots
through studying potato tubers, Arabidopsis leaves, and pea embryos. In Arabidopsis, it
regulates the granules numbers that form in the chloroplast and it is closely related to
SSIV. SSV is a noncanonical isoform with no catalytic glycotransferase activity [10]. The
structure and size of amylopectin clusters are mainly controlled by three soluble SSs (SSI,
SSII, and SSIII), with the interconnection of SBE and DBE enzymes (Figure 1) [11]. Many
SSs genes are present in cereal crops, and their copy number is different in each cereal,
presumably reflecting gene duplication, deletion, and genomic polyploidization during
evolution (Table 1).

Table 1. Starch synthase genes in cereal crops.

Species No. of SS Genes Gene Names with Accession No./ID Reference

Hordeum vulgare 6 GBSSI (AAM560327.2), SSI (AAF37876), SSII (AAN28307), SSIIIa
(AAF87999), SSIIIb (AAL40942), SSIV (AAK97773) [12]

Oryza sativa 11

GBSSI (AB425323), GBSSII (AY069940), SSI (AY299404), SSIIa
(AF419099), SSIIb (AF395537), SSIIc (AF383878), SSIIIa (AY100469),

SSIIIb (AF432915), SSIVa (AY373257), SSIVb (AY373258), SSV
(EU621837.1)

[13]

Sorghum bicolor 10
GBSSI (LOC8068390), GBSSII, SSI (NC054143), SSIIa (EU620718),

SSIIb (EU620719), SSIIIa (EU620720), SSIIIb (EU620721), SSIV,
SSV (HQ661801)

[14]

Triticum aestivum 7
GBSSI (AF286320), GBSSII (AF109395), SSI (AJ269503), SSII

(AJ269503), SSIIIa (AF258608), SSIIIb (EU333946), SSIV
(AY044844)

[15]

Zea mays 10
GBSSI (AY109531), GBSSII (EF471312), SSI (AF036891), SSIIa

(AF019296), SSIIb (EF472249), SSIIc (EU284113), SSIIIa (AF023159),
SSIIIb (EF472250), SSIV (EU599036), SSV (NM_001 130131.1)

[16]

In this review, we provide an overview of soluble SSs and its roles in starch biosyn-
thesis. The purpose of different isoforms in cereals will also be discussed about studying
different mutants. The current knowledge of SSs regulation, their ability to form pro-
tein complexes with other enzymes, and their regulation by protein phosphorylation are
outlined.

2. Mode of Action and Properties of Soluble SSs in Amylopectin Formation

For the elongation of the α-glucan chain during amylopectin synthesis, three enzymes
(SSI, SSII, and SSIII) play important role (Figure 1). Similarly, SSIV is involved in granule
initiation and shows close relation to SSIII [17]. SSI, SSII, and SSIII elongate α-glucan chains
during amylopectin synthesis with increasingly higher DP (degree of polymerization). SSI
synthesizes α-glucan chains from short to intermediate sizes of DP8-12, which are then
used as the substrate of SSII to manufacture longer chains of DP12–30. Similarly, SSIII
produces long chains of DP ≥ 30 [18]. The products and substrate of these SS isoforms are
generalized, and it is inferred from the data of the mutant studies in monocots, dicots, and
also upon in vitro biochemical analysis [19]. These three isoforms play an essential role in
defining the structure of amylopectin by cooperating with SBEs and DBEs [11] (Figure 1).
Although there are variations in glucan chains of different species, the glucan chains found
in amylopectin clusters are characteristically of short to medium length appropriate for
SSII activity [20]. The binding ability of SSI increases dramatically with the length of
substrate chains and is inversely proportional to the catalytic capability of an enzyme. SSIII
is thought to be involved in connecting amylopectin clusters because organisms lacking
SSIII showed a significant reduction in length of cluster-spanning B chains (B2–3) [21].

Tissue-specific isoforms of SSII and SSIII are present in cereals. These isoforms are
thought to be involved in long- or short-chain starch synthesis in different heterotrophic
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and autotrophic cell types (Table 1) [22]. It is believed that structural variation between
starches from different sources is due to the relative contribution of each SS class in various
tissues and among species [23]. Due to action of multiple enzymes and alteration of
biosynthetic pathways help to cause these structural variations.

2.1. SS Mutants Vital Roles in the Formation Amylopectin Chains: Starch Synthase SSI to SSIII

Loss of SSI activity causes distinct variation in chain length distribution of amylopectin,
particularly in A- and B1 chains that help to construct amylopectin clusters. Amylopectin
from the endosperm of a ssI rice mutant have shorter chains with DPs of 6–7, while there
were fewer chains of DP 8-12 [24]. Similar results were observed in Arabidopsis mutant
ssI [25]. In maize, rice, and wheat, ssI mutants possessed short chains with DP < 10 (Preiss,
2018). These findings suggest that SSI elongates short chains, mostly DP 8-10, with SBE
through their glucanotransferase reactions and create the short chains on which SSI is
thought to be act [6]. It is interesting to note that the absence of SSI prevented the formation
of short chains but elongated further chains with DP18. By using modified glycogen
substrates, it is reported that the N-terminal mutant of maize for SSI drastically decreased
the external chain length, but sharply increased SSI substrate binding ability [26]. The
evidence suggested that the localization of SSI depend on starch binding by its interacting
partner SSII [27]. However, it is unclear why there are short chains in wild type (WT)
generated by SSI that were not extended further. A complete deficiency of SSI and SSIII in
double mutant (ssI/ssIIIa) caused male sterility with opaque seeds in rice [28]. Similarly, the
absence of SSI and BEIIb (branching enzyme IIb) leads to male sterility in japonica rice and
this double mutant had reduced SSI level [29].

The mutant of SSII has been characterized in different crops to understand its function
such as in potato tubers [18], cereal crops (endosperms of wheat [30], barley [31], rice [24],
maize [32]), and in Arabidopsis leaves [33]. The observed phenotype in all crops is similar
and indicates a significant change in amylopectin structure. The chain lengths of DP8 and
DP18 increased and decreased in such mutants, respectively. Similarly, ssII mutants had
changes in granule morphology accompanied by high amylose content and reduction in
starch crystallinity [6]. Mutation for SSIIa in barley, rice and wheat have similar effects on
starch structure and the amylose content but the difference in the severity of phenotypes.
ssIIa mutant in rice, wheat and barley altered the structure of amylopectin which deprive
the affinity of SSI to amylopectin [34]. In cereal crops, SSIIa interacts with SSI and BEII [35].
So, there can be pleiotropic effects on these enzymes due to the misfunction of SSII, making
it difficult to understand the impact on phenotype due to the absence of SSII activity
alone. Similarly, changes in amylopectin structure are caused by a lack of SSII activity [6].
Firstly, the recombinant rice SSII was incubated with amylopectin from the mutant ssII,
which was able to promote aberrant elongation of the short chains [36]. Secondly, there
was a loss of SSI activity in the ssII mutant, which caused typical ssI-type alterations in
the background [37]. Thirdly, there were similar changes in amylopectin chain length
distribution (CLD) in dicot plants while there is not any evidence in the formation of
SSII-containing complexes [6]. The repression line for SSIIa and SSIIIa showed chalky
grain appear and increased in amylose content and also decreased in viscosity in rice. In
the amylopectin, there was reduction in short and long chains in grains, but number of
medium chains increased. This genetically modified line nature depicted that these two
genes interact each other [36].

The function of SSIII is less clear as compared to SSI and SSII. The primary role for
SSIII is the formation of the B chain, elongation of cluster filling chains, and regulation of
other starch synthesis enzymes. Similarly, it is also reported that SSIII also takes charge
of granule initiation in the absence of SSIV. SSIII has significant activity in all plants and
tissues. Analyses of ssIII mutants of maize [38] and rice [39] revealed that fewer long
cluster spanning B chains (such as B2, B3, etc.) were present in mutant lines. There was
also alteration in the short chains of amylopectin, indicating that SSIII also participates in
the synthesis of short A and B chains [40]. These results were confirmed when compared to
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plants that lack SSI or SSII. It was also reported that the absence of SSII significantly affects
SSIII, which results changing in the phenotypes of rice [36] and Arabidopsis [41] leaves of
mutant ssII lines, suggesting partial loss of function between these two genes. The ssII/ssIII
double mutant produced shorten chains with a low number of water-soluble glucans in
Arabidopsis [42]. Similarly, loss of SSIIIa caused slightly reduction starch content with little
rounded and smaller shape of granules in rice [43]. Additionally, the expression level of
granule-bound starch synthase I (GBSSI) and ADP-glucose pyrophosphorylases increased
due to absence of SSIIIa which increase amylose content [43], some of the cereal crops ss
mutants are described in Table 2.

Table 2. Mutation effect on starch synthase genes in different cereal crops.

Cereals Amylose
Content (%)

Inactivated
Genes Mutant Lines Structural and Functional Changes in Mutant Reference

Wheat 22.9–32.3 SSSII sgp-1 Alteration in amylopectin structure, high amylose
contents [44]

SSII sgp-1, a7, a63 Increase in short chains, decrease in starch
branching enzyme [45]

SSIIa Increase in proportion of short chains, difference in
gelatinization, retrogradation and pasting [46]

SSIIa svevo, semolina Increased in dietary fiber of contents, change in total
starch content, improved quality traits [47]

SSIIa ssIIa-Ab Amylose contents increased 3%, cooked noodles
firmness increased [48]

SSIIa, GBSS sw Changes in seed size, starch granules and starch
content, shrunken seed during maturity [49]

SSIIa abd null line

Grain properties (change in 1000 grain weight, grain
size) and starch properties (fluctuation in amylose
content, increased in resistant content) changed in

null line

[50]

SSIV-D e054-13, e1137 Altered granule number/chloroplast [51]
SSIV e3-1-3, e1137 Total starch and amylopectin content decreased [52]

Rice 15.4–25 SSI e7, i2-1, i2-2, i4 Decrease in chains with DP 8 to 12, Increase in
chains with DP 6 to 7 [26]

SSI, SSIIIa np Higher amylose content, internal chain length of B2
and B3 fractions observed [24]

SSI ss1, isa1
Take part in chain length distribution, outer chain

elongation with little effect on branch position
distribution

[53]

SSI, BEI ss1/be1, ss1/be2b
Seed weight of mutant was higher than WT

Number of short chains of amylopectin decrease,
Amylose content almost same to WT

[54]

SSI ssI, be2b Subtle difference in protein profile, reduced
association of SSI and BEIIb in ssI mutant [55]

SSI, SSIIa,
SSIIIa ss1L/ss2aL/ss3a

Increase amylose, decrease grain weight, increase in
level of ADP-glucose pyrophosphorylases [56]

SSII zhonghua-15 GC-AG intron splicing offer more variants for
genetic divergence in rice [37]

SSIIa ss2a(em204)
SSIIa protein was totally absent in seeds, higher

amylose content, Number of short chains formation
increased in amylopectin

[57]

SSIIIa ss3a-1, ss3a-2
Chains with DP 6 to 9 and DP 16 to 19 decreased,

chains with DP 10 to 15 and DP 20 to 25 increased,
amylose and amylopectin content increased

[58]

SSIV-2 allelic variation Affected gel consistency, percent of retrogradation, [59]

SSIIIa flo5-1, flo5-2 Starch granules smaller and round as compared to
WT, reduced contents of long chains [60]
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Table 2. Cont.

Cereals Amylose
Content (%)

Inactivated
Genes Mutant Lines Structural and Functional Changes in Mutant Reference

SSIIIa,
SSIVb ss3a, ss4b

Produced compound type starch granules in the
early stages, glucan chain length distribution

identified overlapping roles for SSIIIa and SSIVb in
amylopectin chain synthesis

[61]

SSIVb
Transgenic plant contains premature codons, no
mRNA expression, low starch contents, dwarf

phenotype
[62]

Maize 25–30 SSIII dull1
Lager clusters of chain with more branched building

blocks, average cluster contained 5.4 blocks in
mutant and 4.2 blocks in WT.

[63]

SSIII, ISA2 du1-R4059 Starch deficient, accumulation of phytoglycogen [21]

SSIIa sugary-2 Loss of activity of endosperm specific SS, impact on
the SSI and SBEIIb [64]

SSIII w64a Reduced granule size, decreased the enthalpy
change of starch gelatinization [65]

Barley 29.9–31.6 SSII m292, m342 Decrease in amylopectin synthesis, pleiotropic effect
on other enzymes of starch biosynthesis [66]

GBSS, ISA1,
SSIIa

Sex6, wax,
lys5fisa1

SSIIa mutation caused low seed weight and starch
content [67]

SSI, SSIIa,
GBSS TILLING SSI mutant increased A and B granules, SSIIa

mutant caused shrunken seed [31]

SSI: starch synthase I; SSII: starch synthase II; SSIII: starch synthase III; SSIV: starch synthase IV; GBSS: granule bound starch synthase; BEI:
branching enzyme I; ISA1: isoamylase-type debranching enzyme 1; TILLING: Targeted induce local lesion in genomes.

2.2. Initiation of Starch Granule Formation

SSIV is involved in the initiation of the starch granule. It controls the number of starch
granules in the leaves of Arabidopsis, which shows that its function is unique from other
genes of the SS family [41]. The high level of starch accumulated in potato leaves is gained
by a dramatic increase in the expression of the SSIV [68]. The presence of SSIV in the
thylakoid membrane suggests that starch granule initiation occurs at a specific area of the
chloroplast. Gene structure analysis revealed that exon and intron structure of SSIII and
SSIV are highly conserved in Arabidopsis, rice, and wheat while gene structure is different
from SSI, SSII, and GBSS [69].

The Arabidopsis ss4 mutant plant showed a reduction in starch granule number but had
enlarged starch granules. In this case, the ADP-Glc pool is likely allocated to fewer starch
granules thereby leading to considerably larger granule size in the mutant in comparison
to WT (Columbia-0) plants [41]. So, this is a clear indication that the initiation of starch
granules at least partially requires SSIV in Arabidopsis leaves. Interestingly, the ssI/ssII/ssIII
triple mutant of Arabidopsis was able to form normal granules in the chloroplast with less
starch content, highlighting the function of SSIV because granules numbers were normal
in triple mutant plant [70]. Recent studies showed that Arabidopsis plants lacking SSIII
and SSIV showed no starch granule formation. Overexpression of SSIV increased the
level of starch accumulated in the leaves of Arabidopsis by 30–40% and caused a higher
rate of growth. This overexpression of SSIV did not drastically affect other genes and
only slightly altered the expression of APS1 and SSIII [71]. The leading role of SSIV is
to coordinate starch metabolism during leaf expansion and to determine the flattened
discoid shape of starch granules [72]. It is depicted that the transcriptional regulation
of starch synthesis varies among all SS. The variation is minor, but the differences are
more prominent for AtSSI and AtSSIV [71]. A strict correlation between promoter/gene
sequences and transcription level indicates that AtSSIV is subject to cis- regulation, while
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the absence of this correlation in the other SS genes shows that they have a trans-regulatory
mechanism [73].

Observations from reverse transcription PCR, western blotting, or zymograms indicate
that in rice, OsSSIVa is mainly expressed in the endosperm and OsSSIVb expresses in leaves
as well as other developmental stages [74]. It was also observed that the initiation of starch
granule synthesis in rice endosperm does not solely depend on OsSSIVa and OsSSIVb
because suppression of these genes does not inhibit the granule initiation process [61].
Strong expression of these genes is observed in sink leaves but is low in seeds. There was
weak interaction between SSIV and SP (starch phosphorylase) in maize during protein-
protein interaction [35]. TaSSIV is expressed in leaves and seeds of wheat [75]. The
identification of differences at the amino acid level in TaSSIVb and OsSSIVb in their
glycosyltransferase domains might indicate different functional associations [76,77]. TaSSIV
overexpression increases the accumulation of starch in both photosynthetic and sinks
organs. Considering all the limitations inherent in basing conclusions on genetically
engineered plants, the results have shown that overexpression of SSIV helps to increase
starch content in different autotrophic and heterotrophic organs [78]. However, TaSSIV
importance related to granule formation remains unknown. Firstly, it is also not known in
wheat whether TaSSIV is essential for maintaining the starch granule number in mature
leaves, or if it has a role in immature leaves where new granules arise during chloroplast
division [70]. Secondly, it is also not known if a reduction in starch granule number in the
TassIV mutant is due to the direct or indirect consequence of the loss of TaSSIV because
mutants have additional pleiotropic phenotypes in which altered granule anatomy and
morphology reduce plant growth as a result of mutation [78]. Third, it is also suggested
that overexpression of this gene results in a higher concentration of starch at the end of the
day and accelerated plant growth [75].

Among the starch synthases, SSV is most closely related to SSIV, a major determinant
of granule initiation and morphology [79]. However, unlike SSIV and the other starch
synthases, SSV is a noncanonical isoform that lacks catalytic glycosyltransferase activity.
Nevertheless, loss of SSV reduces starch granule numbers that form per chloroplast in
Arabidopsis, and ss5 mutant starch granules are larger than wild-type granules. Like SS4,
SS5 has a conserved putative surface binding site for glucans and interacts with MYOSIN-
RESEMBLING CHLOROPLAST PROTEIN, a proposed structural protein influential in
starch granule initiation [10].

2.3. Impact of Different Mutation Technologies on Soluble SSs Genes

In the basic research of soluble starch synthase enzymes, great progress has been done
by increasing starch content in different cereal crops. High starch content with improved
good quality varieties have been developed in many cereal crops (wheat, maize and rice) by
using different mutation technologies such as TILLING, TILLING by sequencing, cloning
mutant alleles causative for improved traits and various genetic manipulation in starch
synthase genes through different chemicals (ethyl methane sulphonate) and gamma rays.

The effective methods to study starch synthase enzymes are induced mutation and
TILLING to generate point mutation. This reverse genetic strategy is suitable for all cereal
crops which can be used to detect the functional SNPs from the mutant population and
help to evaluate desired traits. SSIV gene had been studied to identify functional mutation
through TILLING and understanding the function of this gene [51]. Similarly, the missense
mutation for SSI in barley increased the proportion of A and B granules and nonsense
mutation for SSIIa change the proportion of amylose/amylopectin ratio and reduced the
size of A granules [27]. Marker assisted selection is also effective method for understanding
soluble starch synthase and help to fluctuate the amylopectin concentration. Functional
markers were developed in SSIV and these markers were used to screen the Chinese wheat
population. This functional marker showed significant association with thousand grain
weight [69].
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3. Structure-Function Relationships of SS in Cereals

Cereals possess multiple isoforms of SS, which are categorized based on conserved
amino acid sequence relationships (Table 1). SS has a highly conserved C-terminal motif
in which there is a conserved motif of K-X-G-G-L which is responsible for substrate
binding [19]. While at the N-terminus of SS, there is variation in length and amino acid
sequence which might define the function of each SS isoform. These SS isoforms are
highly conserved in higher plants (dicots and monocots) [80]. The sequence of encoded
proteins shows a high degree of similarity, but their expression is different among specific
isoforms, seemingly divided into predominate expression in vegetative parts or in the
endosperm [19] (Wang et al., 2015). Furthermore, there are several isoforms in cereals in
each class of SS except for SSI and SSV. For example, SSIIa and SSIIIa isoforms are mainly
expressed in the endosperm [81]. Some species have one isoform in each class, such as in
Arabidopsis and potato.

A phylogenetic tree was constructed to explore the evolutionary relationship of SS in
cereal crops (Figure 2). Our analysis depicted that SS isoforms in cereal crops have experi-
enced gene duplication events to different degrees and SSIV showed a close relationship
with SSIII, which indicated that their functions are similar in cereal crops [82]. Similarly,
SSI showed a close relationship with SSII. Based on protein sequences, it is believed that
SSs belongs to glycosyltransferases (GTs) domains [83]. According to domain analysis
in cereal crops, it has been detected that GT1 and GT5 domains are present in almost all
SS isoforms except for SSV in which there is just a GT5 domain (Figure 3). The primary
function of these domains is to catalyze the transfer of glucose to the non-reducing end of
the already existing glucosyl acceptor chain to form the α-1,4-glycosidic bond to elongate
the chain [58]. In barley SSI and rice GBSS, the catalytic domain has a GT-D fold, which
has an active site in the cleft between these two domains (GT1 and GT5) [79].
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different cereal crops. The tree was designed by the neighbor-joining method. The bootstrap scores
higher than 40 are shown here. Each node is labeled with the prefix of the respective species. The
protein accessions numbers are given in Table S1. HvSSI, II, III, IV: Hordeum vulgare starch synthase
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sativa starch synthase I, II, III, IV, V; ZmSSI, II, III, IV, V: Zea mays Starch synthase I, II, III, IV, V.
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coloration and coil coiled domains (Cc) are in yellow.

There are either one or two coiled-coil (Cc) motifs in SSIII, SSIV, and SSV in the N-
terminal region, which play an essential role in protein-protein interactions [84]. In SSIII,
three conserved binding modules (CBM-25) are detected in the N-terminal region and
play an important role in substrate binding [85]. The secondary structure of SS isoforms of
maize was developed on the basis of the reference model of SSI in wheat, which showed
83% similarity to maize SSI [86]. In maize, this secondary structure analysis showed the
difference between SSI and SSII in the GT5 domain and both of these are different from
SSIII based on the composition and position of β sheets and α helices. Similarly, the main
difference between SSIV and SSV was in the GT1 domain due to missing α helices in
SSIV (Figure 3) [82]. In SSV, the active site of this isoform is less conserved, but there is
a small portion that showed similarity to SSIII and SSIV (Figure 3) [87]. After studying
the analysis of the motifs, it was revealed that the motif “24” is only present in the SSII
isoforms. Apart from motifs “20” and “24,” the composition of SS and GBSS motifs are
similar. In SSIII, unique motifs were identified which are present in GT1 and GT5 domains
represented as motif “1” and motif “26” and these motifs are totally unique from other
SS motifs (Figures 3 and 4) [82]. In SSs N-terminal regions of the GT-5 domain possesses
a highly conserved KXGGL motif “1” and this motif is very well conserved between the
different SSs and play very important role in the binding of substrate. Similarly, all SSs
contain motif “VIII” towards their C-terminal and it is known as “KTGGL look like”. This
motif is less conserved between the different SSs [82].
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Similarly, the exact role of the other motifs needs to be resolved in SSs, but it can be
said that these motifs may be involved in the formation of three-dimensional structure and
have contribution in the ADP-binding and domain stability. The GT-1 domain possesses
the number of conserved motifs which have been found in a functionally heterogenous
group of glycosyl transferases [82].

4. Regulation of SS Activity in Cereals

Each class of SS plays a distinct role in amylopectin synthesis. As previously described,
A- and B1- chains are mainly formed from SSI and SSII isoforms to synthesize short
cluster-filling chains, while SSIIIs form long cluster-spanning chains (B2–3 chains) [22].
Similarly, SSIVs are not involved in amylopectin chain elongation but are involved in
granule initiation and control granule morphology [52]. In fact, the situation is more
complicated when we consider the overlapping functions between different isoforms, the
involvement of starch degrading enzymes, and the formation of enzyme complexes [17].
There is also a sizeable gap between our understanding of how each class is regulated at
the molecular level.

The contribution of each SS varies in different tissues and between different species,
which gives us the idea that there is structural variation in starches from various sources.
SSI and SSIII play an essential role in maize endosperm through soluble SS activity, as SSI
showed no transcript in the leaves of maize [88].

In Arabidopsis leaves, the dominant soluble SS appears to be SSI judging by AtssI
mutant analysis, followed by SSIII, and finally SSII [71]. SSIV contributes little to total SS
activity, even though the expression of this enzyme is reasonably high [89,90]. However,
the contribution of each SS is difficult to elucidate due to complex genetic interactions. For
example, suppression of SSIII caused upregulation of GBSS and SSI, thereby changing
the background SS activity [82]. Furthermore, it has also been estimated that SS assays
themselves might be better suited to measure the activity of one SS class over another, thus
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making activity estimations inaccurate. The mutant activity in SSIV showed a reduction in
function of granule formation, only explained in rice [36] and Arabidopsis [91].

4.1. Regulation of Protein Phosphorylation

The research related starch phosphorylation was started in the early 20th century by
detecting the small amount monoesterified phosphate in the potato starch. Phosphorylation
helps to improve the physiochemical properties of starch. Phosphorylation amount varies
based on organ of plant and species [92]. Starch biosynthetic protein complexes were
initially identified in the endosperm of wheat and were later found in wheat leaves [30].
By using endosperm of other cereal crops, further evidence was collected [91] (Wu et al.,
2016). Phosphorylation-dependent complexes with members such as SSI, SSIIa, BEIIa, and
BEIIb were identified in barley endosperm [93]. In rice endosperm, gel filtration analysis
revealed that SSIIa, SSIIIa, SSIVb, BEI, and BEII formed a high molecular weight protein
complex and this protein complex larger than those found in maize. Starch biosynthetic
protein complexes are present in the endosperm of cereal crops but still there is need to
explore these complexes in the non-cereal crops. It is not compulsory that phosphorylation
sites are conserved in all plant species even though phosphorylation-dependent protein
complexes are present in wheat, maize, rice, and barley [94]. For starch granules, SSI, SSII,
and BEIIb must play a role in starch synthesis as a maize mutant ssII had undetectable
levels of SSI and BEIIb in starch granules [64]. This phenomenon was also observed in
barley and rice ssII mutants [94]. However, the relationship between SSII activities and the
phosphorylation-dependent formation of protein-protein complexes remain obscure [64].

In wheat, there is need to study SSII phosphorylation sites for the formation of
protein complex. The protein sequence alignment of different species such as Arabidopsis,
rice, wheat maize and barley indicated that only Thr323 is highly conserved site. This
conserved site is not present in wild wheat, but it is present in the waxy wheat [95].
The phosphorylation sites of SSIIa of wheat are detailed in Figure 5. The impacts of
putative phosphorylation sites need to be verified using biochemical and mutant analyses
to understand their role in starch biosynthesis and complex formation [96].
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synthase IIa.



Agronomy 2021, 11, 1983 12 of 16

4.2. SSs form Heteromeric Protein Complexes in Amyloplasts

Investigating the mechanisms of SS complex formation in plastids is critical for under-
standing storage starch biosynthesis, which is mainly associated with the enzymes involved
in amylopectin synthesis [97]. Different SS classes and SBEs form a trimeric complex and
play a role in amylopectin cluster biosynthesis. During the isolation of complex, all three
enzymes (SSI, SSII, and BEII) remain catalytically active [35]. It has been suggested that in
this trimeric complex, SSII and BEII have a significant level of affinity for amylopectin [22].
It has been depicted that the trimeric protein complex components (SSI, SSIIa, and SBEIIb)
become entrapped within the starch granule due to SSIIa glucan binding capacity [64].
Several heteromeric protein complexes are proposed to be involved in amylopectin biosyn-
thesis, which is mainly regulated through protein phosphorylation [98]. An increase in SSI
and GBSS levels was observed in ssIII endosperms from maize [99] and rice [100]. It can be
speculated that alteration in amylopectin is due to overexpression of SSI.

5. Conclusions and Future Aspects

Starch synthesis in the endosperm is the basis of yield in almost all-important crops.
Starch granule formation in cereal crops needs to be carefully coordinated between SSs,
SBEs, and DBEs to form amylopectin clusters. These clusters are the main blocks of
water-insoluble polymers. Our present knowledge about the structural and functional
understanding of SSs showed that these isoforms are important in starch biosynthesis. This
information also provides insight into the post-translational regulation of these enzymes.
SSs are essential in starch storage crops, especially to improve starch quality and yield
for providing nutrition to people across the globe. From recent research, it is apparent
that SSs are subject to protein phosphorylation and the formation of heteromeric protein
complexes by association with starch-relevant enzymes. This development helps to further
our understanding of this essential biosynthetic pathway. Similarly, new mutation detec-
tion methods such as TILLING, TILLING by sequencing or genome-editing can greatly
promote to understand the function of soluble starch synthase genes and help to starch
improvement. For future studies, there is a need to identify the regulatory enzymes and
kinases/phosphatases that are involved in establishing protein-protein interactions, which
will provide valuable information for understanding and manipulating starch biosynthesis.
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