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Abstract: Heat stress (HS) and water stress (WS) pose severe threats to viticulture, and effective
management solutions to counter their effects on grapevine performance must be examined. In
this study, we evaluated the physiological and spectral responses of Vitis vinifera L. cv. Sauvignon
blanc to individual (HS) and combined (HS + WS) stress under four different cooling and irrigation
strategies. The treatments were: standard drip irrigation (SI), extra drip irrigation (SI+), extra
sprinklers irrigation (SPRI), and sustained deficit irrigation (SDI; 50% of SI). Compared to the other
treatments, in the early stages after the occurrence of HS, the vine water status of SPRI and SI+
improved, with high stomatal conductance (gs) (SPRI) and stem water potential (Ψstem; SPRI and
SI+). All the physiological indicators measured were significantly lower after the end of HS in the
SDI treatment. We also identified the spectral response of grapevine to HS and combined HS and
WS (resulting from SDI). Consistent with the physiological analysis, the proximal spectral responses
of leaves identified SPRI and SI+ as putative cooling strategies to minimize vine HS. The vines
undergoing combined stress (SDI) showed greenness amelioration 10 days after stress, as revealed
by the greenness vegetation indices (VIs), i.e., Green Index (GI), Normalized Difference Greenness
Vegetation Index (NDGI), and Visible Atmospherically Resistant Index (VARI). However, their
physiological recovery was not achieved within this time, as shown by the Simple Ratio Index (SRI),
Transformed Chlorophyll Absorption Ratio Index (TCARI), and TCARI/Optimized Soil-Adjusted
Vegetation Index (TCARI/OSAVI). A three-step band selection process allowed the identification
of the spectral traits’ responsive to HS and combined stress, i.e., 1336–1340 nm, 1967–1971 nm, and
600–604 nm.

Keywords: heat stress; drought stress; grapevine; vegetation indices; hyperspectral analysis; grapevine
physiology

1. Introduction

One of the consequences of climate change is the increased frequency, duration and
intensity of heatwaves [1,2]. Heatwaves, defined as the persistence of three or more days
at or above 35 ◦C [3], are affecting viticultural areas globally, especially in Europe [4–6]
and Australia [7,8]. Current projections estimate that heatwaves will further increase by
2100 [9,10].

The effects of heat stress (HS) on grapevine physiology have been studied. The
inhibition of net photosynthesis (Pn) caused by HS can lead to lower yield in several
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grapevine varieties [6,7]. Grape berry maturation may be delayed [11], with a consequent
reduction in the size and fresh weight [7] and increased shriveling of berries [12,13]. A
decoupling between anthocyanins and sugar was observed in Shiraz and Cabernet Franc
under high-temperature conditions [14], and rotundone concentrations were reduced in
Shiraz wines [15].

Given the environmental conditions of high temperature and low relative humidity
(RH) that occur during a heatwave, if soil water is limited, HS is associated with water stress
(WS), due to the increased evaporative demand [16]. WS affects the morphological traits
(e.g., reduction in leaf size and vegetative growth) and physiological traits (e.g., reduction in
Pn, stomatal conductance—gs, and leaf transpiration rate—E) of vegetation [17]. Although
moderate WS increases the quality of red varieties, e.g., promoting the accumulation of
quality-related metabolites, it substantially reduces berry size and yield [18]. Moreover, WS
may cause oxidative damage via the production of reactive oxygen species, which damage
the cells and their components [19]. To date, less attention has been paid to the combined
effects of HS and WS on grapevines. Some studies have underlined that the consequences
of combined stresses may be substantially different from those of individuals stresses. For
example, combined HS and WS leads to increased leaf temperature due to stomatal closure,
whereas during individual HS, heat is dissipated through stomata [20].

Application of evaporative cooling via sprinklers or drip irrigation may lead to an
improvement in the soil water balance [21], improving vine water status and reducing
HS. For example, small amounts of water distributed for three minutes every 15 min by
overhead sprinklers lowered the ambient temperature around the canopy by 7 to 10 ◦C and
raised the humidity from 10 to 20% in Tokay [22]. In-canopy misters reduced the canopy
temperature of Sauvignon blanc and Cabernet Sauvignon grapevines by 5 ◦C [23].

Previous studies investigated the physiological response of grapevines to HS and WS
under different water management schemes. Edwards et al. [24] studied the effects of a
heatwave generated in a glasshouse on Cabernet Sauvignon physiology under regular and
deficit irrigation. Their findings showed that gs of deficit-irrigated vines was reduced by
more than 85%, Pn by 30%, and internal CO2 concentration (Ci) by 9%. Sousa et al. [25]
analyzed the changes in several physiological parameters in Aragonês under different
water regimes. Their results revealed that gs, and E were significantly correlated with soil
water content, and leaf water potential (ΨL) exhibited poorer performance compared to the
previous indicators. On the contrary, ΨL was considered a good indicator of vine water
status in Pinot noir under three water management strategies [26].

An accurate estimation of the physiological behavior of grapevine under stress condi-
tions entails the use of complex and, in some cases, destructive equipment. Non-destructive
techniques to quantify the effects of extreme weather events on crops are emerging using
reflectance or spectral techniques [27]. For example, the green (550 and 570 nm), red
(670 nm), red edge (>700 nm), and near-infrared (NIR, 800 nm) spectral bands can provide
a reliable prediction of Carménère water status [28]. The NIR spectral band can provide a
reliable assessment of the water status of leaves and canopy [29]. Environmental RH during
HS correlated positively with the red edge region and growing degree days correlated
negatively with the short wave near-infrared (SWIR, 1610 nm) region [3]. There are a
wide range of spectral vegetation indices (VIs) used to describe WS, and some preliminary
studies have been conducted on HS. Although a considerable number of studies have been
carried out to assess the physiological and spectral responses of grapevine WS, specific
knowledge of these responses under combined stresses and HS with different evaporative
cooling systems is lacking. To the best of our knowledge, the validation of the spectral
response with an accurate physiological analysis has not been performed.

In this study, three methods of evaporative cooling were investigated on Vitis vinifera L.
cv. Sauvignon blanc under HS conditions in the Riverland region of South Australia. More-
over, a fourth treatment, namely sustained deficit irrigation, was evaluated. The specific
objectives of this study were to: (i) evaluate the physiological responses to HS of Vitis
vinifera L. cv. Sauvignon blanc under different cooling treatments, and the interactions with
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WS; and (ii) identify the most consistent, robust, and reliable spectral predictors (hyperspec-
tral bands and VIs) of the physiological responses to HS, and combined WS and HS, and
the effects of various evaporative cooling systems. These objectives aimed at verifying our
hypotheses that (i) evaporative cooling systems can minimize the physiological effects of
HS; and (ii) spectral sensors can be used to assess the physiological responses of grapevines
under HS and combined stresses. Testing hypothesis (i) may allow for decision making
around management strategies, specifically evaporative cooling systems and irrigation, to
reduce the adverse effects of HS on vine performance and grape/wine quality. Moreover,
verifying hypothesis (ii) contributes to unravelling the poorly known effects of concurrent
HS and WS on grapevines, and identifying non-destructive tools to assess HS in vineyards.
Our study proposed a methodological approach that uses an integrated instrumental ap-
proach to analyze HS and combined HS and WS. Moreover, the study provided field results
during a particularly critical season.

2. Materials and Methods
2.1. Study Area and Experimental Design

The study was conducted in January 2020 at Yalumba Oxford Landing Estate (OLE),
a commercial vineyard (Figure 1) in the Riverland, South Australia (34◦06′06.29′′ S and
139◦50′39.21′′ E). The vineyard block (0.9 ha) was planted in 1995 with Vitis vinifera L. cv.
Sauvignon blanc, clone H10-F4V6, rootstock Ramsey, and was 100% mechanizable [30].
Rows were orientated N–S at a spacing of 1.8 m between vines and 3.0 m between rows
(approx. 1852 vines ha−1). The vines were trained to the Quadrilateral cordon training
system, and their height was approximatively 2.3 m. The topsoil layer (5–25 cm) was loamy
sand, and the subsoil sandy loam to loamy sand. There are not known water tables in the
top 3.5 m of the soil profile.
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Figure 1. Identification of the study area.

The experimental design consisted of the implementation of four irrigation strategies
with 24 replicate vines per treatment in a 3 × 3 Latin Square experimental design with at
least two rows as buffer within treatments. Therefore, the total number of vines considered
in this study was 96. The four treatments were:

1. Standard drip irrigation (SI)—conventional irrigation for the region, growers applied
4 h of additional irrigation during the day preceding HS. Irrigation was applied
using a single dripline with pressure-compensating emitters spaced 0.3 m apart, each
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with a flow rate of 1 L h−1. This spacing and flow rate delivered approximately
6 L vine−1 h−1, 1.11 mm h−1.

2. Extra drip irrigation (SI+)—same irrigation as SI and, in addition, four cycles of
30 min on/30 min off were triggered at night before HS. The treatment consisted of a
separated irrigation line with two drippers per vine (flow rate: 13.5 L h−1). The target
flow rate was 54 L vine−1 night−1. The system was controlled with a Galcon G.S.I.
DC power wireless solenoid controller.

3. Sprinkler irrigation (SPRI)—the treatment consisted of the same irrigation as SI, and,
in addition, an under-vine broadcast sprinkler covering both the under-vine and
inter-row regions. Timing and volume of water were the same as SI+. The system
was controlled with a Galcon G.S.I. DC power wireless solenoid controller.

4. Sustained deficit irrigation (SDI)—50% of SI from approximatively one week before
HS (approximatively two weeks post véraison) to harvest.

The additional amount of water in SI+ and SPRI was provided during the night to
minimize evaporative losses from the soil.

In assessing soil/vine responses to deficit irrigation, the water balance method for
estimating irrigation requirements is not considered an appropriate technique, and, instead,
indicators based on plant water status have been recommended [31]. Therefore, the level of
deficit irrigation implemented in SDI was assessed based on significantly different Ψstem.

2.2. Meteorological Data

The meteorological data (average and maximum daily air and soil temperature; aver-
age and minimum daily relative humidity; maximum daily vapor pressure deficit; average
and maximum daily solar radiation) were obtained from an onsite automatic weather
station (AWS) located approximatively 1 km from the trial block. The station is part of the
Natural Resources Management (NRM) weather station network, and data are accessible
online (https://www.awsnetwork.com.au/station/2770, accessed on 1 March 2021).

The field campaigns took place between the 10 and 25 January 2020. The sampling
dates were based on weather forecasts. The 10th of January was considered the reference
date four days prior to the HS period, and post-HS was considered during two periods—
two days (17 January; short-term recovery response) and 10 days (25 January; medium-term
recovery response)—following the last HS day. HS occurred between 14th and 15th January,
for two days, with average daily maximum and minimum temperatures during this period
of 37.0 and 16.4 ◦C, respectively.

2.3. Physiological Measurements

During the experiment, the leaf physiological values of Ψstem, gs, E, Pn, and intrinsic
water use efficiency (WUEi = Pn/gs) were measured. These variables are considered relevant
due to their prior response to water status [32–35] and HS [36]. Ψstem was measured on
one leaf per vine, selecting one random mature, fully exposed, and healthy leaf. Leaf gas
exchanges (gs, E, Pn, and WUEi), were measured on one leaf of the same shoot with the
same characteristics.

Ψstem was measured using a Scholander-type pressure chamber (Model 1505D EXP,
PMS Instruments, Albany, OR, USA). Before measurements, leaves were sealed for at least
60 min with an aluminum foil-coated plastic bag to stop transpiration. The measurements
were performed within 30 s from cutting and always by the same operator to minimize
human error. One leaf per vine was used for Ψstem measurements for a total of 96 observa-
tions for each of the three dates considered. The measurement was carried out within 1.5 h
on each side of solar noon (13.30 h)

A portable infrared gas analyzer (IRGA, Model LI-6400XT, LI-COR, Lincoln, NE,
USA) was used for instantaneous leaf gas exchange measurements of gs, E, and Pn. The
measurements were taken at environmental CO2 concentration (Ref CO2 = 400 ppm),
saturating radiation levels (PAR = 1500 µmol m−2 s−1), and flow rate of 500 µmol s−1

allowing RH in the leaf chamber ranging between 30–40%. The cuvette area was 6 cm2.

https://www.awsnetwork.com.au/station/2770
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The measurements were carried out within 1.5 h at each side of solar noon (13.30 h)
on one leaf per vine of one of the three replications, for a total of 32 observations (1/3 of
the total sample) for each of the three dates considered.

2.4. Hyperspectral Measurements

The diffuse reflectance spectra were detected for one leaf per vine using a portable high-
resolution spectrophotometer (ASD FieldSpec® 3, Analytical Spectral Devices, Boulder,
CO, USA). The instrument records the full range solar irradiance spectrum (350–2500 nm)
with a resolution of 3.5 nm in the visible-near infrared 350–1000 nm range, 10 nm in the
1000–1900 nm range, and 7 nm in the 1900–2500 nm range. The spectra collection was
carried out using the default contact probe provided by the company, which allows using
the ASD as an active sensor. The instrument is provided with the RS3

TM dedicated software,
which enables acquisition of the spectral signature of the leaves. The calibration of the
instrument, which was used in reflectance mode, was performed by acquiring a white
reference scan from a Spectralon® tile (Analytical Spectral Devices, Boulder, CO, USA). The
dark reference was acquired using a closed cuvette without light.

A total of 96 hyperspectral measurements were made on the same vines characterized
for Ψstem concurrently on each of the three dates. The reflectance was measured on one leaf
per vine positioned in the same shoot of the leaves used for the physiological measurements.

The raw spectral data were imported into R statistical software (Version 3.5.2, RStudio
Version 1.2.1335) to derive the VIs reported in Table 1. The VIs were selected after a
literature survey. The VIs used in this study were classified into different categories. Most
are greenness VIs, measuring the quantity and vigor of green vegetation (EVI, GI, GNDVI,
MSR, NDGI, NDVI, SRI, TCARI, and VARI). PRI is a light use efficiency VI, providing an
indication of the efficiency with which vegetation uses incident light for photosynthesis,
and TCARI/OSAVI is a combination of indices designed to minimize soil background and
leaf area index variation [37]. WBI is a canopy water content VI, which has been proven to
track the changes in the relative water content of crops.

Table 1. Overview of the VIs used to assess WS and HS in grapevines.

Index Formula Stress Cultivar Reference

Normalized Difference
Vegetation Index [38] NDVI = R800−R670

R800+R670

WS
Vitis vinifera L. cv. Muscat,

Carignan, Grenache Noir, Shiraz,
Mourvedre, Petit Verdot

[39,40]

WS Vitis vinifera L. cv. Tempranillo [41]

WS Vitis vinifera L. cv.
Cabernet Sauvignon [42]

WS Vitis vinifera L. cv. Carménère [28]

WS Vitis vinifera L. cv. Chardonnay [43]

WS Vitis vinifera L. cv.
Thompson Seedless [44]

HS Vitis vinifera L. cv. Sangiovese [45]

Green Normalized
Difference Vegetation

Index [46]
GNDVI = R800−R550

R800+R550

WS Vitis vinifera L. cv. Carménère [28]

WS Vitis vinifera L. cv. Tempranillo [41]

WS Vitis vinifera L. cv.
Cabernet Sauvignon [42]

Modified Simple Ratio [47] MSR =
R800
R670
−1√

R800
R670

+1

WS Vitis vinifera L. cv. Tempranillo [41]

WS Vitis vinifera L. cv. Carménère [28]

Transformed Chlorophyll
Absorption Ratio

Index [48]

TCARI = 3 ∗ [(R700 − R670)− 0.2 ∗
(R700 − R550) ∗ ( R700

R670
)

WS Vitis vinifera L. cv. Tempranillo [41]

HS Vitis vinifera L.
several cultivars [49]
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Table 1. Cont.

Index Formula Stress Cultivar Reference

TCARI/Optimized
Soil-Adjusted Vegetation

Index [48]

TCARI/OSAVI =
3∗[(R700−R670)−0.2∗(R700−R550)∗

(
R700
R670

)
(1+0.16)∗(R800−R670)/(R700+R670+0.16)

WS Vitis vinifera L. cv. Tempranillo [41]

WS Vitis vinifera L. cv.
Thompson Seedless [44]

Green Index [49] GI = R554
R677

WS Vitis vinifera L. cv. Tempranillo [41]

Simple Ratio Index
800/550 [50] SRI = R800

R550
WS Vitis vinifera L. cv. Tempranillo [41]

Visible Atmospherically
Resistant Index [51] VARI = R550−R670

R550+R670−R470
WS Vitis vinifera L. cv.

Touriga Nacional [52]

Normalized Difference
Greenness Vegetation

Index [49]
NDGI = R550−R670

R550+R670
WS Vitis vinifera L. cv.

Touriga Nacional [52]

Photochemical Reflectance
Index [53] PRI = R530−R550

R530+R550
WS Vitis vinifera L. cv.

Thompson Seedless [44]

Enhanced Vegetation
Index [54]

EVI = 2.5 ∗ R800−R670
R800+6∗R670+6∗R470

HS Vitis vinifera L., several cultivars [3]

WS Several crops (e.g., cotton, creosote
bush, spruce) [55]

WS Vitis vinifera L. cv. Chardonnay [56]

Water Band Index [57] WBI = R950
R900

WS Vitis vinifera L., several cultivars [58]

2.5. Data Analysis
2.5.1. Evaluation of the Treatments

The aim of the analyses was to test the hypothesis by comparing the vine performance
under the four different treatments over three different dates: 10th of January, before
HS; 17th and 25th of January, two and 10 days after the end of HS, respectively. The
physiological data and VIs were used to compare the four treatments. Two-way ANOVA
was performed using the GraphPad Prism 8.0.0 (GraphPad Software, Inc., La Jolla, CA,
USA) software package. Means were separated by Tukey’s Least Significant Differences
(LSD) test. The null hypothesis for the statistical analysis was that there is no significant
difference between the treatments over different dates (p ≤ 0.05).

2.5.2. Optimum Hyperspectral Reflectance Bands Selection

The selection of the wavebands was based on the premise that the optimum bands are
those that have the lowest autocorrelation, provide high information, and allow discrimi-
nation of the target [59,60]. To quantify these three assumptions, the analysis was carried
out as follows.

First, the spectral regions between 350–399 nm, 1355–1420 nm, 1810–1940 nm and
2470–2500 nm were removed from analysis. These regions are considered to be noisy
regions [59,61]. Then, the spectral regions that are more sensitive to HS under different
cooling treatments were identified by plotting the percentage reflectance of each treatment
relative to that of SI+, which was expected to be the most effective treatment.

SWIR and NIR spectral regions were also analyzed, because small reflectance differ-
ences in these spectral regions may correspond to strong differences in plant vigor caused
by signal saturation [62]. Thus, spectral regions with a wavelength before 720 nm (red edge)
were selected considering those with higher differences, whereas spectral regions beyond
the red edge were investigated even if smaller differences were detected, considering the
highest reflectance of plants in those spectral regions.

The bands pertaining to the areas of different spectral regions which exhibited higher
differences from SI+ in all the other treatments were selected for further analysis.
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Then, a band–band regression model was used. A high coefficient of determination
(R2) value between two bands implies redundant information, whereas a low R2 value
indicates that the two bands contain unique information, and thus are not auto-correlated
(i.e., have low collinearity). For each band of spectral region identified in the previous
step, the band pair correlations with the lowest R2 were selected, leading to six band
combinations. Principal component analysis (PCA) was carried out between the selected
bands and the physiological parameters for each treatment. The PCA was implemented
with the R statistical software (Version 3.5.2, RStudio Version 1.0.463) using the R package
“FactoExtra” [63]. The aim was to analyze the importance of these bands for discriminating
the different treatments. The band–band regression model was implemented with R
statistical software, using the package “corrr” [64] and selecting the pairs with the lowest R2.

To identify useful bands, further PCA was carried out using all the wavebands identi-
fied with the percentage reflectance plot. The bands were plotted against E rates measured
two days after the end of HS, which showed the highest correlation with the spectral
information and higher variability within the treatments. The five highest contribution
bands of three principal components (PCs) were selected. The PCA was performed using
the R statistical software.

Finally, Discriminant Analysis (DA) was performed to test the strength of data in
discriminating the treatments. Due to the collinearity of many bands, it was not possible to
run DA on original data, and data transformation did not improve the analysis. Therefore,
DA was performed on twelve bands identified by the first three PCs of PCA and showing a
Pearson’s correlation coefficient lower than |0.700| [65,66]. The DA was carried out using
the R package “klaR” [67] and splitting the dataset into training (80%) and test (20%) data.
Figure 2 shows the conceptual selection model.
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3. Results

According to the AWS, on the 14 and 15 January 2020, the maximum temperature
in the study area was above 35 ◦C. Although this could not be considered a heatwave,
the vines experienced HS. When the air temperature exceeds 35 ◦C, key physiological
processes of grapevines are compromised [68]. Detailed statistics on weather conditions
that occurred on the 14th and 15th of January 2020 are reported in Table 2.
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Table 2. Environmental conditions during the HS in the study area.

Date Avg Daily
T a (◦C)

Max Daily
T a (◦C)

Avg Daily
RH a (%)

Min Daily
RH a (%)

Avg Daily Soil
T a,b (◦C)

Max Daily
Soil T a,b (◦C)

Max Daily
VPD a (kPa)

Avg SR a

(W m−2)
Max SR a

(W m−2)

14 January 2020 26.2 35.4 38.1 12.6 43.5 80.6 2.1 371 1078

15 January 2020 27.0 39.0 47.3 12.6 49.6 89.9 1.9 339 1045

16 January 2020 21.0 33.3 54.9 0.0 46.2 80.6 1.12 356 1090

a T = ambient temperature, RH = ambient relative humidity, soil T = soil temperature, VPD = vapor pressure deficit, SR = solar radiation; b

soil temperature sensors were deployed approximately two meters from the weather station in unaltered site soils to a depth of 150 mm.

3.1. Grapevine Physiological Status: Water Relations and Gas Exchange

The physiological indicators of the treatments were compared using a two-way
ANOVA (Figure 3).
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Figure 3. Variation in (a) stem water potential (Ψstem), (b) leaf stomatal conductance (gs), (c) leaf
net transpiration rate (E), (d) photosynthesis (Pn), and (e) leaf intrinsic water use efficiency (WUEi)
for Sauvignon blanc subjected to HS under different cooling treatments. Each data point is the
mean ± standard error of the mean of twenty-four (Ψstem) or eight (gs, E, Pn, and WUEi) replicates.
The comparison dates were before HS (PreHS), two days after HS (PostHS2) and ten days after HS
(PostHS10). Treatments sharing the same letter do not differ statistically at p ≤ 0.05. Means were
separated by two-way ANOVA using Tukey’s Least Significant Difference (LSD) test.
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Two days after the end of HS, Ψstem of two treatments (SI+ and SPRI) were higher than
before HS (+29.7 and +25.8%, respectively). The same trend continued 10 days after the
end of HS. SI did not show significantly different Ψstem values two days after the end of
HS, but Ψstem significantly improved 10 days after the end of HS compared to the 10th of
January, before HS (+14.7%). Ψstem of SDI showed a significant drop two days after the end
of HS (−25.6%), which persisted 10 days after the end of HS (−34.8%).

The only treatment which maintained constant gs over time was SPRI. The values of gs
did not show significant differences two days after the end of HS under SI but dropped after
10 days (−19.8% compared to before HS). SI+ showed a constant decrease in gs (−20.6%
and −36.8% two and 10 days after the end of HS, respectively). Under SDI, gs dropped
significantly two days after the end of HS (−65.0%), and, despite a slight recovery, stayed
at a low level 10 days after the end of HS.

The trend of E was the same for three treatments (SI+, SPRI, and SI) with a significant
decrease only 10 days after the end of HS. Conversely, E dropped in SDI immediately after
HS (−54.8%), and the difference persisted 10 days after the end of HS.

Three treatments (SI+, SPRI, and SI) did not show any differences in Pn. Only SDI
exhibited lower Pn rates two days after the end of HS (−51.0%) but recovered 10 days after
the end of HS.

With regards to WUEi, SPRI and SI did not show any significant change after HS.
WUEi was higher 10 days after the end of HS for SI+ (+47.8%). A significant increase
was registered for SDI starting from two days after the end of HS (+39.5%) and persisted
10 days after the end of HS (+51.8%). Detailed information on the relative differences of
the physiological parameters from the date before HS are reported in the Supplementary
Materials (Table S1).

3.2. Hyperspectral-Derived VIs

With regards to the greenness VIs (Figure 4), in SI, EVI showed a significant difference
10 days after HS; GNDVI, MSR, NDVI, SRI, and TCARI were not affected by HS; GI,
NDGI, and VARI showed a significant amelioration 10 days after HS. In SI+, EVI, MSR,
and NDVI were significantly different 10 days after HS, but GI, GNDVI, NDGI, and VARI
exhibited significant amelioration 10 days after HS. In SPRI, EVI, MSR, and NDVI showed
a significant difference 10 days after HS, whereas GI, GNDVI, NDGI, SRI, and TCARI were
not affected by HS. In SDI, most of the VIs exhibited lower performance immediately after
HS, but GI and NDGI recovered 10 days after HS.

The remaining VIs showed different behavior (Figure 5). In SI, they did not show
significant differences after HS. In SI+, PRI was significantly different from previous dates
10 days after the end of HS, whereas TCARI/OSAVI and WBI did not exhibit significant
changes. In SPRI, PRI and WBI showed a significant difference 10 days after HS, and
TCARI/OSAVI was not affected. In SDI, PRI was significantly lower two days after the
end of HS and completely recovered 10 days after the end of HS; TCARI/OSAVI was
significantly higher two days after the end of HS, with partial recovery 10 days after the
end of HS; WBI showed a slight inflection immediately after HS, but was not significantly
different from before HS. Subsequently, WBI started to recover. Detailed information on the
relative differences in the VIs from the date before HS are reported in the Supplementary
Materials (Table S2).

3.3. Optimum Bands Selection

The spectrum was filtered to identify the spectral regions more sensitive to HS, and
the percentage reflectance of each treatment relative to that of SI+ was analyzed. The visual
assessment allowed the selection of 520–610 nm (green), 620–640 nm (red), 680–720 nm (red
edge), 770–1340 nm (NIR), 1421–1550 nm (SWIR), and 1941–2200 nm (water absorption
bands) for further analysis (Figure 6).
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The filtered bands were further investigated with a three-step process, including a
band–band regression model, PCA, and DA. The band–band regression model revealed
five pairs of bands that showed a very low coefficient of determination (0.001 ≤ R2 ≤ 0.203,
p ≤ 0.05), thus providing unique information (Table 3). The most frequently occurring
wavebands with low R2 in the correlation matrix included the wavelengths pertaining
to NIR (770–1340 nm) and the water absorption bands (1941–2200 nm). However, the
selection of the band pairs aimed to include all the spectral regions identified with the
relative reflectance filtering process (Figure 6): green, red, red edge, NIR, SWIR, and water
absorption bands. Therefore, once the pairs with the coefficient of determination within
the aforementioned range were identified, some were excluded based on their redundancy
(bands similar to other pairs). The examination of the lowest R2 bands with a PCA for
each treatment allowed recognition of the best predictors of physiological status under
HS (Figure 7). Overall, SI+, SDI, and SI performed similarly, with the water absorption
bands (1496, 1948, 1952, and 2032 nm) negatively correlated with Pn, E, and gs due to their
location in the opposite quadrant, and a second group of wavebands (570, 604, 636, 720,
1000, and 1033 nm) with a weaker correlation to the physiological parameters. However, in
contrast to the positive correlation between Ψstem and water absorption bands in SI+, the
correlation was negative for SDI and SI. Furthermore, in SPRI, not only Ψstem, but also gs
had a positive correlation with water absorption bands and the red band (636 nm).

Table 3. Band combinations with the lowest R2.

Bands R2

570~2032 0.182

636~1000 0.184

720~1948 0.082

1333~1952 0.001

1496~604 0.203
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Figure 7. PCA of the wavebands selected with the band–band regression model and the physiological
parameters (E = leaf transpiration rate, gs = leaf stomatal conductance, Pn = net photosynthesis,
SWP = stem water potential) for the four treatments. (a–d) represent different cooling and irrigation
strategies, respectively.

The second step for band selection was PCA, which aimed to reduce 1013 wavebands
to 15 critical bands, and enabled identification of three main spectral regions. The results
showed that PC1, PC2, and PC3 were dominated by bands pertaining to NIR, water
absorption bands, and the transition region between green and red bands. The first five
contributing bands for each PC are displayed in Table 4.

Table 4. Results of the PCA on the filtered (1013) wavebands. The first row shows the top five bands
of the first three components. The second row shows the top four bands for each component showing
a Pearson’s correlation coefficient lower than |0.700|. These bands were used in the DA model.

Bands with Highest Factor Loading Variability Explained (%)

PC1 PC2 PC3 PC1 PC2 PC3

1340, 1339, 1338,
1337, 1336

1969, 1970, 1968,
1967, 1971

604, 603, 601, 600,
602 62.62 27.00 7.88

1340, 1550, 2199,
720

1969, 1440, 883,
610

604, 1924, 2010,
1338

DA was inconclusive because it did not allow further discrimination between the
twelve input variables. However, the twelve bands had reasonable potential to allow
discrimination of the treatments (Wilk’s lambda = 0.47).

4. Discussion

Between December 2019 and January 2020, the study area suffered from repeated
days of HS. We examined the HS days between the 14th and the 16th of January. During
these days, the maximum temperature exceeded 35 ◦C for the first two days and remained
high on the third day (Table 2). Temperature in excess of 35 ◦C compromises grapevine
maximum Pn and gs rates [68,69]. Thus, we tested the potential of different cooling systems
to counter HS and the spectral responses of the vines under combined WS and HS, because
premium vineyards for wine grapes are often deficit irrigated.



Agronomy 2021, 11, 1940 13 of 20

4.1. Which Cooling Was the Most Effective in Mitigating HS?

SI, SI+, and SPRI were applied to counter HS. SI provided 6–7 ML ha−1 per season,
which is typical of highly productive vineyards in this region. Based on whole canopy
gas exchange measurements, these grapevines require approximately 40 L vine−1 day−1,
whereas they were irrigated at approximately 20–25 L vine−1 day−1 [70]. By comparison,
SI+ and SPRI proved to influence RH and reduce VPD inside the canopy without changing
soil moisture [23]. The different levels of HS under different cooling systems were assessed
by comparing physiological status indicators using ANOVA.

The results showed that SDI treatment suffered from HS, because all the physiological
indicators were significantly lower two days after the end of HS, and the stress condition
persisted 10 days after the end of HS (Figure 3). The analysis of Ψstem allowed for the
quantitation of WS in SDI. Although the value of Ψstem before HS in SDI was not extremely
low (−0.63 MPa ± 1.6 MPa), this value was significantly different from that of the other
treatments. The value of Ψstem recorded in SDI was consistent with a WS condition during
the post-fruit set stage [71]. Moreover, Ψstem further decreased after HS (Figure 3a), indicat-
ing the concurrence of WS in SDI. The overall decline experienced under HS, characterized
by physiological parameters, indicates a water conservation response [72]. The closure
of stomata to limit water losses is one of the first reactions to WS, thus decreasing gs and
Ψstem. Stomatal control allows regulation of Pn and E, preserving vines from irreversible
damage [73]. In the early phenological stages, the reduction in Ψstem induced by WS often
coincides with reduced leaf area [74]. The limited photosynthetic area entails the decline
in Pn. Furthermore, drought-induced closure of stomata is commonly associated with
increased WUEi values. Therefore, Ψstem, Pn, E, gs, and WUEi are physiological traits
commonly associated with WS.

The analysis of Ψstem (Figure 3a) proved that SI+ and SPRI, the treatments which were
supplied with more water during HS days, improved their performance after HS. SI also
showed a higher Ψstem 10 days after the end of HS. Ψstem is considered a reliable index of
water status in Vitis vinifera, and its values are the combination of different factors, such as
VPD, soil water availability, stomatal regulation, and plant hydraulic conductivity [75,76].

Many studies have found that Ψstem and E rates decrease after HS, whereas the findings
related to gs behavior are controversial, because it is difficult to isolate the direct effect of
temperature on gs [77–79]. In the current study, gs decreased significantly after HS, not only
in SDI, but also in SI+ and SI, and persisted for up to 10 days after the end of the HS event
(Figure 3b). In SPRI, gs did not exhibit significant variation after HS, thus leading to the
conclusion that HS causes stomatal closure in Sauvignon blanc, and SPRI treatments did
not undergo HS. Under HS conditions, E remained initially high for the evaporative cooling
treatments, thereby maintaining a relatively constant canopy temperature via evaporative
cooling, but dropped rapidly for SDI (Figure 3c), thus highlighting the severe effect of
combined HS and WS [80,81]. However, all treatments showed lower E 10 days after HS,
probably due to higher average RH. In agreement with the findings of Luo et al. [82], HS
at 35 ◦C did not significantly inhibit Pn, with the exception of SDI (Figure 3d). HS results
in a trade-off between hydraulic function and leaf temperature, i.e., opening stomata to
transpire under HS may compromise hydraulics and generate WS, whereas closing stomata
may increase the leaf temperature to the point that Pn drops off [83]. Moreover, during
HS, light energy usually absorbed by chlorophyll for photochemistry is partially lost as
sensible heat [84]. Furthermore, there is a build-up of toxic reactive oxygen species inside
the photochemical apparatus of the leaves, which can be quenched by heat dissipation
mechanisms such as non-photochemical quenching. Finally, HS induces the biosynthesis of
heat stress proteins (HSPs), which represents a vital adaptative mechanism. Nevertheless,
the energy spent by the vines for the synthesis of HSPs has negative repercussions on
yield [85]. The significant decrease in Pn only in SDI may confirm the potential efficiency
of cooling systems in the other treatments.

According to the primary studies on grapevines under HS conditions, Pn, gs, E, and
Ψstem decreased sharply [24,78,86]. In this study, only SDI showed a decreasing trend for all
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of the former physiological parameters, whereas SI+ and SPRI showed higher Ψstem. This
response may confirm that the evaporative cooling systems had a positive effect on the
mitigation of HS effects, with SPRI and SI+ performing slightly better than SI. Therefore,
the cooling systems evaluated in this study may represent effective tools to counteract the
negative influence of the heatwaves on vine physiological performance.

4.2. Which Is the Spectral Behavior of the Vines under Combined WS and HS?

Overall, the behavior of the VIs confirmed from the spectral perspective the observa-
tions in the physiological parameters (Figures 5 and 6).

Two days after the end of HS, SDI significantly differed both from pre-HS and from
the cooling treatments. An exception was WBI, which was not capable of combined
stress in SDI (Figure 5c). Because changes in leaf water content only occur during late
stages of dehydration [87], the failure of WBI to detect vines stress suggests that the vines
experienced moderate WS, and that WBI can be excluded from VIs for early tracking of
combined stress. The analysis of the percentage difference in physiological parameters
and VIs two and 10 days after the end of HS (see Supplementary Materials) allowed the
identification of some trends. Specifically, GI, NDGI, and VARI showed that HS affected
only the SDI treatment, but their values recovered to initial (pre-HS) levels within 10 days
after the end of HS. Concurrently, SI+ and SI treatments showed an improvement 10 days
after the end of HS, which may be related to their cooling efficacies. GI, NDGI, and VARI
are greenness indices, which combine the green and red bands to account for dry vegetation,
and have been proven to be effective for estimating drought stress [88] and leaf water
potential [89]. In this study, the performance of GI, NDGI, and VARI was consistent with
that of Ψstem and Pn. The spectral bands included in the equation of these VIs pertain to
the visible domain, whose reflectance is influenced by pigment content [51]. The pigment
content is related to HS, i.e., increased carotenoids and decreased Chlorophyll a and b
content [90]. Therefore, the findings of this study suggest that the evaporative cooling
systems mitigated physiological stresses associated with HS. In comparison, SRI, TCARI,
and TCARI/OSAVI revealed a slightly different situation, with SDI still declining soon
after HS, but not recovering even 10 days after the end of HS. Concurrently, the other
treatments did not exhibit any significant change. Compared with the previous group
of VIs, the VIs belonging to this second group contain the NIR (SRI) and/or red edge
(TCARI and TCARI/OSAVI) bands. The reduction in water content after WS leads to
a decreased NIR reflection. In previous studies, SRI has been used to assess vineyard
water status [37,41]. Moreover, NIR has been previously shown to discriminate HS and
estimate E [3]. VIs calculated in the red-edge spectral region were even more sensitive
than NIR in the identification of temperature- and water-induced changes in Cabernet
Sauvignon [91]. The failure of recovery of these VIs may indicate that, despite greenness
and vigor amelioration, the physiological parameters could not recover as quickly after the
combination of HS and WS. This hypothesis was supported by the fact that Pn and WUEi
showed the same trend as SRI, TCARI, and TCARI/OSAVI (Supplementary Materials).
The third group of VIs (MSR, NDVI, and EVI) yielded slightly different and heterogeneous
results, yet captured the effect of HS on SDI. Indices of the latter group result from a
combination of red and NIR bands. Previous studies showed a difference of less than 1.0%
in red reflectance for grapevines under HS conditions [91]. Our results suggest that VIs
containing a combination of green, NIR, and red edge bands may help to track combined
WS and HS in grapevines.

The three-step band selection process (band–band regression, PCA, and DA) aimed
at providing complementary information by eliminating redundant bands (band–band
regression and PCA), identifying the bands which drive vine response to WS and HS
(PCA), and highlighting the bands which discriminate the treatment (DA). The first three
PCs of PCA (Table 4) showed that the spectral regions involved in the vine response to
HS were NIR (1336–1340 nm), water absorption bands (1967–1971 nm), and the transition
region between green and red bands (600–604 nm). Compared to SI+, the other treatments
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responded to HS by increasing the reflectance in the green/red and NIR regions, while
decreasing it in the region of the water absorption bands (Figure 5). The 550–680 nm and
red-edge bands are indicators of chlorophyll content at the leaf level [84,92]. The reflectance
in the spectral region around 1240–1450 nm is influenced by leaf water content [93,94].
Consistent with the VI analysis, our findings indicate that two physiological processes—Pn
and E—show the highest sensitivity to HS.

Band–band regression allowed for the determination of specific bands within each
spectral region, which provided meaningful information about HS (Table 3). Some of the
information provided by band–band regression was confirmed by PCA. Specifically, bands
604, 720, and 1333–1340 nm were recurrent in both analyses. Bands 1496, 1948, 1952, and
2032 nm showed a strong inverse correlation with Pn and E for all treatments, whereas gs
was directly correlated with these bands for SPRI and inversely correlated for the other
treatments. Some of the aforementioned bands (604, 1496, 1948, and 1952 nm) are known
to be sensitive to leaf water content [28,95,96]. Another difference indicated by the PCA of
the lowest correlation bands was the direct correlation of bands 1000 and 1333 nm with the
physiological indicators—Ψstem, gs, Pn, and E—for SDI (Figure 7b). This finding suggests
that NIR is the critical spectral region for detection of the combined effects of HS and WS.

5. Conclusions

In this study, we analyzed the physiological behavior of Sauvignon blanc under
conditions of individual HS and combined HS and WS. Moreover, we compared the
effectiveness of different evaporative cooling systems to mitigate HS. Finally, we tested
the hypothesis that hyperspectral reflectance and derived VIs can provide effective and
valuable information on grapevine response to HS conditions, and in combination with
WS. Our main findings were:

• Combined HS and WS led to unsatisfactory Ψstem, gs, Pn, E, and WUEi values, which
did not recover within 10 days.

• The cooling systems evaluated in the present study were efficacious in mitigating
the adverse effects of HS. Specifically, SI+ and SPRI exhibited higher Ψstem after HS.
Moreover, in SI+, Pn was not affected by HS in cooled vines, and in SPRI, both Pn and
gs were unaffected.

• The spectral VIs showed that SI+, SPRI, and SI were rapidly able to recover the
greenness and vigor, as shown by GI, NDGI, and VARI.

• The vine physiological function did not completely recover even 10 days after HS
with SRI, TCARI, and TCARI/OSAVI significantly different than their values before
HS. The lack of full recovery may indicate that the VIs were sensitive to changes in gs.

• The spectral regions more sensitive to HS were NIR (770–1340 nm), water absorption
bands (1941–2200 nm), and the transition region between the green and red bands
(600–604 nm), with NIR having the ability to discriminate between SDI and the
cooling treatments.

• The single wavebands most sensitive to HS were 604, 720, and 1333–1340 nm.
• The hyperspectral data were consistent with physiological data, identifying SDI as the

worst-performing treatment under HS, and SI+ and SPRI as effective cooling strategies
to cope with HS.

In the current climate change context, vineyards are likely to increasingly experience
HS, and farmers need to be supported with managing strategies. Scientific research has yet
to devote sufficient attention to the effects of HS, and combined HS and WS, on vineyards.
The physiological behavior of grapevines under HS still needs to be determined, and
further study will be needed on different varieties, conditions, and areas before obtaining a
comprehensive understanding of the topic. The measurement of physiological parameters
with conventional methods is time consuming and tedious, particularly during hot days.
The opportunity to replace these measurements with spectral assessments, either from
proximal or remote instrumentation, would represent an effective and rapid tool to monitor
environmental stresses in the field. Therefore, the findings and the methodology proposed
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in this study contribute to expanding the knowledge of the effects of HS, and combined HS
and WS, and the tools for future investigation.

Moreover, we explored the effectiveness of different evaporative cooling systems to
help farmers cope with the adverse effects of HS. The findings may promote the implemen-
tation of vineyard irrigation strategies to ensure sustainable and profitable production.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/agronomy11101940/s1, Table S1: Differences in physiological parameters compared to the
values before HS. Single asterisk indicates a significant difference, p < 0.05; double asterisk indicates a
statistical difference, p < 0.01; triple asterisk indicates a statistical difference, p < 0.001; ns indicates no
significant difference (p > 0.05), Table S2: Differences in VIs compared to the values before HS. Single
asterisk indicates a significant difference, p < 0.05; double asterisk indicates a statistical difference,
p < 0.01; triple asterisk indicates a statistical difference, p < 0.001; ns indicates no significant difference
(p > 0.05).

Author Contributions: Conceptualization, A.C. and V.P.; methodology, A.C., V.P.; software, A.C., V.P.
and S.Y.Y.J.; validation, F.M. (Francesco Marinello) and F.M. (Franco Meggio); formal analysis, A.C.,
S.Y.Y.J. and L.W.; investigation, A.C., S.Y.Y.J. and L.W.; data curation, A.C. and L.W.; writing—original
draft preparation, A.C.; writing—review and editing, A.C., V.P., F.M. (Francesco Marinello), F.M.
(Franco Meggio), M.S. and S.Y.Y.J.; supervision, V.P. All authors have read and agreed to the published
version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: All the data generated or analyzed during this study are included in
this published editorial.

Acknowledgments: The authors would like to thank Yalumba Oxford Landing Estate for providing
the trial site and for vineyard management.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Arneth, A.; Barbosa, H.; Benton, T.; Calvin, K.; Calvo, E.; Connors, S. Summary for policymakers. In Climate Change and Land:

602 an Ipcc Special Report on Climate Change, Desertification, Land Degradation, Sustainable Land Management, Food Security, and
Greenhouse Gas Fluxes in Terrestrial Ecosystems; IPCC: Geneva, Swizerland, 2019.

2. Perkins-Kirkpatrick, S.; Pitman, A. Extreme events in the context of climate change. Public Health Res. Pract. 2018, 28, 2–5.
[CrossRef]

3. Cogato, A.; Pagay, V.; Marinello, F.; Meggio, F.; Grace, P.; Migliorati, M.D.A. Assessing the feasibility of using Sentinel-2 imagery
to quantify the impact of heatwaves on irrigated vineyards. Remote Sens. 2019, 11, 2869. [CrossRef]

4. Bucur, G.M.; Babes, A.C. Research on trends in extreme weather conditions and their effects on grapevine in Romanian viticulture.
Bull. UASVM Hortic. 2016, 73, 126–134.

5. Duchêne, E.; Huard, F.; Dumas, V.; Schneider, C.; Merdinoglu, D. The challenge of adapting grapevine varieties to climate change.
Clim. Res. 2010, 41, 193–204. [CrossRef]

6. Carvalho, L.; Coito, J.L.; Gonçalves, E.M.F.; Chaves, M.M.; Amâncio, S. Differential physiological response of the grapevine
varieties Touriga Nacional and Trincadeira to combined heat, drought and light stresses. Plant Biol. 2015, 18, 101–111. [CrossRef]
[PubMed]

7. Greer, D.H.; Weedon, M.M. The impact of high temperatures on vitis vinifera cv. semillon grapevine performance and berry
ripening. Front. Plant Sci. 2013, 4, 1–9. [CrossRef]

8. Liang, L.; Sun, Q.; Luo, X.; Wang, J.; Zhang, L.; Deng, M.; Di, L.; Liu, Z. Long-term spatial and temporal variations of vegetative
drought based on vegetation condition index in China. Ecosphere 2017, 8, e01919. [CrossRef]

9. Cowan, T.; Purich, A.; Perkins-Kirkpatrick, S.; Pezza, A.; Boschat, G.; Sadler, K. More Frequent, Longer, and Hotter Heat Waves
for Australia in the Twenty-First Century. J. Clim. 2014, 27, 5851–5871. [CrossRef]

10. Schoetter, R.; Cattiaux, J.; Douville, H. Changes of western European heat wave characteristics projected by the CMIP5 ensemble.
Clim. Dyn. 2014, 45, 1601–1616. [CrossRef]

11. Chaves, M.M.; Zarrouk, O.; Francisco, R.; Costa, J.M.; Santos, T.; Regalado, A.P.; Rodrigues, M.L.; Lopes, C.M. Grapevine under
deficit irrigation: Hints from physiological and molecular data. Ann. Bot. 2010, 105, 661–676. [CrossRef]

12. Bonada, M.; Sadras, V.; Fuentes, S. Effect of elevated temperature on the onset and rate of mesocarp cell death in berries of Shiraz
and Chardonnay and its relationship with berry shrivel. Aust. J. Grape Wine Res. 2013, 19, 87–94. [CrossRef]

13. Xiao, Z.; Liao, S.; Rogiers, S.; Sadras, V.; Tyerman, S. Effect of water stress and elevated temperature on hypoxia and cell death in
the mesocarp of Shiraz berries. Aust. J. Grape Wine Res. 2018, 24, 487–497. [CrossRef]

https://www.mdpi.com/article/10.3390/agronomy11101940/s1
https://www.mdpi.com/article/10.3390/agronomy11101940/s1
http://doi.org/10.17061/phrp2841825
http://doi.org/10.3390/rs11232869
http://doi.org/10.3354/cr00850
http://doi.org/10.1111/plb.12410
http://www.ncbi.nlm.nih.gov/pubmed/26518605
http://doi.org/10.3389/fpls.2013.00491
http://doi.org/10.1002/ecs2.1919
http://doi.org/10.1175/JCLI-D-14-00092.1
http://doi.org/10.1007/s00382-014-2434-8
http://doi.org/10.1093/aob/mcq030
http://doi.org/10.1111/ajgw.12010
http://doi.org/10.1111/ajgw.12363


Agronomy 2021, 11, 1940 17 of 20

14. Sadras, V.; Moran, M.; Bonada, M. Effects of elevated temperature in grapevine. I Berry sensory traits. Aust. J. Grape Wine Res.
2012, 19, 95–106. [CrossRef]

15. Zhang, P.; Howell, K.; Krstic, M.; Herderich, M.; Barlow, E.W.R.; Fuentes, S. Environmental factors and seasonality affect the
concentration of rotundone in Vitis vinifera L. cv. Shiraz wine. PLoS ONE 2015, 10, e0133137. [CrossRef] [PubMed]

16. Rashid, M.A.; Andersen, M.N.; Wollenweber, B.; Kørup, K.; Zhang, X.; Olesen, J.E. Impact of heat-wave at high and low VPD on
photosynthetic components of wheat and their recovery. Environ. Exp. Bot. 2018, 147, 138–146. [CrossRef]

17. Bhusal, N.; Han, S.-G.; Yoon, T.-M. Impact of drought stress on photosynthetic response, leaf water potential, and stem sap flow
in two cultivars of bi-leader apple trees (Malus × domestica Borkh.). Sci. Hortic. 2019, 246, 535–543. [CrossRef]

18. Gambetta, G.A.; Herrera, J.C.; Dayer, S.; Feng, Q.; Hochberg, U.; Castellarin, S.D. The physiology of drought stress in grapevine:
Towards an integrative definition of drought tolerance. J. Exp. Bot. 2020, 71, 4658–4676. [CrossRef]

19. Min, Z.; Li, R.; Chen, L.; Zhang, Y.; Li, Z.; Liu, M.; Ju, Y.; Fang, Y. Alleviation of drought stress in grapevine by foliar-applied
strigolactones. Plant Physiol. Biochem. 2019, 135, 99–110. [CrossRef]

20. Mittler, R. Abiotic stress, the field environment and stress combination. Trends Plant Sci. 2006, 11, 15–19. [CrossRef]
21. Jing, B.; Shah, F.; Xiao, E.; Coulter, J.A.; Wu, W. Sprinkler irrigation increases grain yield of sunflower without enhancing the risk

of root lodging in a dry semi-humid region. Agric. Water Manag. 2020, 239, 106270. [CrossRef]
22. Gilbert, D.E.; Meyer, J.L.; Kissler, J.J.; La Vine, P.D.; Carlson, C.V. Evaporation cooling of vineyards. Calif. Agric. 1970, 24, 12–14.

[CrossRef]
23. Pagay, V.; Tyerman, S.; Jeffery, D.; Muhlack, R.; McCarthy, M.; Boss, P. Using in-Canopy Misters to Mitigate the Negative Effects

of Heatwaves in Grapevines; Final Report to Wine Australia; 2018; Available online: https://www.wineaustralia.com/research/
projects/using-in-canopy-misters-to-mitigate-the (accessed on 10 September 2021).

24. Edwards, E.; Smithson, L.; Graham, D.; Clingeleffer, P. Grapevine canopy response to a high-temperature event during deficit
irrigation. Aust. J. Grape Wine Res. 2011, 17, 153–161. [CrossRef]

25. Sousa, T.A.; Oliveira, M.T.; Moutinho-Pereira, J. Physiological indicators of plant water status of irrigated and non-irrigated
grapevines grown in a low rainfall area of portugal. Plant Soil 2006, 282, 127–134. [CrossRef]

26. Girona, J.; Mata, M.; del Campo, J.; Arbonés, A.; Bartra, E.; Marsal, J. The use of midday leaf water potential for scheduling deficit
irrigation in vineyards. Irrig. Sci. 2006, 24, 115–127. [CrossRef]

27. Cogato, A.; Meggio, F.; Collins, C.; Marinello, F. Medium-resolution multispectral data from Sentinel-2 to assess the damage and
the recovery time of late frost on vineyards. Remote Sens. 2020, 12, 1896. [CrossRef]

28. Poblete, T.; Ortega-Farías, S.; Moreno, M.A.; Bardeen, M. Artificial neural network to predict vine water status spatial variability
using multispectral information obtained from an unmanned aerial vehicle (UAV). Sensors 2017, 17, 2488. [CrossRef]

29. Zarco-Tejada, P.J.; Ustin, S.; Whiting, M.L. Temporal and spatial relationships between within-field yield variability in cotton and
high-spatial hyperspectral remote sensing imagery. Agron. J. 2005, 97, 641–653. [CrossRef]

30. Cogato, A.; Pezzuolo, A.; Sørensen, C.G.; De Bei, R.; Sozzi, M.; Marinello, F. A GIS-based multicriteria index to evaluate the
mechanisability potential of Italian vineyard area. Land 2020, 9, 469. [CrossRef]

31. Mirás-Avalos, J.M.; Pérez-Sarmiento, F.; Alcobendas, R.; Alarcón, J.J.; Mounzer, O.; Nicolás, E. Using midday stem water potential
for scheduling deficit irrigation in mid–late maturing peach trees under Mediterranean conditions. Irrig. Sci. 2016, 34, 161–173.
[CrossRef]

32. Choné, X.; Van Leeuwen, C.; Dubourdieu, D.; Gaudillère, J.P. Stem water potential is a sensitive indicator of grapevine water
status. Ann. Bot. 2001, 87, 477–483. [CrossRef]

33. Prieto, J.A.; Lebon, É.; Ojeda, H. Stomatal behavior of different grapevine cultivars in response to soil water status and air water
vapor pressure deficit. J. Int. Sci. Vigne Vin 2010, 44, 9–20. [CrossRef]

34. Santesteban, L.G.; Miranda, C.; Royo, J.B. Effect of water deficit and rewatering on leaf gas exchange and transpiration decline of
excised leaves of four grapevine (Vitis vinifera L.) cultivars. Sci. Hortic. 2009, 121, 434–439. [CrossRef]

35. Tomás, M.; Medrano, H.; Escalona, J.M.; Martorell, S.; Pou, A.; Ribas-Carbo, M.; Flexas, J. Variability of water use efficiency in
grapevines. Environ. Exp. Bot. 2014, 103, 148–157. [CrossRef]

36. Greer, D.H.; Weston, C. Heat stress affects flowering, berry growth, sugar accumulation and photosynthesis of Vitis vinifera cv.
Semillon grapevines grown in a controlled environment. Funct. Plant Biol. 2010, 37, 206–214. [CrossRef]

37. Zarco-Tejada, P.J.; Berjón, A.; López-Lozano, R.; Miller, J.R.; Martín, P.; Cachorro, V.; González, M.R.; De Frutos, A. Assessing
vineyard condition with hyperspectral indices: Leaf and canopy reflectance simulation in a row-structured discontinuous canopy.
Remote Sens. Environ. 2005, 99, 271–287. [CrossRef]

38. Rouse, J.; Haas, R.; Schell, J.; Deering, D.; Harlan, J. Monitoring the Vernal Advancement and Retrogradation (Greenwave Effect) of
Natural Vegetation; Type III Final Report; NASA/GSFC: Greenbelt, MD, USA, 1974; p. 371.

39. Acevedo-Opazo, C.; Tisseyre, B.; Guillaume, S.; Ojeda, H. Test of NDVI information for a relevant vineyard zoning related to vine
water status. In Proceedings of the VI European Conference on Precision Agriculture (ECPA), Skiathos, Greece, 3–6 June 2007;
pp. 547–554.

40. Acevedo-Opazo, C.; Tisseyre, B.; Guillaume, S.; Ojeda, H. The potential of high spatial resolution information to define within-
vineyard zones related to vine water status. Precis. Agric. 2008, 9, 285–302. [CrossRef]

41. Baluja, J.; Diago, M.P.; Balda, P.; Zorer, R.; Meggio, F.; Morales, F.; Tardaguila, J. Assessment of vineyard water status variability
by thermal and multispectral imagery using an unmanned aerial vehicle (UAV). Irrig. Sci. 2012, 30, 511–522. [CrossRef]

http://doi.org/10.1111/ajgw.12007
http://doi.org/10.1371/journal.pone.0133137
http://www.ncbi.nlm.nih.gov/pubmed/26176692
http://doi.org/10.1016/j.envexpbot.2017.12.009
http://doi.org/10.1016/j.scienta.2018.11.021
http://doi.org/10.1093/jxb/eraa245
http://doi.org/10.1016/j.plaphy.2018.11.037
http://doi.org/10.1016/j.tplants.2005.11.002
http://doi.org/10.1016/j.agwat.2020.106270
http://doi.org/10.13031/2013.38402
https://www.wineaustralia.com/research/projects/using-in-canopy-misters-to-mitigate-the
https://www.wineaustralia.com/research/projects/using-in-canopy-misters-to-mitigate-the
http://doi.org/10.1111/j.1755-0238.2011.00125.x
http://doi.org/10.1007/s11104-005-5374-6
http://doi.org/10.1007/s00271-005-0015-7
http://doi.org/10.3390/rs12111896
http://doi.org/10.3390/s17112488
http://doi.org/10.2134/agronj2003.0257
http://doi.org/10.3390/land9110469
http://doi.org/10.1007/s00271-016-0493-9
http://doi.org/10.1006/anbo.2000.1361
http://doi.org/10.20870/oeno-one.2010.44.1.1459
http://doi.org/10.1016/j.scienta.2009.03.008
http://doi.org/10.1016/j.envexpbot.2013.09.003
http://doi.org/10.1071/FP09209
http://doi.org/10.1016/j.rse.2005.09.002
http://doi.org/10.1007/s11119-008-9073-1
http://doi.org/10.1007/s00271-012-0382-9


Agronomy 2021, 11, 1940 18 of 20

42. Espinoza, C.Z.; Khot, L.R.; Sankaran, S.; Jacoby, P.W. High resolution multispectral and thermal remote sensing-based water
stress assessment in subsurface irrigated grapevines. Remote Sens. 2017, 9, 961. [CrossRef]

43. Serrano, L.; González-Flor, C.; Gorchs, G. Assessing vineyard water status using the reflectance based Water Index. Agric. Ecosyst.
Environ. 2010, 139, 490–499. [CrossRef]

44. Zarco-Tejada, P.J.; Gonzalez-Dugo, V.; Williams, L.; Suárez, L.; Jimenez-Berni, J.A.; Goldhamer, D.; Fereres, E. A PRI-based water
stress index combining structural and chlorophyll effects: Assessment using diurnal narrow-band airborne imagery and the
CWSI thermal index. Remote Sens. Environ. 2013, 138, 38–50. [CrossRef]

45. Di Gennaro, S.F.; Matese, A.; Gioli, B.; Toscano, P.; Zaldei, A.; Palliotti, A.; Genesio, L. Multisensor approach to assess vineyard
thermal dynamics combining high-resolution unmanned aerial vehicle (UAV) remote sensing and wireless sensor network (WSN)
proximal sensing. Sci. Hortic. 2017, 221, 83–87. [CrossRef]

46. Gitelson, A.A.; Viña, A.; Ciganda, V.; Rundquist, D.C.; Arkebauer, T.J. Remote estimation of canopy chlorophyll content in crops.
Geophys. Res. Lett. 2005, 32, 1–4. [CrossRef]

47. Chen, J.M. Evaluation of vegetation indices and a modified simple ratio for boreal applications. Can. J. Remote Sens. 1996,
22, 229–242. [CrossRef]

48. Haboudane, D.; Miller, J.R.; Tremblay, N.; Zarco-Tejada, P.J.; Dextraze, L. Integrated narrow-band vegetation indices for prediction
of crop chlorophyll content for application to precision agriculture. Remote Sens. Environ. 2002, 81, 416–426. [CrossRef]

49. Courel, M.-F.; Chamard, P.; Guenegou, M.J.; Lerhun, J.; Levasseur, M.; Togola, M. Utilisation des bandes spectrales du vert et du
rouge pour une meilleure évaluation des formations végétales actives. In Proceedings of the Congrès AUPELF-UREF, Sherbrooke,
QC, Canada, 21–23 October 1991; pp. 203–210.

50. Jordan, C.F. Derivation of leaf-area index from quality of light on the forest floor. Ecology 1969, 50, 663–666. [CrossRef]
51. Gitelson, A.A.; Kaufman, Y.J.; Stark, R.; Rundquist, D. Novel algorithms for remote estimation of vegetation fraction. Remote Sens.

Environ. 2002, 80, 76–87. [CrossRef]
52. Pôças, I.; Rodrigues, A.; Gonçalves, S.; Costa, P.M.; Gonçalves, I.; Pereira, L.S.; Cunha, M. Predicting grapevine water status based

on hyperspectral reflectance vegetation indices. Remote Sens. 2015, 7, 16460–16479. [CrossRef]
53. Gamon, J.A.; Peñuelas, J.; Field, C.B. A narrow-waveband spectral index that tracks diurnal changes in photosynthetic efficiency.

Remote Sens. Environ. 1992, 41, 35–44. [CrossRef]
54. Liu, H.Q.; Huete, A. A feedback based modification of the NDVI to minimize canopy background and atmospheric noise. IEEE

Trans. Geosci. Remote Sens. 1995, 33, 457–465. [CrossRef]
55. Cheng, Y.-B.; Zarco-Tejada, P.J.; Riano, D.; Rueda, C.A.; Ustin, S. Estimating vegetation water content with hyperspectral data

for different canopy scenarios: Relationships between AVIRIS and MODIS indexes. Remote Sens. Environ. 2006, 105, 354–366.
[CrossRef]

56. Dold, C.; Heitman, J.; Giese, G.; Howard, A.; Havlin, J.; Sauer, T. Upscaling Evapotranspiration with parsimonious models in a
North Carolina vineyard. Agronomy 2019, 9, 152. [CrossRef]

57. Penuelas, J.; Filella, I.; Biel, C.; Serrano, L.; Savé, R. The reflectance at the 950–970 nm region as an indicator of plant water status.
Int. J. Remote Sens. 1993, 14, 1887–1905. [CrossRef]

58. Fórián, T.; Nagy, A.; Riczu, P.; Mézes, L.; Tamás, J. Vineyards characteristic by using GIS and refl ectance measurements on the
Nagy-Eged hill in Hungary. Int. J. Hortic. Sci. 2016, 18, 57–60. [CrossRef]

59. Thenkabail, P.S.; Enclona, E.A.; Ashton, M.S.; Van Der Meer, B. Accuracy assessments of hyperspectral waveband performance
for vegetation analysis applications. Remote Sens. Environ. 2004, 91, 354–376. [CrossRef]

60. Ray, S.S.; Singh, J.P.; Panigraphy, S. Use of hyperstectralremote senings data for crop stress detection: Ground-based studies. Int.
Arch. Photogramm. Remote. Sens. Spat. Inf. Sci. 2010, 38, 562–570.

61. Mutanga, O.; Skidmore, A.; Prins, H. Predicting in situ pasture quality in the Kruger National Park, South Africa, using
continuum-removed absorption features. Remote Sens. Environ. 2004, 89, 393–408. [CrossRef]

62. Huete, A.R.; Liu, H.Q.; van Leeuwen, W.J.D. The use of vegetation indices in forested regions: Issues of linearity and saturation.
Int. Geosci. Remote Sens. Symp. 1997, 4, 1966–1968.

63. Kassambara, A.; Mundt, F. Factoextra: Extract and Visualize the Results of Multivariate Data Analyses (Versión 1.0.5). Available
online: https://cran.r-project.org/package=factoextra (accessed on 1 March 2021).

64. Ruiz, E.; Jackson, S.; Cimentada, J. Corrr: Correlations in R. Available online: https://cran.r-project.org/web/packages/corrr/
index.htm (accessed on 1 March 2021).

65. Dormann, C.F.; Elith, J.; Bacher, S.; Buchmann, C.; Carl, G.; Carré, G.; Marquéz, J.R.G.; Gruber, B.; Lafourcade, B.; Leitão, P.J.; et al.
Collinearity: A review of methods to deal with it and a simulation study evaluating their performance. Ecography 2013, 36, 27–46.
[CrossRef]

66. Yang, J.; Yang, J.Y. Why can LDA be performed in PCA transformed space? Pattern Recognit. 2003, 36, 563–566. [CrossRef]
67. Roever, C.; Raabe, N.; Luebke, K.; Ligges, U.; Szepannek, G.; Zentgraf, M. klaR: Classification and visualization. Available online:

https://cran.r-project.org/package=klaR (accessed on 1 March 2021).
68. Greer, D.H.; Weedon, M. Modelling photosynthetic responses to temperature of grapevine (Vitis vinifera cv. Semillon) leaves on

vines grown in a hot climate. Plant Cell Environ. 2011, 35, 1050–1064. [CrossRef]
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