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Abstract: To understand the physiological basis of tolerance to combined stresses to low phosphorus
(P) and drought in mungbean (Vigna radiata (L.) R. Wilczek), a diverse set of 100 accessions were eval-
uated in hydroponics at sufficient (250 µM) and low (3 µM) P and exposed to drought (dehydration)
stress. The principal component analysis and ranking of accessions based on relative values revealed
that IC280489, EC397142, IC76415, IC333090, IC507340, and IC121316 performed superior while
IC119005, IC73401, IC488526, and IC325853 performed poorly in all treatments. Selected accessions
were evaluated in soil under control (sufficient P, irrigated), low P (without P, irrigated), drought
(sufficient P, withholding irrigation), and combined stress (low P, withholding irrigation). Under
combined stress, a significant reduction in gas exchange traits (photosynthesis, stomatal conductance,
transpiration, instantaneous water use efficiency) and P uptake in seed and shoot was observed under
combined stress as compared to individual stresses. Among accessions, IC488526 was most sensitive
while IC333090 and IC507340 exhibited tolerance to individual or combined stress. The water balance
and low P adaptation traits like membrane stability index, relative water content, specific leaf weight,
organic acid exudation, biomass, grain yield, and P uptake can be used as physiological markers to
evaluate for agronomic performance. Accessions with considerable tolerance to low P and drought
stress can be either used as ‘donors’ in Vigna breeding program or cultivated in areas with limited P
and water availability or both.

Keywords: mungbean; low phosphorus; drought stress; organic acid exudation; photosynthetic rate;
relative water content; membrane stability index; stress susceptibility index; principal component
analysis ranking

1. Introduction

Mungbean (Vigna radiata (L.) R. Wilczek) is a short duration pulse crop grown by
marginal and poor farmers as a grain and fodder crop, primarily in the arid and semi-
arid regions of India that are prone to numerous abiotic stresses and greatly hampers
seed yield [1]. Mungbean is preferred for its high nutritional value and for improving
soil fertility. Phosphorus (P) is a non-renewable resource and the second most important
macronutrient for plant growth and development after nitrogen (N). Deficiency of P
has deleterious effects on plant growth, development, and reproduction. Limitation in
plant growth and seed yield under P deficiency is mainly attributed to its heterogenous
distribution and low mobility in soil. Most of the world’s arable lands exhibits high P
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retention potential that leads to poor bioavailability of P for plant uptake [2]. It is generally
accepted that the uptake of P by crop plants is reduced in limited moisture condition
through changes in mass flow and diffusion, reduced root proliferation, and by altered
P uptake capacity [3–6]. Drought can reduce plant growth by limiting N and P uptake,
transport, and their redistribution [7]. Under water deficient condition, P application
can enhance root growth, nutrient uptake, and water use efficiency (WUE) resulting in
increased yield [8]. Drought can be ameliorated by increasing the availability of N, P, and
potassium (K) that leads to higher root proliferation, water uptake, and WUE [9,10].

P plays essential roles in energy metabolism, biosynthesis of nucleic acids, membranes
phospholipids, cellular signal transduction, and regulation of several key enzymes [11].
It also has an important role in improving root growth, maintaining cell turgidity with
high water potential, and increases the stomatal conductance with higher WUE during
moisture deficit condition [12]. Optimum P nutrition can contribute to a controlled and
proper adjustment of the physiological, morphological, and biochemical processes of a
plant to promote growth. Enhanced growth rate at higher P levels could be attributed to the
increase in photosynthetic rate associated with the increase in stomatal conductance [13] as
reported in cotton (Gossypium hirsutum L.) and Rhodes grass (Chloris gayana Kunth) under
water deficit stress [14,15]. Tolerance to low soil P availability is associated with increased
P acquisition efficiency, which is achieved by modification in root architecture capable of
foraging the nutrients from the upper soil layer [16–18]. P deficiency in rice caused a rapid
decline in chlorophyll a content, while chlorophyll b decreased gradually over the period
of P deprivation [19]. The reduction in chlorophyll content with moisture stress level have
also been reported in common bean (Phaseolus vulgaris L.) [20], cluster bean (Cyamopsis
tetragonoloba (L.) Taub) [21], and mungbean [22].

The relative water content (RWC) is one of the key traits associated with drought stress
and is reduced in response to drought as reported in several crops like soybean (Glycine max
(L.) Merr.) [23,24], alfalfa (Medicago sativa L.) [25], and mungbean [22,26,27]. Another trait,
excised leaf weight loss (ELWL), is often used as a selection criterion for drought tolerance in
many crops. Genotypic variation for ELWL can be due to both the residual water loss from
stomatal complex and epicuticular transpiration as reported among black gram (Vigna mungo
(L.) Hepper) genotypes [28]. Mungbean genotypes with contrasting ELWL were explored
for the variation in physiological and molecular responses to water deficit which revealed
that efficient stomatal regulation was found in genotypes with low ELWL [29]. Further, a
negative correlation between moisture retention capacity (MRC) and stomatal conductance
was reported in common bean [30]. Under drought, a significantly positive correlation
between MRC and yield attributes was reported in wheat (Triticum aestivum L.) [31]; on the
contrary, a poor correlation between MRC and seed yield or dry matter was observed in
common bean [32]. The negative effect of moisture deficit on yield and its attributes are
well reported in legume crops [27,33,34]. Since P nutrition plays an important role in pod
filling thereby enhancing seed yield [35], it is therefore recommended to apply P under
drought stress as observed in as cluster bean [36,37], cowpea (Vigna unguiculata (L.) Walp) [38],
chickpea (Cicer arietinum L.) [39], and soybean [40,41].

Generally, mungbean is cultivated under rainfed condition with minimal or without
application of fertilizers. Moisture deficit affects soil P mobility towards the root while
P deficiency influences growth and physiology of plants. Therefore, identification of
mungbean accessions possessing physiological mechanisms to acquire and utilize P from
soil having less soil moisture in rainfed regions would be useful in improving mungbean
seed yield. In the present study, efforts were made to phenotype the diverse mungbean set
(selected from 1232 diverse accessions) in hydroponics under controlled condition followed
by thorough physiological evaluation of contrasting groups to low P and drought stress
in soil under natural growing conditions. The aim was to identify the traits that could be
used as physiological markers, and the ‘donor’ accessions may be included in the Vigna
breeding program to develop varieties with enhanced water and P use efficiencies for
cultivation under limited availability of water or P or both.
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2. Materials and Methods

The diverse mungbean set comprising 100 accessions (Table S1) was selected from a
total of 1232 diverse mungbean germplasm [42]. These diverse germplasms were scored for
the morpho-physiological and yield traits in the field experiment located at Issapur Farm,
ICAR-National Bureau of Plant Genetic Resources (NBPGR), New Delhi, India between
latitudes 28◦32′11′ ′ N and 28◦42′45′ ′ N; longitudes 76◦49′41′ ′ E and 77◦02′53′ ′ E; 218 m above
mean sea level (Figure S1a–c). Two separate experiments were conducted on this diverse set
to investigate the effect of low P and drought on growth and physiology of mungbean.

2.1. Experiment 1: Screening in Hydroponics

The diverse mungbean set was phenotyped in hydroponics at Controlled Environment
Facility, Division of Plant Physiology, ICAR-IARI, New Delhi. Seeds of mungbean were
surface sterilized with 0.1% HgCl2 and rolled in moistened germination towel. Upon
appearance of cotyledonary pair of leaves after five days, six seedlings were transferred to
nutrient medium in each treatment. Seedlings were grown with two P levels, sufficient
(250 µM) and low P (3 µM) throughout the experiment. The composition of nutrient
solution was as follows: MgSO4.7H2O (1 mM), CaCl2.2H2O (1.65 mM), K2SO4 (0.7 mM),
Fe-Na-EDTA (0.03 mM), Urea (2.5 mM), and micronutrients H3BO3 (2.9 µM), MnSO4.H2O
(2.8 µM), ZnSO4.7H2O (0.5 µM), CuSO4.5H2O (0.47 µM), and Na2MoO4.2H2O (0.6 µM).
The pH of the nutrient solution was adjusted between 6.0 and 6.2 (using either 1.0 N KOH
or 1.0 N HCl). To find out the sufficient and low P levels, a preliminary experiment was
conducted using two accessions (IPM 2-3 and MH 421) with different P concentrations (0 to
450 µM) using KH2PO4 as P source. Growth traits like biomass, leaf area, and chlorophyll
were recorded on 21 days old seedlings and finally selected sufficient or optimum and
low P concentrations (Figure S2). The growth conditions maintained in the Controlled
Environment Facility was day/night temperature at 30/27 ◦C, relative humidity of 85%,
photoperiod of 12 h at a photosynthetic photon flux density (PPFD) 1000 µmol m−2 s−1.

Plants were exposed to treatments as control (sufficient P, no drought), low P (no
drought), drought (with sufficient P), and combined stress (low P, drought). Drought stress
was imposed after a week of transferring the plants to nutrient solution by hanging the
roots in air (dehydration) following the method of Singh et al. [43]. Initially, seedling
roots were exposed to air for 1 h for acclimatization after which the exposure time was
increased to 3 h. Every time after the dehydration treatment, roots were returned to the
nutrient solution. This dehydration treatment was repeated consecutively for a period of
five days for the same plant to lower the water potential. The exposure time to air was
from 10.00 h to 13.00 in drought treatment. Two weeks post-dehydration treatment, the
morpho-physiological parameters were recorded for screening the accessions for combined
tolerance to drought and low P stress. Out of 100, 10 accessions were selected based on
their performance under combined stress in hydroponics culture for further evaluation in
low P soil.

2.2. Experiment 2: Evaluation of Selected Accessions in Soil

Ten mungbean accessions selected from Experiment 1 belonging to contrasting groups
were grown in soil during summer (22 March to 15 June) 2018 to assess growth, yield,
physiological, and biochemical basis of low P, drought, and combined stress tolerance.
Plants were grown in soil with sufficient and low P availability. The plastic pots (30 cm
diameter) were filled with sandy loam soil containing 7.8 mg P kg−1 soil as available
P [44]. The pH (soil: water, 1:5) and electrical conductivity (EC) of soil was 7.8 and
0.155 mS m−1, respectively. Initially, eight seeds were sown in the pots and 15 days after
germination, three healthy plants with uniform growth were retained per pot. For each
accession and treatment, 10 pots were maintained, and one pot was treated as one replicate.
Recommended rate of nitrogen (20 kg N ha−1) and potash (60 kg K2O ha−1) as urea
and muriate of potash, respectively, for mungbean were mixed with soil. Single super
phosphate was applied at the recommended rate (40 kg P2O5 ha−1) to create sufficient P



Agronomy 2021, 11, 99 4 of 23

level while no external P was added to low P pots. The treatment combinations were control
(sufficient P, irrigated), low P (7.8 mg P kg−1 soil, irrigated), drought stress (sufficient P,
with-holding irrigation), and combined stress (low P, with-holding irrigation). Two more
treatments were added as recovery from stress: Drought-recovery, and combined stress-
recovery. Drought stress was imposed after 35 days of sowing by withholding irrigation for
10 days, which resulted in 10–11% reduction in soil moisture while the soil moisture content
in control was maintained at 16–17% (measured by gravimetric method). The water deficit
condition was maintained in drought stressed plants for two days and sampling was done
for control, low P, drought, and combined stress on the same day. Subsequently, plants
were re-watered to recover from drought and combined stresses followed by sampling
for stress recovery treatment. Three pots from each treatment were used for destructive
sampling and the remaining seven pots were kept for recording yield attributes.

2.3. Water Relation Traits and Membrane Stability Index (MSI)

Scanning and image analysis for root traits in hydroponically grown 100 accessions
was carried out by EPSON scanner and WinRhizo program (Regent Instruments Inc.,
Sainte-Foy, QC, Canada), respectively. The traits such as total root length (cm plant−1),
total root surface area (cm2 plant−1), root volume (cm3 plant−1), and root average diameter
(cm) were obtained. Chlorophyll concentration was measured by an optical chlorophyll
content meter (MC-100, Apogee Instruments, Logan, UT, USA) in the second trifoliate leaf
of the seedlings and expressed as µmol chlorophyll m−2 leaf area.

Rate of water loss (RWL) from leaf was estimated according to [45]

RWL (g H2O g−1 dry weight h−1) = (W0 min −W140 min)/dry wt. (g) × time (h) (1)

Moisture retention capacity (MRC) calculated using the following formulae:

MRC (%) = (weight after 140 min − dry weight)/(fresh weight − dry weight) × 100 (2)

Excised leaf weight loss (ELWL) after 30, 90, and 140 min was calculated as water lost
per unit of initial water content in the leaf according to [46] as follows:

ELWLW0−30min = (FW0 − FW30)/(FW0 − DW) (3)

ELWLW30−90min = (FW30 − FW90)/(FW30 − DW) (4)

ELWLW90−140min = (FW90 − FW140)/(FW140 − DW) (5)

where FW is fresh weight and DW is dry weight of leaf tissue.
The RWC [47] and MSI [48] were measured as per the standard methodologies in the

fully expanded third trifoliate leaf.

2.4. Tissue Phosphorus Concentration

P concentration was estimated in stem, leaf, seed, and root using oven dried tissue. The
ground samples were digested with di-acid mixture (HNO3: HClO4, 9:4), volume made up
to 50 mL, and filtered through Whatman No. 42. The samples were run on an inductively
coupled plasma optical emission spectrometer (ICP-OES; model 5110, Agilent technologies,
Santa Clara, CA, USA) calibrated using standard solutions. The P concentration was
expressed as mg g–1 dry weight.

2.5. Photosynthetic Pigment and Gas Exchange Measurements in Selected Accessions Grown in Soil

Chlorophyll and carotenoid content were estimated on fully expanded third trifoliate
leaf by non-maceration method using dimethyl sulfoxide [49]. The gas exchange traits
were measured using infrared gas analyzer (Li-6800, Li-COR Inc., Lincoln, NE, USA) on
the second fully opened trifoliate leaf. The measuring conditions of leaf chamber was
set at 1200 µmol m−2 s−1 of photosynthetic photon flux density, CO2 concentration set
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at 400 µmol mol−1, relative humidity at 65 ± 2% and temperature at 28 ± 1 ◦C. The
measurements were recorded between 8.00–12.00 h. Instantaneous water use efficiency
(IWUE, µmol mol−1) was calculated by the photosynthetic rate divided by transpiration
rate. The gas exchange measurements were recorded in all four treatments as well as in
stress-recovery plants after 24 h of re-watering.

2.6. Characterization and Quantification of Organic Acid in Root Exudates in Selected Accessions

After imposition of drought, the plants were uprooted carefully, and roots washed
with deionized water. The roots were immersed in 50 mL of trap solution (0.5 mM CaCl2
solution, pH 4.5) contained in 100 mL Erlenmeyer flask wrapped in black paper and kept
under natural condition for 4 h (8.00 to 12.00 h). Root fresh weight was recorded after
removing the plants from the trap solution and the quantification of organic acid was
carried out following the method of [50]. The root exudate (20 mL) was passed through
a cation exchange column (Amberlite IR-120 H+ form) followed by passing through an
anion-exchange column (DEAE-cellulose). The anions were eluted with 2.0 mL of 1.0 M
HCl and after drying, the pellet was re-suspended in 500 µL of 5.0 mM H2SO4. Samples
were analyzed using HPLC (Agilent Technologies, 1200 Infinity) with Hi-Plex H column
as the stationary phase. The column temperature was set at 70◦C. Mobile phase (5 mM
H2SO4) was used at a flow rate of 0.6 mL min−1. Individual samples were run for 25 min
and peaks captured by a refractive index detector (RID) with an optical temperature of
55 ◦C. For peak identification, standard solutions of oxalic, citric, pyruvic, α-ketoglutaric,
malic, maleate, malonate, succinic, lactic, acetic, and fumaric acids were used (procured
from Sigma). Concentration of individual acids were quantified from the calibration curves
of standards and expressed as µmol g−1 root fresh weight while total organic acid was
calculated as the sum of individual acids. The relative organic acid was computed by total
organic acid exudation under treated conditions divided by total organic acid exudation
under control.

2.7. Grain Yield and Its Attributes in Selected Accessions

At maturity, pods were harvested in two pickings, viz. at 42 and 55 days after sowing.
Total seed yield was determined by summing up both pickings from single plant, weighed,
and expressed as g plant−1. The total number of pods was counted for each plant and
expressed as pods per plant. Six pods were randomly selected and threshed, number of
seeds were counted, and expressed as number of seeds per pod. For 100-seed weight (test
weight), seeds were counted manually and weighed.

2.8. Stress Tolerance Evaluation in Hydroponics (PCA Ranking)

The stress tolerance of accessions under different treatments were evaluated by calcu-
lating the relative value, which was obtained by the formula:

Relative value = (trait value under treatment)/(trait value under controlled) × 100 (6)

The principal component analysis (PCA) ranking value was used for assessing stress
tolerance of accessions under different treatments. For each mungbean accession, ranking
value was determined by the formula [51]:

PCA ranking value = (contribution of PC1 (%) × PC1) + (contribution of PC2 (%) × PC2) + (contribu
tion of PC3 (%) × PC3) + (contribution of PC4 (%) × PC4)

(7)

2.9. Statistical Analysis

The experiments were laid out in three-factor factorial completely randomized design
(CRD) with two P levels, two water regimes, and mungbean accessions. For basic statistical
calculations, three-way analysis of variance (ANOVA) was carried out in the statistical
software R version 3.6.1 [52]. Comparison among treatments were performed using crit-
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ical difference (CD) at the 0.05 probability level. All measured traits were subjected to
principal component analysis (PCA) to identify common trend of the multidimensional
datasets. PCA was performed using the FactoMineR [53] whereas GraphPad Prism 5.0 and
R software were used for data visualization as boxplots and heatmap, respectively.

3. Results
3.1. Evaluation of Diverse Mungbean Set in Hydroponics

The 100 mungbean accessions screened under different treatments in hydroponics
culture for traits related to drought stress (excised leaf weight loss, rate of water loss,
and moisture retention capacity), biomass (shoot dry weight, root dry weight, total plant
dry weight, and root-to-shoot ratio), root morphology (total root length, root surface area,
average root diameter, root volume, and number of root tips), and P indices (P concentration
and total plant P uptake) were evaluated. The effect of various levels of P, moisture regime,
and genotypes as well as their interactive effects (P×W, P×G and W×G) were significant
(p ≤ 0.05) for all traits except ELWL (Supplementary Table S2). To evaluate the relative
contribution of each trait under different treatments, relative values of all traits were
subjected to PCA. It was found that under low P stress, PC1 and PC2 explained 39.4
and 22.7% genotypic variation, respectively (Figure 1a). The traits contributing to this
variation under low P stress were total dry weight, shoot dry weight, root dry weight, total
root length, root surface area, root volume, moisture retention capacity, rate of water loss,
number of root tips, and total plant P uptake. Under drought stress, PC1 and PC2 explained
39.3 and 16.2% genotypic variation, respectively (Figure 1b). The major contributing
traits under drought stress were total dry weight, shoot dry weight, root surface area,
total root length, total plant P uptake, moisture retention capacity, and rate of water
loss. Under combined stress, the PC1 and PC2 explained 34.6% and 16.5% phenotypic
variation, respectively (Figure 1c). The most contributing traits to the genetic variation
under combined stress were found as total dry weight, shoot and root dry weight, root
surface area, total root length, total plant P uptake, moisture retention capacity, and excised
leaf weight loss. However, the contributing traits common between three stress treatments
were the same as those mentioned for drought stress except for the rate of water loss.

3.2. Differential Response of Contrasting Groups to Low P, Drought and Combined Stress

The PCA ranking values were calculated using loading scores from the relative values
of all traits under low P, drought, and combined stresses in the hydroponically grown
plants (Table S3). Based on the PCA ranking values, the top 25 accessions with higher
rank values were grouped as tolerant and bottom 25 accessions with low rank values
were grouped as sensitive to drought, low P, and combined stress (Table 1). The tolerant
accessions under all three treatments exhibited higher relative values in comparison to the
sensitive ones. In the tolerant group, the average of shoot biomass was reduced by 25, 61,
and 76% while in the sensitive group, the reduction was 62, 79, and 82%, respectively, under
low P, drought, and combined stress in comparison to control. Similarly, the mean of total
biomass in tolerant group was reduced by 14, 58, and 73% whereas in the sensitive group,
it decreased by 55, 78, and 81% under low P, drought, and combined stress, respectively, as
compared to control. Increase in chlorophyll concentration, a low P stress specific trait, was
observed in tolerant group while it decreased under drought in both groups (Figure S3a–c).

The total root length decreased drastically in both groups in all treatments except
in tolerant group at low P, which was non-significant (Figure S3d). Under drought and
combined stresses, more than 90% reduction was noted in group mean for total root length
as compared to control. The mean of root surface area in the tolerant group increased under
low P while it decreased in the sensitive group (Figure S3e). Likewise, root surface area also
decreased (>80%) under drought and combined stress as compared to control. The average
root diameter in both tolerant and sensitive groups increased markedly under drought
and combined stress while under low P, less than 15% increase was noted indicating root
thickening under drought and combined stress (Figure S3f). The average for root-to-shoot
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ratio increased in both tolerant and sensitive groups under all treatments as compared to
control, maximum being in sensitive group under low P (Figure S3g). A reduction in total
P uptake in both groups was observed but it was drastically reduced in sensitive group
compared to tolerant group (Figure S3h). On average, the rate of water loss from leaves
was lower in both groups under low P stress as compared to control (Figure S3i).
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Figure 1. Biplot using relative values of 16 physiological traits of mungbean accessions grown
hydroponically under (a) low phosphorus, (b) drought, and (c) combined stress. Arrow represents
agro-physiological traits, its length corresponds to the contribution of each trait. Number represents
100 mung bean accessions corresponding to Supplementary Table S1. Abbreviation: ELWL_30 and
ELWL_90, excised leaf water loss per unit initial water content after 30 min and 90 min; RWL, rate of
water loss; MRC, moisture retention capacity; PPC, plant P concentration; PPU, plant P uptake; Chl,
chlorophyll concentration; DSW, dry shoot weight; DRW, dry root weight; TDW, total dry weight;
RSR, root-to-shoot ratio; TRL, total root length; RSA, root surface area; AD, average root diameter;
RV, root volume; NRT, number of root tips.
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Table 1. Selection of tolerant and sensitive mungbean accessions (25 each) based on their response to
different stresses viz., low P, drought, and combined (low P and drought). These accessions were
identified on the basis of principal component analysis ranking using loading score from relative
values under treated conditions. The ranking values are presented in Table S3.

Low P Drought Combined

Tolerant Sensitive Tolerant Sensitive Tolerant Sensitive

IC314606 EC398916 EC398916 EC398907 IC280489 EC398907
EC396156 EC398414 IC314606 IC565301 IC76468 EC396156
IC257571 IC252008 IC507276 IC73112 IC489015 IC489004
IC401586 IC305250 IC507418 IC76370 IC76414 IC148401
IC305222 IC507526 IC257571 IC357035 IC507321 IC565301
IC565301 IC76422 IC401586 IC305250 EC397142 IC73112
IC148442 IC488849 IC305222 IC507526 EC397141 EC398131
IC280489 IC488808 IC148442 IC488582 IC76466 IC488904
EC398131 IC118993 IC280489 IC76346 IC76499 IC507504
IC76468 IC119005 IC507527 IC398746 IC76415 IC76451

IC507527 IC405261 IC76414 IC488808 IC333090 IC488582
EC397142 IC73401 IC507321 IC118993 IC507340 IC76346
EC397141 EC396413 EC397142 EC398880 IC76422 IC489093
IC285532 IC488875 EC397141 IC119005 IC488808 IC121249
IC488813 IC488526 IC507320 IC754464 EC398937 EC398880
IC507504 IC119018 IC76415 IC73401 EC398886 IC119005
IC76415 IC325853 IC507483 EC314285 IC405261 IC73401
IC333090 IC76581 IC333090 IC488526 IC305249 EC314285
IC507340 IC507296 IC507340 IC119018 IC121316 IC488526
IC507376 IC590082 IC76422 IC325853 EC396413 IC325853
IC398746 IC623704 IC488966 IC553566 IC315045 IC507296
IC282110 IC623821 EC398949 IC507296 IC623821 IC590082
IC488966 IC584699 IC314512 IC590082 IC573083 IC623704
EC398949 IC415097 IC121316 IC623821 IC623705 IC415097
IC305249 HUM-1 IC507319 IC393792 IC512343 IC393792

Bold text represents the tolerant accessions which were common under all three treatments while bold italics
text represents the sensitive accession which were common under all three treatments.

From Table 1, we selected those accessions that were common in all three stress
treatments as tolerant and sensitive (Table 1). So, based on the PCA rankings we found
six tolerant (IC280489, EC397142, IC76415, IC333090, IC507340, and IC121316) and four
(IC119005, IC73401, IC488526, and IC325853) sensitive accessions from the hydroponics
experiment. The actual performance of these selected accessions in hydroponics are
presented in Figure S4a–i. These accessions were used for detailed physiological studies in
soil culture.

3.3. Stress Susceptibility Index of Selected Mungbean Accessions Grown in Soil Culture

The selected 10 accessions from Experiment I were grown in soil under different treat-
ment combinations. We calculated the stress susceptibility index (SSI) for these accessions
taking into consideration the above ground dry matter and seed yield in control and low P
soil with and without drought stress (Table 2). The ranking was done using online toolkit
iPASTIC (https://manzik.com/ipastic/). Based on mean ranking values, these accessions
were grouped as tolerant (IC333090, IC507340, IC73401, IC121316, IC76415) and sensitive
(IC280489, EC397142, IC119005, IC325853, IC488526). There was a slight change in the
groupings of tolerant and sensitive accessions according to SSI as against PCA ranking.
However, we followed the tolerant and sensitive groupings derived from SSI values to
present the various physiological responses and yield to stress treatments in soil culture.

https://manzik.com/ipastic/
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Table 2. Stress susceptibility indices (SSI) of 10 selected mungbean accessions based on the above ground
dry matter (AGDM) and seed yield. Rank 1 is the best performer, while rank 10 is worst performer.

Low P Drought Combined
Mean

AGDM Seed Yield AGDM Seed Yield AGDM Seed Yield

IC333090 1 1 1 1 1 2 1.2
IC507340 6 2 2 2 2 1 2.5
IC73401 3 4 3 4 7 4 4.2

IC121316 5 3 4 5 6 7 5.0
IC76415 2 7 7 7 4 5 5.3

IC280489 4 8 8 6 5 3 5.7
EC397142 7 5 9 3 8 6 6.3
IC119005 10 10 6 8 3 8 7.5
IC325853 8 6 5 9 9 9 7.7
IC488526 9 9 10 10 10 10 9.7

3.4. Biomass, RWC, and MSI Influenced by Low P, Drought and Combined Stress

Significant (p ≤ 0.05) influence of P levels, drought, and accessions were observed on
RWC, MSI, and dry matter accumulation but the P ×W interaction was not significant
for MSI (Table S4). Averaged over accessions, the above ground dry matter decreased by
16.4, 24.7, and 32.3% in the tolerant group, whereas in the sensitive group, the reduction
was 27.4, 33.0, and 48.6% under low P, drought, and combined stress, respectively, as
compared to control (Figure 2a). Marked reduction in dry matter accumulation was
observed in accession IC488526 followed by IC325853, whereas the least reduction was
noted in accession IC333090 followed by IC507340 under combined stress.
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Figure 2. Effect of low P, drought, and combined stress on (a) total above ground dry matter, (b) relative
water content, and (c) membrane stability index in 10 mung bean accessions. Values on bars 1–5 and
6–10 represents mean of tolerant and sensitive accessions, respectively. The letters on each bar denotes
significant difference between accessions in each treatment. Error bars indicate mean ± SEm.
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Under combined stress, lesser reduction in RWC (13.5%) and MSI (32.9%) was found
in tolerant group as compared to sensitive group (RWC 22% and MSI 41.6%) (Figure 2b,c).
Further, among the tolerant accessions, the least reduction in RWC was recorded in acces-
sions IC76415 and IC73401 under combined stress. Similarly, the MSI was least affected in
IC333090 and IC507340 among the tolerant group while accessions IC488526 and IC280489
were highly influenced by combined stress.

3.5. Effect of Low P, Drought, and Combined Stress on Phosphorus Indices

Though low P and drought significantly reduced the P concentration in shoot and
seed, a drastic effect was observed in shoot tissue P concentration under combined stress
(Table S4; Figure S3a,c). The reduction in P concentration in seed and shoot in IC333090
was non-significant whereas it was highest (31 to 40%) in IC488526 under combined stress
as compared to control. The P uptake in seed and shoot were significantly reduced in all
treatments (Figure 3b,d). Among treatments, the maximum reduction in shoot P uptake
was noted in combined stress as compared to low P and drought (Figure 3b). Further, the
accessions in sensitive group showed higher reduction than the tolerant group. Similarly,
the seed P uptake in tolerant group was reduced by 30, 41, and 53% whereas it was 32, 63,
and 77% in sensitive group under low P, drought, and combined stress, respectively, as
compared to control (Figure 3d). Among accessions, the highest reduction in P uptake in
seed and shoot was noted in IC488526 (sensitive) under individual or combined stresses
while IC333090 and IC507340 (tolerant) showed least reduction.
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Figure 3. Effect of low P, drought, and combined stress on (a) shoot P concentration, (b) seed P
concentration, (c) shoot P uptake, and (d) seed P uptake in 10 mung bean accessions. Values on bars
1–5 and 6–10 represents mean of tolerant and sensitive accessions, respectively. The letters on each bar
denotes significant difference between accessions in each treatment. Error bars indicate mean ± SEm.
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The P harvest index (PHI) decreased significantly in all treatments with the highest
reduction noted in drought stress as compared to control (Figure 4a). Among tolerant and
sensitive groups, the PHI decreased by 37 and 17%, respectively, under combined stress
in comparison to control. The PUEg (PUE for grain) averaged over accessions was higher
under low P stress while it decreased under drought and combined stress (Figure 4b). This
reduction was higher in sensitive rather than the tolerant group. More than a 50% decrease
in PUEg under combined stress was noted in accession IC488526. Conversely, the PUEbm
(PUE for biomass) was higher in all three treatments as compared to control (Figure 4c).
Between treatments, low P stress resulted in higher PUEbm as compared to control while
among accessions, the PUEbm was highest in IC488526 (55%) and EC397142 (44%) and
least in IC333090 and IC507340.
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Figure 4. Effect of low P, drought, and combined stress on (a) P harvest index (%), (b) PUEg (g seed mg−1 P), (c) PUEbm
(g dry matter mg−1 P) in 10 mung bean accessions. Values on bars 1–5 and 6–10 represents mean of tolerant and sensitive
accessions, respectively. The letters on each bar denotes significant difference between accessions in each treatment. Error
bars indicate mean ± SEm.

3.6. Gas Exchange Traits and Photosynthetic Pigments Influenced by Drought and Low P Stress

The gas exchange traits were significantly (p ≤ 0.05) affected by P, W, G, as well as
their interactions (P × W, P × G, W × G and P × W × G) except for P × W effect on
transpiration (Table S5). Drought and low P stress showed an adverse effect while the
combined stress drastically reduced photosynthesis (PN), transpiration (E), and stomatal
conductance (gs) (Figure 5a–c). However, recovery from drought and combined stress
resulted in a significant increase in PN, E, and gs, the recovery being higher in drought as
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compared to combined stress. The reduction in PN due to combined stress in sensitive group
was 95–98% while it ranged 71–92% in the tolerant group (Figure 5a). Similarly, the rate of
transpiration under low P, drought, and combined stress significantly decreased by 13, 70,
and 83% in the tolerant group, and by 19, 73, and 92% in the sensitive group, respectively
(Figure 5b). The response pattern for gs in all accessions was similar to E (Figure 5c). On
the other hand, the IWUE increased under drought and combined stress in comparison
to control (Figure 5d). Further, recovery from drought and combined stress resulted in
increased IWUE as compared to control, which was the maximum in the sensitive group
as compared to that in the tolerant group particularly under recovery from combined
stress. Among accessions, IC333090 showed tolerance whereas IC488526 exhibited drastic
reduction in gas exchange traits in response to drought, low P, and combined stresses.
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Figure 5. Effect of low P, drought, and combined stress on (a) rate of photosynthesis, (b) transpiration, (c) stomatal
conductance, and (d) instantaneous water use efficiency in 10 mung bean accessions. Values on bars 1–5 and 6–10 represents
mean of tolerant and sensitive accessions, respectively. The letters on each bar denotes significant difference between
accessions in each treatment. Error bars indicate mean ± SEm.

Total chlorophyll and carotenoid concentration in leaves were significantly influenced
by P, moisture regimes, and accessions as well as their interactions. However, the effect of
P and P ×W interaction was not significant for total chlorophyll (Table S5; Figure S5a,b).
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Averaged over accessions, total chlorophyll was higher in tolerant group under combined
stress as compared to control. The value averaged over accessions for carotenoid showed
increased concentration by 27.9 and 16.4% in tolerant and sensitive groups, respectively,
under combined stress.

3.7. Organic Acid Exudation in Response to Low P, Drought and Combined Stress

The quantity of various organic acids in root exudate was significantly (p ≤ 0.05)
influenced by P, W, and G, as well as their interaction effects (Tables S6 and 3–5). In general,
exudation of organic acid was higher under low P as compared to control except for
pyruvate, which showed reduction under all treatments. Interestingly, no additive effect
of drought under low P stress was found on total organic acid exudation in either groups.
Oxalate was not detected in control and drought, but low P stress showed considerable
exudation. However, combined stress induced significantly higher quantity of oxalate, but
the accessions exhibited differential response. Similarly, citrate was induced under low P
and combined stress but there was differential response of accessions under drought as 4
out of 10 accessions exuded remarkably higher quantity of citrate.

Table 3. Effect of P nutrition and drought on exudation of organic acids (oxalate, citrate, maleate, and α-Ketoglutarate) from
roots of selected mungbean accessions grown at two P levels (sufficient, 25.6 mg P kg−1 dry soil, and low P, 7.8 mg P kg−1

dry soil) and two moisture regimes (irrigated and drought). ‘nd’—not detectable; Con—Control; LP—Low phosphorus;
Dt—Drought; CS—combined stress.

Accession
Oxalate (µM g−1 Root

FW)
Citrate (µM g−1 Root

FW)
Maleate (µM g−1 Root

FW)
α-Ketoglutarate (µM g−1

FW)

Con LP Dt CS Con LP Dt CS Con LP Dt CS Con LP Dt CS

IC333090 nd 6.11 nd nd nd 17.5 nd 1.69 nd 13.8 5.0 25.3 1.94 117.2 2.09 36.2
IC507340 nd 2.71 nd 4.64 nd 0.92 nd 2.77 0.27 171.1 27.4 2.88 2.07 73.8 5.75 9.89
IC73401 nd nd nd nd nd 0.91 48.0 4.01 0.40 137 nd 8.19 14.0 54.2 5.13 3.75

IC121316 nd 11.1 nd nd nd 25.0 nd 0.42 nd 58.2 14.0 1.85 nd 36.9 14.9 2.56
IC76415 nd 6.43 nd 9.85 nd 14.2 47.5 0.54 nd 20.4 245 0.37 8.65 33.4 0.13 0.65

Mean
(Tolerant) – 6.59 – 7.25 – 11.7 47.8 1.89 0.34 80.1 72.9 7.72 6.67 63.1 5.6 10.6

IC280489 nd nd nd nd nd 7.68 nd 1.07 4.14 40.3 3.50 4.34 8.91 16.3 12.8 2.47
EC397142 nd 16.5 nd 20.2 nd 1.33 54.1 2.56 0.02 15.1 31.4 3.75 8.83 12.4 22.9 nd
IC119005 nd 8.57 nd nd nd 5.60 nd 0.22 nd 18.2 8.43 0.26 28.2 26.3 15.7 0.64
IC325853 nd 4.29 nd nd nd 7.85 nd 7.89 7.93 8.12 5.56 23.9 6.60 17.4 6.96 0.22
IC488526 nd 5.42 nd nd nd 2.24 34.4 0.74 nd 1.81 7.56 6.67 17.3 37.5 6.45 5.31

Mean
(Sensitive) – 8.70 – 20.2 – 4.94 44.3 2.50 4.03 16.7 11.3 7.78 14.0 22.0 13.0 2.16

Under low P stress, exudation of maleate (4.8-fold), lactate (3.4-fold), α-ketoglutarate
(2.9-fold), fumarate (1.8-fold), and succinate (1.3-fold) increased in the tolerant as compared
to the sensitive group, but the quantity of acetate and malonate was higher in the sensitive
group. Likewise, under drought stress, the amount of maleate (6.5-fold), lactate (3.4-fold),
succinate (2.7-fold), malate (2.2-fold), and fumarate (1.4-fold) increased in the tolerant
as compared to the sensitive group. Among these accessions, low P and drought stress
induced maximum quantity of total organic acid in IC73401 while under combined stress,
it was maximum in IC333090, which was higher than the average of the tolerant group.
Likewise, IC325853 exuded consistently increased amount of total organic acid under all
treatments, which was higher than the average of the sensitive group.
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Table 4. Effect of P nutrition and drought on exudation of organic acid (pyruvate, malonate, malate, and succinate) from roots
of selected mungbean accessions grown at two P levels (sufficient, 25.6 mg P kg−1 dry soil, and low P, 7.8 mg P kg−1 dry soil)
and two moisture regimes (irrigated and drought). Con—Control; LP—Low phosphorus; Dt—Drought; CS—combined stress.

Accession
Pyruvate (µM g−1 Root

FW)
Malonate (µM g−1 Root

FW)
Malate (µM g−1 Root

FW)
Succinate (µM g−1 Root

FW)

Con LP Dt CS Con LP Dt CS Con LP Dt CS Con LP Dt CS

IC333090 199.6 21.4 6.11 60.8 3.98 10.7 0.46 6.49 1.71 22.5 2.94 3.22 4.55 14.9 0.33 12.2
IC507340 25.9 3.5 7.24 2.49 2.70 5.76 1.56 3.54 1.52 28.5 0.52 3.58 0.19 13.9 0.26 8.59
IC73401 10.3 26.3 8.53 60.8 3.03 16.0 2.44 0.29 4.13 1.03 8.60 7.88 1.13 21.0 9.89 12.3

IC121316 7.27 3.08 17.3 53.3 0.18 5.12 0.90 11.9 0.70 0.60 7.33 5.15 0.68 19.5 19.2 4.95
IC76415 212 3.16 40.2 30.2 7.26 8.47 14.5 4.23 6.01 23.7 3.62 4.60 2.07 45.3 1.42 17.3

Mean
(Tolerant) 91.0 11.5 15.9 41.5 3.43 9.21 3.98 5.29 2.81 15.3 4.60 4.89 1.72 22.9 6.22 11.1

IC280489 125.7 2.40 8.92 1.33 11.9 2.36 0.89 5.29 2.03 17.2 2.51 4.75 1.82 8.40 0.01 1.61
EC397142 230.6 41.5 8.47 46.9 6.33 21.7 6.19 2.85 1.49 1.11 0.51 4.20 0.17 7.16 0.42 16.3
IC119005 152.0 59.5 21.1 3.80 5.18 4.28 3.76 1.73 3.15 51.0 4.32 2.76 0.54 7.71 0.52 2.41
IC325853 212.1 69.6 55.8 73.5 16.5 12.5 4.23 24.9 2.69 0.73 1.95 11.1 1.39 26.9 2.75 22.4
IC488526 4.13 27.9 4.00 46.7 1.44 11.4 1.65 15.0 5.66 0.11 1.06 9.09 5.09 35.3 7.62 18.7

Mean
(Sensitive) 144.9 40.2 19.7 34.5 8.3 10.4 3.34 10.0 3.00 14.0 2.07 6.38 1.80 17.1 2.26 12.3

Table 5. Effect of P nutrition and drought on exudation of organic acids (lactate, acetate, fumarate, and total organic acid) from
roots of selected mungbean accessions grown at two P levels (sufficient, 25.6 mg P kg−1 dry soil, and low P, 7.8 mg P kg−1

dry soil) and two moisture regimes (irrigated and drought). ‘nd’—not detectable; Con—Control; LP—Low phosphorus;
Dt—Drought; CS—combined stress.

Accession
Lactate (µM g−1 Root

FW)
Acetate (µM g−1 Root

FW)
Fumarate (µM g−1 Root

FW)
Total Organic Acid (µM

g−1 Root FW)

Con LP Dt CS Con LP Dt CS Con LP Dt CS Con LP Dt CS

IC333090 1.18 4.94 23.0 2.30 14.5 81.5 7.04 17.4 0.40 22.5 75.2 35.4 227.9 333.0 122.2 201.1
IC507340 3.71 197.3 18.5 3.93 6.88 25.3 228.5 8.51 2.73 66.8 7.81 1.43 46.0 589.5 297.4 52.2
IC73401 3.39 252.2 81.7 0.53 3.00 50.9 110.2 4.66 3.74 78.3 78.6 0.55 43.1 637.8 353.0 102.9

IC121316 17.3 79.5 0.32 34.5 1.36 5.41 62.3 13.6 1.64 75.5 58.7 2.75 29.1 319.9 195.0 130.9
IC76415 1.46 66.0 35.6 1.44 20.1 2.80 90.6 11.5 2.95 43.3 54.9 3.18 260.5 267.2 533.7 83.9

Mean
(Tolerant) 5.41 120 31.8 8.54 9.16 33.2 99.7 11.1 2.29 57.3 55.0 8.66 121.3 429.5 300.3 114.2

IC280489 0.47 6.12 23.7 22.0 94.2 50.5 53.2 9.09 0.21 19.4 30.2 1.93 249.3 170.7 135.8 53.9
EC397142 4.41 116.4 23.5 0.52 5.43 63.0 32.3 0.75 1.62 41.4 0.09 2.41 258.9 337.6 179.9 100.5
IC119005 3.04 13.2 54.1 15.2 1.35 22.6 162.1 4.56 19.2 16.5 34.0 1.60 212.5 233.4 304.0 33.1
IC325853 7.26 37.1 31.8 12.7 12.3 92.8 111.0 3.91 4.29 35.3 70.4 2.10 271.2 312.6 290.5 182.6
IC488526 1.65 0.71 60.6 4.21 9.77 7.61 165.0 24.6 1.94 39.8 61.6 2.20 47.0 169.7 349.9 133.3

Mean
(Sensitive) 3.37 34.7 38.7 10.9 24.6 47.3 104.7 8.58 5.44 30.5 39.3 2.05 207.8 244.8 252.0 100.7

3.8. Yield Traits Influenced by Drought and Low P Stress

All the sources of variability (P, W, and G) had significant (p < 0.05) effects on yield and
its attributes, except for the number of seed per pod, which was found to be non-significant
for P ×W interaction (Table S4). In general, yield traits showed a significant reduction
under all stress treatments in comparison to control (Figure 6). Seed yield was the most
adversely affected trait whereas 100-seed weight was least affected under low P, drought,
or combined stress. The number of pods plant−1, number of seeds pod−1, seed yield, and
HI were maintained higher in the tolerant group as compared to the sensitive group under
stress treatments.
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Figure 6. Effect of low P, drought, and combined stress on yield traits in 10 mung bean accessions. Values on bars 1–5 and 
6–10 represents mean of tolerant and sensitive accessions, respectively. The letters on each bar denotes significant differ-
ence between accessions in each treatment. Error bars indicate mean ± SEm. 
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Figure 6. Effect of low P, drought, and combined stress on yield traits in 10 mung bean accessions. Values on bars 1–5 and
6–10 represents mean of tolerant and sensitive accessions, respectively.

Among stress treatments, combined stress resulted in drastic reduction in seed yield,
with the maximum reduction being noted in the sensitive (70%) rather than the tolerant
(45%) group in comparison to control. Among accessions, the least reduction was observed
in IC507340 (34%) and IC333090 (37%) whereas more than 90% decrease in seed yield was
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found in IC488526 and IC325853. Similarly, HI decreased by 21 and 44% in tolerant and
sensitive groups, respectively, under combined stress in comparison to control.

4. Discussion
4.1. Interaction of Low P and Drought on Growth and Root Traits in Hydroponics

Trait identification is one of the important steps in selecting the tolerant genotypes for
abiotic stresses. Phenotyping of diverse mungbean set under low P, drought, and combined
stress was carried out in hydroponics. The PCA revealed the most contributing traits
governing genotypic variability and common in all stresses were total plant dry weight,
shoot dry weight, root surface area, total root length, moisture retention capacity, and plant
P uptake (Figure 1). Further, the PCA ranking allowed categorization of accessions into
tolerant and sensitive groups. Similar ranking approach was reported in barley, wheat, and
switchgrass under drought stress [51,54,55].

The shoot and root traits were less affected by low P and drought stress in tolerant
group as compared to sensitive group (Figure S3a–e). Our results are in accordance with
those reported in lentil phenotyped in hydroponics as well as in soil culture and subjected
to drought stress [43]. However, low P significantly reduced the shoot and root dry weight
in chickpea [56]. Increased root growth is associated with improved ability of plants to mine
soil moisture and nutrients. Our findings are in conformity with studies in lentil [57], green
gram [58,59], soybean [60], and wheat [61] indicating low P alters root architectural traits
such as total root length, surface area, and root-to-shoot ratio. Increased root-to-shoot ratio
is associated with higher investment of photosynthates towards root growth, which further
enhances P acquisition. Low P tolerant pigeon pea (Cajanus cajan) genotypes exhibited
higher root surface area, total root length, root dry mass, root-to-shoot ratio, and leaf P
content [62].

The average root diameter in tolerant group was significantly less under low P as
compared to sensitive one indicating the importance of more fine roots in P acquisition.
Our result is in agreement with reference [63] who also reported lesser root diameter
under low P in lentil. It is shown that shallow root system with more basal roots is
efficient in P acquisition in soil with less bioavailable P whereas deeper root system
contributes to terminal moisture stress condition [64]. Our findings showed that combined
stress significantly reduced the shoot and root dry weight, similar to that reported in
soybean [65,66].

4.2. Combined Low P and Drought Stress Has Additive Effect on Organic Acid Exudation

We observed several folds increase in exudation of total organic acid consistently
under low P, drought, and combined stress in accessions IC73401, IC121316, and IC333090
as compared to control. Among various organic acids analyzed, low P stress induced exu-
dation of maleate, α-ketoglutarate, oxalate, citrate, succinate, lactate, acetate, and fumarate
(Tables 3–5). Root released organic acids have been widely documented as a key physio-
logical strategy to mobilize P in soils containing low bioavailable P [56,67]. These organic
acids could mobilize soil P ranging between 20 to 30 mg P kg−1 soil whereas root exudates
mobilized >40 mg P kg−1 soil [50]. This difference in soil P mobilization by root exudate
and standard organic acids could be due to the fact that exudates are a mixture of many
other carboxylates, which needs to be explored. Further, genotypic variability in organic
acid exudation in response to low P have been reported in chickpea [68], mungbean [58],
and soybean [50] among legume crops. A positive correlation between shoot P content and
organic acid per plant in chickpea and mungbean were reported [69,70].

Drought stress also induced root exudation of maleate, citrate, and lactate in some
accessions while acetate and fumarate were exuded in significant amounts in almost all
accessions. However, the accessions responded differently to combined stress where
succinate was also exuded significantly higher in 6 out of 10 accessions. In IC333090,
the additive effect of drought and low P stress was noted for maleate, succinate, and
fumarate while in IC121316, malonate, lactate, and acetate were significantly higher in
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root exudate. There are very few reports available on drought induced organic acid
exudation into rhizosphere [71,72]. In crested wheatgrass (Agropyron cristatum) grown in
sand, the drought induced exudation was composed of fumaric and succinic acids while
oxalic, malic, and malonic acids were also detected [71]. On the other hand, corn plants
grown hydroponically and osmotic stress imposed by using PEG-6000 resulted in highest
exudation of malic acid [72]. They also detected significant quantities of lactic, acetic,
citric, maleic, and succinic acids besides a 10-fold increase in fumaric acid in drought
sensitive corn genotype. However, these experiments were performed under controlled
conditions and the media used was other than the soil. These reports suggest that organic
acids exuded under drought or osmotic stress could possibly mobilize the fixed-P, thereby
improving the potential for P uptake by plants as the mobility of P in rhizosphere decreases
during drought stress. We did not find any report of organic acid exudation in rhizosphere
under combined stress of low P and drought grown in soil, which may result in altered
composition of organic acids in the exudates.

4.3. Combined Stress Influences Water Relation, Pigment Concentration and Gas Exchange

In soil culture, mungbean accessions showed differential response to RWC and MSI,
with the tolerant ones exhibiting higher values under combined stress (Figure 2b,c). Leaf
RWC is a better indicator of plant water status than water potential under abiotic stress [73].
Further, we observed higher MSI values in drought stressed plants supplied with sufficient
P than the combined stress. Similar positive effects of P application on African violet
(Saintpaulia ionantha) plants grown under drought have been attributed to improved water
relations and drought tolerance [74]. Increased MSI was found to be associated with osmotic
adjustment at higher levels of P nutrition under water stress condition in maize [75].

In the present study, total chlorophyll was significantly reduced under drought stress
in comparison to control in sensitive accessions (IC73401 and IC280489) (Figure S5a,b).
Several reports mentioned a reduction in chlorophyll in several crops exposed to drought
stress such as in common bean [20], cluster bean [21], soybean [76], chickpea [77], and
mungbean [22]. Although increased chlorophyll concentration is a typical trait under low
P stress, we did not find significant change, which corroborates with results in common
bean [78].

The gas exchange traits (A, E and gs) decreased under drought but the reduction was
drastic under combined stress (Figure 5a–c). Stomatal limitations reduced the gaseous
exchange between leaf and atmosphere, which is the main cause for reduced A, E, and gs.
These corroborates with earlier reports in legume crops such as Fababean [79], chickpea [77],
common bean [80,81] and mungbean [22,82] under drought stress. The physiological
mechanism has been explained in other studies, which states that stomatal closure mediated
by ABA during drought stress is the primary limitation of photosynthesis [83,84]. In
addition to sensitizing stomata to water stress, low P increased ABA accumulation during
moisture stress in cotton [14]. Further, low P availability reduces the Pi concentration in
chloroplast stroma, which inhibits ATP synthase activity and cause the lumen acidification
due to proton accumulation, ultimately leading to linear electron flow inhibition [85] Plants
with low P also showed a reduction in gas exchange traits in chickpea [86]. Higher P
concentration in plants improve instantaneous WUE because it controls the suppression of
photosynthesis per unit of water transpired [9,87] and maintains stomatal conductance [12].
A significant correlation was reported between transpiration ratio and leaf P concentration
in tobacco (Nicotiana tabacum), wheat, and sunflower (Helianthus annuus) under sufficient
P [88]. The transpiration ratio, the ratio of water transpired per unit carbon fixed, is
considered as an important plant trait under dry condition. Similar to our results, the
enhancement in photosynthetic activity through application of phosphatic fertilizer under
drought stress was reported in cluster bean [37].
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4.4. Influence of Combined Stress on Growth, Yield, P Uptake and P Use Efficiency

Accumulation of shoot biomass was adversely affected by low P and drought stress
in the present study (Figure 2a). Similar reduction in shoot biomass was reported in
mungbean [58] and soybean [50] under low P, and less dry matter in mungbean under
drought [22]. We also noted reduction in P concentration and P uptake in shoot and
grain under low P, drought, and combined stress, which is obviously due to low tissue P
concentration and less soil moisture availability limiting P mobility. Drastic decrease in P
uptake under combined stress was the result of less biomass accumulation but differential
response of accessions was noted (Figure 3a–d). Shoot biomass and shoot P uptake were
the most sensitive traits to P deficiency in common bean and soybean genotypes [89,90].
Similar reduction in P uptake and biomass accumulation in common bean under moisture
deficit was reported earlier [91]. Drought stress drastically affects P uptake in wheat plants
leading to 62% reduction, which is in accordance with our results [92]. Increased root
growth and higher organic acid exudation in accessions IC333090, IC73401, and IC507340
might have resulted in the least reduction in P uptake under drought or combined stress
leading to efficient P mobilization.

There are several reports stating significant reduction in yield in mungbean subjected
to either drought stress [22,27,93,94] or low P [58,95]. Our results are in agreement with
studies in clover [96], soybean [40,41,65], mungbean [97], and cowpea [98], which showed
that P application to legumes exposed to drought improves yield and other attributes. An
increased linear relationship was reported at different levels of P fertilization and grain
yield and its attributes in chickpea [39] and soybean [41,65]. In cluster bean, faster recovery
upon re-watering and enhanced grain yield was noticed in drought stressed plants grown
with P as compared to without P fertilization [37].

In our study, the PHI and PUE was significantly affected by low P and drought in
mungbean genotypes (Figure 4a–c). PHI decreased under low P and drought conditions,
however the combined stress markedly affected the PHI and PUEg in both contrasting
groups. The higher PHI and PUEg was found in tolerant accessions rather than sensitive
ones (Figure 4a,b) indicating better translocation and remobilization of photosynthates and
P from vegetative to reproductive parts. The PUEbm obtained higher in sensitive group
as compared to tolerant where P uptake was less. These results were in conformity with
reference [99] who reported a strong negative correlation between PUE for shoot biomass
and P uptake in rice. PUEg have been considered as a better trait as compared to PUEbm
due its more positive correlation with harvest index as well as PHI [99,100].

5. Conclusions

We systematically identified contrasting mungbean accessions from the diverse set
based on their physiological performance under low P, drought, and combined stress
conditions. IC333090 and IC507340 accessions showed considerable tolerance to low P and
drought with significantly lesser reduction exhibited for gas exchange traits, dry matter,
and grain yield under all stress treatments. Further, organic acid exudation from roots was
enhanced significantly in these accessions, which aids in P uptake. These tolerant accessions
can be used as ‘donors’ in the mungbean improvement programs for developing varieties
with enhanced agronomic performance under combined stress. Further, the contrasting
material may be used to identify the genes/genomic regions by developing mapping
populations and design suitable markers to be used in the molecular breeding program.
The major contributing traits for combined stress tolerance such as shoot dry weight, RWC,
organic acid exudation, grain yield, and P uptake can be used as physiological markers
for evaluating the germplasm for combined stress tolerance. Further, we confirmed that P
application not only increases the PUE, but also improves growth and yield under drought
conditions corroborating the role of P in amelioration of adverse effects of water deficit
stress.
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Supplementary Materials: The following are available online at https://www.mdpi.com/2073-439
5/11/1/99/s1, Figure S1: (a) Experimental layout in the Issapur Farm, NBPGR, New Delhi with 1232
diverse mung bean accessions, (b) accession showing mid-day wilting, and (c) accession tolerant to
mid-day wilting. Figure S2: Growth of mungbean seedlings in hydroponics at different phosphorus
concentration to identify the optimum and low P levels. Growth traits such as (a) total chlorophyll,
(b) leaf area, (c) total dry weight, and (d) root-to-shoot ratio were recorded on 21 days old seedlings
in two accessions, MH 421 and IPM 2-3. Figure S3: Variation among contrasting group of mungbean
genotypes with respect to (a) shoot biomass, (b) total biomass, (c) chlorophyll concentration, (d) total
root length, (e) root surface area, (f) root average diameter, (g) root-to-shoot ratio, (h) total P uptake,
(i) rate of water loss at control, low P, drought, and combined stress conditions. Figure S4: Effect of
low P, drought, and combined stress on concentration of (a) total chlorophyll, and (b) carotenoid
in 10 mungbean accessions. 1–5 and 6–10 represents tolerant and sensitive accessions, respectively.
Table S1: Passport data of 100 diverse mungbean accessions grown in hydroponics culture to screen
for low phosphorus and drought stress tolerance. Table S2: The significance of sources of variability
for accessions (G, 100 accessions), phosphorus (P, 2 levels), moisture (W, 2 levels) and their interaction
effects on growth, water balance and root traits of mungbean accessions grown in hydroponics.
*** p < 0.001, ** p < 0.01, * p < 0.05, NS non-significant. Table S3: The PCA ranking values derived from
principal components (PC) 1 to 4 using 14 physiological traits of mungbean under low P, drought,
and combined stresses. Table S4: The significance of sources of variability for accessions (G, 10),
phosphorus (P, 2 levels), moisture (W, 2 levels), and their interaction effects on growth and yield traits
of mungbean accessions grown in soil. *** p < 0.001, ** p < 0.01, * p < 0.05, NS- not significant Table S5:
The significance of sources of variability for accessions (G, 10), phosphorus (P, 2 levels), moisture
(W, 2 levels), and their interaction effects on photosynthetic pigments and gas exchange traits of
mungbean accessions grown in soil. *** p < 0.001, ** p < 0.01, * p < 0.05, NS- not significant Table S6:
The significance of sources of variability for accessions (G, 10), phosphorus (P, 2 levels), moisture (W,
2 levels) and their interaction effect on root organic acid exudation of mungbean accessions grown in
hydroponics. *** p < 0.001, ** p < 0.01, * p < 0.05, NS, not significant.
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