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Abstract: Glomalin-related soil protein (GRSP) is a specific glycoprotein secreted into the soil by
hyphae and spores of arbuscular mycorrhizal fungi that have many potential functions. It is not clear
whether exogenous GRSP has an effect on plant growth and soil properties or whether the effects are
related to the type of GRSP used. In this study, trifoliate orange (Poncirus trifoliata L. Raf.) seedlings
were used to analyze the effects of easily extractable GRSP (EE-GRSP) and difficultly extractable GRSP
(DE-GRSP) at a quarter-, half-, and full-strength concentration on shoot and root biomass as well
as soil properties The results showed that, at different strengths, exogenous EE-GRSR significantly
increased shoot and root biomass compared to the control, which displayed the most significant
effects from the half-strength EE-GRSP. In contrast, DE-GRSP, at various strengths, significantly
reduced shoot and root biomass. Furthermore, the application of exogenous EE-GRSP stimulated
soil water-stable aggregate (WSA) content at 2–4 mm and 0.5–1 mm sizes, while DE-GRSP strongly
reduced WSA content at the 2–4 mm, 1–2 mm, 0.5–1 mm, and 0.25–0.5 mm sizes, consequently leading
to an increase or decrease in the WSA stability, according to the mean weight diameter. However,
exogenous EE-GRSP decreased soil pH and DE-GRSP increased it, which was related to WSA stability.
Exogenous EE-GRSP almost significantly increased soil acidic, neutral, and alkaline phosphatase
activity at different strengths, while exogenous DE-GRSP, also at different strengths, significantly
inhibited soil acidic phosphatase activity. The application of both exogenous EE-GRSP and DE-GRSP
increased the organic carbon content of the soil. This study concluded that exogenous GRSP exerted
differential effects on plant biomass and soil properties, and EE-GRSP can be considered as a soil
stimulant for use in citrus plants. To our knowledge, this is the first report on the negative effects of
exogenous DE-GRSP on plant biomass and soil properties.

Keywords: glycoprotein; mycorrhiza; phosphatase activity; soil aggregate; soil organic carbon

1. Introduction

Arbuscular mycorrhizal fungi (AMF) form symbiotic relationships with approximately
80% of terrestrial plants. After colonizing the roots of host plants, AMF develop mycor-
rhizal extraradical hyphae, which extend into the soil beyond the root, thus increasing
the root surface area of the plant and its contact with the soil/rhizosphere [1,2]. As a
result, arbuscular mycorrhizas promote the growth and development of the host plant by
improving the fruit quality, water, and nutrient acquisition, in addition to increasing its
stress resistance [2–7]. The beneficial effects of mycorrhizal symbiosis are partly attributed
to the production of a specific glycoprotein, glomalin, which is secreted by the hyphae and
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spores of AMF [8–10]. Rillig [11] proposed the term glomalin-related soil protein (GRSP)
to describe the soil with glomalin, based on the Bradford [12] assay. For the extraction of
GRSP, Wu et al. [13] divided GRSP into easily extractable GRSP (EE-GRSP) and the more
difficult to extract GRSP (DE-GRSP). GRSP can attach to the outside of soil aggregates and
reduce the loss of soil, water, and nutrients [14]. In addition, glomalin can enter the soil
with the degradation of extraradical mycelium, which in turn plays a very important role
in improving the organic carbon sequestration and soil properties [15]. It is documented
that GRSP promotes the formation and stability of soil aggregates, in addition to improving
soil and plant water relations [14,16].

GRSP is considered to be insoluble in water and difficult to decompose in its natural
state; therefore, it is extremely stable with a turnover time of 6–42 years [17,18]. GRSP is
mainly composed of protein bodies, carbohydrates, iron, and other ions; the iron content
reaches 1%-9%, and the type and content of cations in GRSP vary greatly depending upon
the nature of the soil [19]. Gadkar and Rillig [20] found that the sequence of GRSP was
highly homologous to heat shock protein 60 (Hsp6o) with >80% homology. This was found
by sequencing with liquid chromatography–mass spectrometry.

In GRSP fractions, EE-GRSP is considered to be newly generated by AMF and rela-
tively more labile [21]. Studies have attempted to use EE-GRSP as a plant/soil stimulant.
It was demonstrated that exogenous EE-GRSP increased the organic carbon content and
phosphatase activity of soil in citrus orchards [22] as well as the stability of soil aggregates
and the content of water-stable aggregates [21]. However, the other GRSP fraction, DE-
GRSP, originates from the turnover of EE-GRSP and thus an older glomalin [23]. To date,
there remains no information regarding the effects of exogenous DE-GRSP application on
plant growth and soil properties. Therefore, the aim of this study is to apply EE-GRSP and
DE-GRSP at different concentrations on trifoliate orange seedlings and evaluate the effects
on biomass production, soil aggregate stability, SOC, phosphatase, and pH value.

2. Materials and Methods
2.1. Plant Culture

The seed of trifoliate orange (Poncirus trifoliata L. Raf.) was soaked in 1 mol/L sodium
hydroxide solution for 10 min, disinfected with 75% alcohol for 10 min, and washed with
distilled water for 4 times. Subsequently, the seeds were placed in sterilized river sand
(φ ≤ 2 mm) and incubated at 28 ◦C/20 ◦C (day/night) with 68% relative air humidity. A
month later, the three seedlings with four leaves were transplanted into a 2.1 L plastic pot
with a 4 mm diameter that was pre-loaded with soil and sterilized (0.11 MPa, 121 ◦C) for
2 h. The physicochemical characteristics of the soil are shown in Table 1. The plants were
placed in a greenhouse, where the light intensity was 900 µmol/m2/s, the temperature
was 28 ◦C/20 ◦C (day/night), and the relative humidity was 68%.

Table 1. Physicochemical characteristics of the soil.

pH Soil Organic
Carbon (g/kg)

Alkaline N
(mg/kg)

Olsen-P
(mg/kg)

Available K
(mg/kg)

6.4 9.6 11.1 15.7 21.3

2.2. Preparation and Application of GRSP and Experimental Design

The soil from the citrus orchard in Yangtze University was collected, air-dried, and
sieved to remove stones and root segments, and then EE-GRSP and DE-GRSP were ex-
tracted by the method of Wu et al. [23]. A 0.5 g soil sample was mixed with 4 mL of
20 mmol/L citrate buffer (pH 7.0), extracted at 103 kPa, heated to 121 ◦C for 30 min, and
centrifuged at 10,000× g/min for 5 min. The supernatant was intended to be the full-
strength EE-GRSP (1 GRSP). The centrifugal residue continued to be mixed with 4 mL of
50 mmol/L sodium citrate buffer (pH 8), extracted at 103 kPa and heated to 121 ◦C for
60 min, and centrifuged at 10,000× g/min for 10 min. This supernatant was selected as
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full-strength DE-GRSP. The protein concentration of full-strength EE-GRSP and DE-GRSP
was 0.24 mg/L and 0.36 mg/L, respectively, according to Bradford’s [12] method, with
bovine serum protein as the standard.

Different strengths of EE-GRSP and DE-GRSP were prepared with dilutions of full-
strength GRSP with 20 mmol/L citrate buffers (pH 7.0) and 50 mmol/L sodium citrate
buffers (pH 8), respectively. After two weeks of seedling transplanting, 50 mL of different
concentrations of GRSP was applied to the pot weekly, and the same amount of citrate
buffer (pH 7.0) was applied to the control group. The experiment ended after 16 weeks of
exogenous GRSP application.

In this experiment, a completely randomized block design was carried out, in which
seven treatments, namely, the control (0 GRSP), quarter-strength EE-GRSP, half-strength
EE-GRSP, full-strength EE-GRSP, quarter-strength DE-GRSP, half-strength DE-GRSP, and
full-strength DE-GRSP, were arranged. Each treatment had four replicates, with two pots
for each replicate, totaling 56 pots. The pots were arranged randomly, and their positions
were changed regularly to decrease the impact of light on pot locations.

2.3. Variable Determinations

Plants were separated from the shoot and root parts at harvest, and then their fresh
weight was measured. At harvest time, the soil sticking to the root surface was gently
shaken off, air-dried, and collected for the analysis of particular soil properties.

Soil pH value was determined as per the protocol outlined by Cheng et al. [24] with a
pH meter (PH828+, Smart Sensor, Arco Science & Technology Ltd., Dongguan, China).

Soil water-stable aggregates (WSAs) in the sizes of 2–4 mm, 1–2 mm, 0.5–1 mm, and
0.25–0.5 mm were assayed according to the wet-sieving method [25]. Soil WSA stability
was measured according to the analysis of the mean weight diameter (MWD) with the
following formula [25]:

MWD =
n

∑
i=1

WiXi (1)

where Xi is the mean diameter of the i sieve opening (mm), Wi is the proportion of the
i size fraction in the total sample mass, and n is number of size fractions.

SOC was determined by the dichromate oxidation spectrophotometric method as out-
lined by Rowell [26]. Determination of soil acid phosphatase (ACP, extracted by 0.1 mmol/L
sodium acetate buffer at pH 5.0), neutral phosphatase (NEP, extracted by 20 mmol/L citrate
buffer at pH 7.0), and alkaline phosphatase (ALP, extracted by 0.2 mmol/L borate buffer
at pH 10.0) activity was assayed by the method of Zhao and Jiang [27], using disodium
phenyl phosphate as the substrate and redistilled phenol as the standard.

The extraction and analysis of EE-GRSP and DE-GRSP in soil was previously described
in Section 2.2.

2.4. Statistical Analysis

The one-way analysis of variance (ANOVA) in SAS software (v8.1) was used to analyze
the experimental data, and Duncan’s multiple-range test was used to compare significant
differences among treatments (p < 0.05). Figures were generated using SigmaPlot (v10.0).

3. Results
3.1. Changes in Biomass Production

After treatment with exogenous EE-GRSP, the EE-GRSP-treated plants were recorded
as having significantly higher shoot and root biomass of trifoliate orange seedlings. A total
of 39% and 19% of the shoots and roots received a quarter-strength of EE-GRSP application,
52% and 53% received a half-strength EE-GRSP application, and 49% and 34% received a
full-strength EE-GRSP application, respectively (Figure 1a). Evidently, the half-strength
EE-GRSP treatment provided the best promotive effects. However, compared with the
control (0 GRSP), all DE-GRSP treatments significantly reduced shoot and root biomass
production with the increase in DE-GRSP concentrations (Figure 1b). Among them, the
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quarter-strength DE-GRSP considerably reduced shoot and root biomass by 51% and 53%,
the half-strength DE-GRSP by 56% and 56%, and the full-strength DE-GRSP by 71% and
72%, respectively.
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Figure 1. Effect of exogenous EE-GRSP and DE-GRSP on shoot (a) and root (b) biomass production of trifoliate orange
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between treatments.

3.2. Changes in Soil WSA Distribution and Stability

Exogenous GRSP treatment strongly affected the distribution of WSAs in the rhi-
zosphere of trifoliate orange seedlings (Table 2). All EE-GRSP treatments significantly
increased WSA percentages in the 2–4 mm and 0.5–1 mm sizes compared with the control
(0 GRSP). In addition, the quarter- and full-strength EE-GRSP also significantly increased
WSA percentages in the 1–2 mm size, and the half-strength EE-GRSP significantly increased
WSA percentages in the 0.25–0.5 mm size. Three DE-GRSP treatments collectively reduced
WSA percentages in the 2–4 mm, 1–2 mm, 0.5–1 mm, and 0.25–0.5 mm sizes. In addi-
tion, compared to the control, the quarter-, half-, and full-strength EE-GRSP significantly
increased MWD by 19%, 20%, and 16%, respectively; quarter-, half-, and full-strength
DE-GRSP significantly decreased MWD by 55%, 61%, and 65%, respectively.

Table 2. Effects of exogenous GRSP on water-stable aggregate (WSA) content and the mean weight diameter (MWD) of
trifoliate orange.

Treatments Percentage of WSA (%) MWD (mm)

2–4 mm 1–2 mm 0.5–1 mm 0.25–0.5 mm

Control 28.95 ± 0.63d 4.28 ± 0.26c 10.96 ± 0.59b 17.66 ± 0.88b 0.74 ± 0.01b
Quarter-strength EE-GRSP 35.76 ± 0.16b 3.35 ± 0.33d 16.55 ± 1.60a 11.36 ± 0.32c 0.88 ± 0.01a

Half-strength EE-GRSP 37.51 ± 1.02a 7.44 ± 0.25a 15.01 ± 1.38a 22.57 ± 1.60a 0.89 ± 0.02a
Full-strength EE-GRSP 33.44 ± 1.03c 5.09 ± 0.07b 14.29 ± 0.81a 17.04 ± 0.78b 0.86 ± 0.02a

Quarter-strength DE-GRSP 13.00 ± 1.28f 2.38 ± 0.14e 5.58 ± 0.23d 9.33 ± 0.29d 0.33 ± 0.03c
Half-strength DE-GRSP 8.52 ± 1.23g 3.33 ± 0.24d 5.51 ± 0.74d 10.94 ± 0.96c 0.26 ± 0.03d
Full-strength DE-GRSP 15.11 ± 0.73e 3.07 ± 0.19d 7.25 ± 0.64c 10.58 ± 0.64cd 0.29 ± 0.03cd

Data (mean ± SD, n =4) followed by the different letters among treatments indicate significant differences at p < 0.05.

Regression analysis showed a significant curvilinear correlation between MWD and
exogenous EE-GRSP concentrations, with a trend of increasing and then decreasing with
a peak between 0.006–0.012 mg of protein/mL citrate buffer (Figure 2a). In addition,
MWD values showed a significant curvilinear correlation in the concentration of DE-GRSP
(Figure 2b), with a trend of decreasing and then slightly increasing to reach a trough
between 0.009–0.018 mg of protein/mL citrate buffer.
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3.3. Changes in Soil pH Value

The application of exogenous GRSP significantly changed the soil pH value. The
reduction in the soil pH value was caused by exogenous EE-GRSP and the increase by
exogenous DE-GRSP (Figure 3). There were no significant differences in soil pH value
among the three EE-GRSP treatments or the three DE-GRSP treatments. In addition, the
soil pH value was substantially and negatively correlated with MWD (Figure 4).

3.4. Changes in SOC Content

Exogenous EE-GRSP and DE-GRSP application considerably increased the SOC con-
tent (Figure 5). Among the treatments, the SOC quantity rose with the increase in exogenous
DE-GRSP concentration. Between the three EE-GRSP treatments, the half-strength EE-GRSP
application showed a relatively better effect of increasing the SOC. A significantly and
positively linear relationship was observed between the SOC and the exogenous EE-GRSP
concentration (Figure 6a) and the DE-GRSP concentration (Figure 6b), respectively.
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3.5. Changes in Soil Phosphatase Activity

The control, quarter-, half-, and full-strength EE-GRSP treatments significantly in-
creased the activity of soil acid phosphatase by 20%, 29%, and 10%, respectively, and that of
neutral phosphatase by 21%, 28%, and 86%, respectively (Figure 7a,b). The application of
the half- and full-strength EE-GRSP also significantly increased soil alkaline phosphatase
activity by 26% and 13%, respectively, with no significant effect caused by the application
of the quarter-strength EE-GRSP (Figure 7c). In addition, compared with the control, the
quarter-, half-, and full-strength DE-GRSP treatments had no significant effect on the activ-
ity of soil neutral and alkaline phosphatase, but the treatments significantly decreased soil
acid phosphatase activity by 11%, 13%, and 31%, respectively (Figure 7a–c).
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3.6. Changes in Soil GRSP Concentrations

All exogenous GRSP applications significantly increased the concentration of soil
GRSP components, followed by increased concentrations of EE-GRSP and DE-GRSP. The
control, quarter-, half- and full-strength EE-GRSP treatments significantly increased the
soil EE-GRSP content by 24%, 25%, and 31% (Figure 8a); soil DE-GRSP by 4%, 4%, and
10% (Figure 8b); and T-GRSP by 13%, 14%, and 19% (Figure 8c), respectively. Similarly, the
control, quarter-, half-, and full-strength DE-GRSP treatment significantly increased the
soil EE-GRSP content by 5%, 7%, and 14% (Figure 8a); DE-GRSP by 44%, 53%, and 69%
(Figure 8b); and T-GRSP by 26%, 31%, and 44% (Figure 8c), respectively.
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4. Discussion

The present study showed that different concentrations of EE-GRSP dramatically
increased shoot and root biomass production, while half-strength EE-GRSP had the most
significant effect, which was consistent with the results of Wang et al. [28] and Chi et al. [29]
in trifoliate orange seedlings. The EE-GRSP contained high amounts of humic acids,



Agronomy 2021, 11, 1896 8 of 11

which had functions in improving plant growth [30]. However, different concentrations
of DE-GRSP all significantly reduced shoot and root biomass production with increased
concentrations, implying that exogenous DE-GRSP negatively affects the growth of tri-
foliate orange seedlings. The different growth responses for exogenous EE-GRSP and
DE-GRSP applications could be derived from two facts: (i) the difference in the intrin-
sic elemental composition between EE-GRSP and DE-GRSP (e.g., higher P, Mo, and O
contents in purified EE-GRSP versus purified DE-GRSP; (ii) changes in the synthesis and
transport of auxins in plants with higher root indole acetic acid and indole butyric acid in
EE-GRSP-treated plants than in DE-GRSP-treated plants [31]. The variation in the intrinsic
elemental contents of the two GRSP fractions consisted of different organic substances, such
as tyrosine, tryptophan, fulvic acid, humic acid, nitrobenzoxadidole, and calcofluor [32],
thus triggers differential plant growth responses. In addition, GRSP is known to contain
many impurities as well as proteins of mycorrhizal fungal origin [30,33]. It is possible that
EE-GRSP and DE-GRSP always contain different impurities, and these impurities have
differential effects on plants; however, the applied EE-GRSP solution (pH 7.0) had a lower
pH value than that of DE-GRSP (pH 8.0), and citrus prefers slightly acidic soil.

Soil aggregates are an important constituent of soil structure, and their quantity and
stability are the essential criteria for evaluating soil quality [34]. During the formation
of soil aggregates, GRSPs, similarly to glue, are involved in binding small soil particles
into microaggregates (<0.25 mm in diameter) to large aggregates (> 0.25 mm in diameter),
ultimately forming a stable soil aggregate structure [35]. Compared with the control
treatment, the quarter-strength EE-GRSP application significantly increased WSA in the
sizes of 2–4 mm and 0.5–1.0 mm but reduced WSA in the 1–2 mm and 0.25–0.5 mm sizes.
The half-strength EE-GRSP treatment considerably increased WSA in all sizes. The full-
strength EE-GRSP significantly increased WSA in the 2–4 mm, 1–2 mm, and 0.5–1 mm
sizes. Wu et al. [23] also reported that exogenous EE-GRSP significantly increased WSA in
the sizes of 1–2 mm and 0.5–1 mm in field citrus. Contrastingly, the present study found
that treatments with the quarter-, half-, and full-strength DE-GRSP dramatically decreased
WSA in all sizes. It was proposed that in GRSP fractions, only EE-GRSP represented the
positive effect on WSA formation, whereas DE-GRSP had a negative effect. In general,
soil WSA formation is involved in mycorrhizal hyphae, SOC, roots, GRSP, etc. [36]. Wu
et al. [37] reported that in the presence of roots and mycorrhizal hyphae, root biomass,
and mycorrhizal colonization are the main mechanisms in WSA formation, and total
GRSP concentration (the sum of EE-GRSP and DE-GRSP) is of paramount importance in
WSA formation.

In this study, we also observed differential effects of exogenous EE-GRSP and DE-
GRSP on MWD: the increase caused by EE-GRSP and the decrease caused by DE-GRSP.
Correlation analysis indicated that there was a significant curvilinear correlation between
MWD and the concentration of exogenous EE-GRSP and DE-GRSP. This suggested that
EE-GRSP application had positive effects on WSA stability, whereas DE-GRSP had dele-
terious effects on WSA stability. Thus, in GRSP fractions, only EE-GRSP contributed to
the aggregate stability, as previously reported by Wu et al. [38] under the presence of
only mycorrhizal extraradical hyphae conditions. Chi et al. [39] reported that higher soil
pH in saline–alkali regions reduced soil aggregate contents and stability. In our study,
soil pH value was increased with the increase in exogenous DE-GRSP concentrations and
decreased with the increase in exogenous EE-GRSP concentrations. In addition, soil pH
value was significantly and negatively correlated with MWD, implying that exogenous
GRSP could modulate soil pH value to affect WSA formation and stability, which still
needs to be researched in future studies.

SOC content affects the physical and chemical properties of soil, as well as its fertility
characteristics, and, thus, it is considered as one of the decisive factors in evaluating soil
quality [40]. The present work indicates that the control, quarter-, half-, and full-strength
EE-GRSP and DE-GRSP treatments increased the SOC content, which is consistent with
our earlier results in a 27-year-old Satsuma mandarin grafted onto a trifoliate orange
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after being applied with exogenous EE-GRSP [23]. Additionally, the stimulated effect on
SOC was observed under exogenous DE-GRSP application conditions. Studies showed
that purified GRSP contributed to 23.26 ± 2.67% of the total SOC [4]. In this study, DE-
GRSP had a relatively higher contribution to the SOC than EE-GRSP in the full-strength
concentration. This further suggests that DE-GRSP in the full-strength concentration had
a stronger contribution to SOC than EE-GRSP. Our previous data also revealed a higher
contribution of purified DE-GRSP (14.59 ± 2.21%) versus purified EE-GRSP (8.67 ± 0.95%)
to SOC [4].

Soil enzymatic activity is a key indicator of soil biochemical characteristics [41].
Among them, soil phosphatases catalyze the mineralization of soil organophosphorus
compounds, and phosphatase activities directly affect the decomposition and transforma-
tion of soil organophosphorus [42]. Exogenous EE-GRSP treatments significantly increased
soil acidic, neutral, and alkaline phosphatase activity, which was consistent with previous
works on Satsuma mandarin trees grown in fields [22]. In contrast, exogenous DE-GRSP
mainly reduced soil acid phosphatase activity but did not alter soil neutral and alkaline
phosphatase activity. This means that the rhizosphere of EE-GRSP-treated plants pos-
sessed stronger acid, neutral and alkaline phosphatase activity, while the rhizosphere of
DE-GRSP-applied plants had lower acid phosphatase activity; this change may correlate
with differential plant growth triggered by GRSP applications.

5. Conclusions

In conclusion, the application of exogenous EE-GRSP considerably increased plant
biomass, stimulated the formation and stability of soil WSAs, reduced soil pH value, and
elevated SOC content and soil phosphatase activity. This indicates that exogenous EE-GRSP
can be considered as a biostimulator for the improvement of both plant growth and soil
properties. Furthermore, we also observed that exogenous DE-GRSP exhibited adverse
effects on plant biomass, WSA formation and stability, soil pH, and soil acid phosphatase
activity. Such results guide the management of soil GRSP in citrus orchards for reducing
DE-GRSP and increasing EE-GRSP.
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