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Abstract: Climate change and the efficient use of freshwater for irrigation pose a challenge for
sustainable agriculture. Traditionally, the prediction of agricultural production is carried out through
crop-growth models and historical records of the climatic variables. However, one of the main flaws
of these models is that they do not consider the variability of the soil throughout the cultivation
area. In addition, with the availability of new information sources (i.e., aerial or satellite images) and
low-cost meteorological stations, it is convenient that the models incorporate prediction capabilities
to enhance the representation of production scenarios. In this work, an agent-based model (ABM) that
considers the soil heterogeneity and water exchanges is proposed. Soil heterogeneity is associated to
the combination of individual behaviours of uniform portions of land (agents), while water fluxes
are related to the topography. Each agent is characterized by an individual dynamic model, which
describes the local crop growth. Moreover, this model considers positive and negative effects of
water level, i.e., drought and waterlogging, on the biomass production. The development of the
global ABM is oriented to the future use of control strategies and optimal irrigation policies. The
model is built bottom-up starting with the definition of agents, and the Python environment Mesa is
chosen for the implementation. The validation is carried out using three topographic scenarios in
Colombia. Results of potential production cases are discussed, and some practical recommendations
on the implementation are presented.

Keywords: mathematical modelling; numerical simulation; agriculture; irrigation policy; state
estimation; optimal control

1. Introduction

Increasing food production involves efficient use of resources including arable land [1].
However, not all the land available for agricultural activities is found in locations with
smooth topography and freshwater availability for irrigation. This poses two challenges:
the use of the land and the rational use of water. Land irrigation is a major concern, as it
represents the largest consumption of freshwater all over the world [2]. Several attempts
to improve the irrigation schemes have been proposed over the years, but a systemic
understanding of water effects on crops is necessary and involves the use of software tools
to achieve this purpose. As it takes a full season to assess an irrigation policy, research
has been essentially carried out through numerical simulation. On the other hand, the
land available for agriculture (e.g., wasteland), lacks useful information to forecast a food
production scenario. In developing countries there are no detailed soil studies available.
Then, a first approach is to assume the homogeneity of land based on a limited sample of the
soil and to use traditional crop-growth models. Therefore, the crop-growth models assume
homogeneous blocks of soil, which makes sense for small regions but is unrealistic at wide
regional scale [3–5]. Improving these models is not straightforward due to the diverse
methodologies and assumptions used to build them. This difficulty was evidenced in the
first work of the Agricultural Model Intercomparison and Improvement Project (AgMIP), a
global initiative aimed at comparing 27 main models and looking for possible multi-model

Agronomy 2021, 11, 85. https://doi.org/10.3390/agronomy11010085 https://www.mdpi.com/journal/agronomy

https://www.mdpi.com/journal/agronomy
https://www.mdpi.com
https://orcid.org/0000-0003-3346-7339
https://orcid.org/0000-0002-8688-3195
https://orcid.org/0000-0001-7022-6126
https://doi.org/10.3390/agronomy11010085
https://doi.org/10.3390/agronomy11010085
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/agronomy11010085
https://www.mdpi.com/journal/agronomy
https://www.mdpi.com/2073-4395/11/1/85?type=check_update&version=2


Agronomy 2021, 11, 85 2 of 24

ensembles [6]. The results reported by Martre et al. [7] indicate that heterogeneity of land
at regional scale is a current issue in agriculture.

Some crop simulation models consider soil heterogeneity only with respect to depth,
by assuming that the dynamics of the movement of water in the soil only depends on the
thickness of the different layers (e.g., AquaCrop [8], STICS [9] and APSIM [10]). However,
soil variability across the surface has not been addressed by these models. To face these
variations, this work proposes an agent-based model (ABM), that considers a mechanistic
approach to crop growth and soil water mass balance. The model proposes a reduced set of
equations for an agent to be scalable, and includes uncertainty by adding Gaussian noise in
the states and the measurements. The model is fed with climatic variables, irrigation inputs
and data from measurements of state variables. With these elements, this model starts
from the global behaviour of the crop and allows interpreting the behaviour of smaller
portions of land and its response to environmental variables and the amount of water in
soil, therefore to propose or to assess irrigation policies.

The application of ABM is not new in agriculture. For instance, an agent structure
has been proposed to represent the management decisions of farmers [11,12]. In relation
to soil description, [13] presents an ABM framework to model the movement of water
through a soil column. To the best of our knowledge, however, no integrated model has
addressed surface land variability yet. Instead, large scale models are run in independent
simulations and results are collected by a decision support software, e.g., DSSAT in [14].
The topographic surface land variability comes with additional water dynamics that are
underestimated by the aforementioned models. To address this issue, a coupling between
hydrology and crop growth models was reviewed by Siad et al. [15]. The main conclusions
of their work are that coupling models are still at an early stage because data is scarce, and
the assessment outputs are reported as regional average.

The main contribution of this work is to propose an agent-based model to represent
the complex dynamical interactions between irrigation policy, heterogeneous soil, and
crop growth. Each agent represents a portion of land and is associated with a dynamic
model of crop growth. The model considers the negative effect of excess or lack of water
through an original stress index. Another agent describes the irrigation system, and various
irrigation strategies can be assessed in simulation taking constraints on water supply
into account. The advantage of the ABM formulation is that it allows flexibility in the
definition of the land topography and the consideration of uncertain parameters. In
view of the limited (ground or aerial) instrumentation, the control structure involves an
estimation scheme based on extended Kalman filtering. The irrigation strategy is based on
the optimization of a performance index related to biomass production under irrigation
constraints. The software application is illustrated with three topographic scenarios in
Colombia. Indeed, 35% of the Colombian territory is available for agriculture but only 7%
is currently cultivated. More than 50% of the cultivable area is located on mountainsides,
in valleys and on uneven grounds (non-smooth topography and waterlogging in 42%, and
20% of cropping lands, respectively). Moreover, there are sustainable freshwater sources,
but they need to be exploited rationally.

This paper is organized as follows. The next section introduces the agent-based model
structure, including the estimation scheme and optimal irrigation policy, as well as the
implementation in the Python environment Mesa. Three land topologies and four datasets
corresponding to different rain patterns are introduced in Section 3, which are used to
illustrate the predictive capability of the model and the effect of irrigation on soil stress
and biomass production. Conclusions and perspectives are drawn in Section 4.

2. Model Structure and Implementation

Agent-based modelling (ABM) is a methodology used to simulate interactions be-
tween autonomous individuals [16]. An agent is a self-contained, self-directed, modular,
and uniquely identifiable individual. The modularity requirement implies that an agent
has a boundary. Moreover, every agent is an entity located in a specific environment and
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capable of autonomous actions, in order to meet some objectives. The complete definition
of an agent involves a set of states that varies over time, a set of non-uniform attributes,
asynchronous interactions, and uncertainty related to parameters or states [17]. Further-
more, an agent has at least two levels of interaction: an upper layer to interact with other
agents, and a lower layer to solve internal processes. In the first layer, the goal is to interact
with other agents, and the second deals with the physical world.

The modelling process can be top-down or bottom-up. The bottom-up strategy is se-
lected in this study because one of the modelling goals is to understand how the individual
components affect the all-in-all system behaviour. The emergent system behaviour is the
result of agent interactions [18]. A general structure (shown in Figure 1) of an agent-based
model has typically three elements:

1. A set of agents, their attributes, and behaviours (lower layer).
2. A set of agent relationships and methods of interaction (i.e., interaction topology or

upper layer).
3. The agent environment (i.e., spatial topology).

Figure 1. ABM conceptual structure.

For the particular case of this application, two types of agents are considered: (i) por-
tions of homogeneous soil with a surface of regular shape, and (ii) irrigation equipment.
The soil agents are associated with a dynamic model representing local crop growth as a
function of water availability. The decision or upper level of all agents ensures the respect
of the conditions for the exchange of water between neighbouring agents. Crop-soil agents
require irrigation at regular time intervals and the irrigation agent answers this demand
under the constraints of an irrigation quota.

The global model is intended to predict the evolution of the water content in soil
using local information and assess the biomass produced by applying different irrigation
schemes. The model structure is shown in Figure 2.

The soil-crop agents are described by a set of state variables xn(k), which are influ-
enced by the climatic variables w(k) and by the irrigation inputs un(k). Part of the state
variables can be measured by sensors with output zn(k) (ground sensors, aerial or satellite
measurements) under the influence of measurement errors (or noise) vn(k). The irriga-
tion agent acts as a controller to determine the water delivered to the crop-soil agents.
The control action is determined based on information that it receives at regular time
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intervals k regarding the amount of water available for irrigation of the entire field r(k). As
instrumentation is limited, an estimator is required which provides state estimates x̂n(k).

-
r(k)

ABM

Irrigation
agent

-
un(k) Crop-soil

agents

?

w(k)

-
xn(k)

Sensor
?

vn(k)

-
zn(k)

�Estimator
x̂n(k)

6

Figure 2. Block diagram of the model with n = 1, ..., N crop-soil agents. All variables are described
in Table A1 of Appendix A.

Each of the model blocks are described in the following sections and the compendium
of the variables is presented in Table A1. Subsequently, the Python programming environ-
ment Mesa is described, as well as the methodology to define agents in their spatial and
temporal environments.

2.1. Crop-Soil Agents

The lower level behaviour of every crop-soil agent is related to its internal mechanistic
function, and the information coming from other agents. The dynamical evolution of the
nth agent is given by

ẋn = φn(xn, w, un, Θn) n = 1, ..., N, (1)

where φn(·) is a nonlinear function, xn corresponds to the vector of state variables, w
the vector of environmental inputs, un the vector of management inputs (i.e., irrigation),
and Θn is the set of parameters related to the nth agent, including soil, crop (e.g., type of
cultivar), and management parameters. These parameters can be either constant or time
varying. In general, they are known according to a probability distribution, e.g., the soil
parameters are stochastic variables accounting for the soil variability.

In this study, the dynamical model underlying the crop-soil agents is built up as a
combination of elements of three models. A water mass balance proposed by Ritchie [19,20]
(CERES-Wheat), the drought index equation proposed by Woli et al. [21] (ARID model),
a biomass growth model presented by Zhao et al. [22] (SIMPLE model), and an original
waterlogging stress proposed by the authors (the excess of water reduces the crop transpi-
ration and therefore, the biomass production). This set of equations allows computing the
biomass produced by every agent as a response to the environmental inputs and the water
content in the corresponding patch of soil. The model is developed in discrete-time using a
sampling time of 1 day. This is motivated by two reasons: (i) the growth process at the crop
scale is assumed to be affected only by the time course of temperature, which enables the
use of thermal time (with units degree days, which represents the cumulative time integral
of temperature) to compute the daily aging of the crop; and (ii) the environmental inputs
are available daily. Then, the discrete-time equations for every agent n = 1, ..., N, can be
summarized as follows:

xn
1 (k + 1) = xn

1 (k)− f n
1 (k)− f n

2 (k)− f n
3 (k) + f n

4 (k) + w1(k) + un(k) (2)

xn
2 (k + 1) = xn

2 (k) + hn
1 (k) (3)

xn
3 (k + 1) = xn

3 (k) + θn
11(1− hn

2 (k)) + θn
12(1− hn

3 (k)) (4)

xn
4 (k + 1) = xn

4 (k) + θn
13hn

6 (k)h
n
7 (k)h

n
8 (k)gn(k)w4(k), (5)
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where the state variables are the water content of every land patch (xn
1 ), the cumulative

temperature (xn
2 ), the cumulative temperature until maturity to reach 50% radiation inter-

ception due to leaf senescence (xn
3 ), and the biomass (xn

4 ). The fluxes related to the water
balance in soil are the crop transpiration ( f n

1 ), the surface runoff ( f n
2 ), the deep drainage

( f n
3 ), and the flux coming from a neighbour ( f n

4 ). The independent inputs include the
precipitations (w1) and the solar radiation (w4). The management input is the amount
of water irrigated in every patch (un). The functions hn(k) are continuous or piecewise
continuous functions of environmental inputs (wj) used to compute the stress factors, and
gn(k) is the growth function. Parameters θn

11, θn
12, and θn

13 represent the maximum daily
reduction in xn

3 due to heat stress, the maximum daily reduction in xn
3 due to drought stress,

and the radiation use efficiency, respectively. A complete list of variables and parameters is
given in Tables A1 and A2, and the representation of an agent is shown in Figure 3.

Figure 3. Crop-soil agent structure. All variables are described in Table A1.

Hereafter, the superscript n of all internal functions ( f n(k) and hn(k)), state variables,
and parameters is omitted to simplify the notation, keeping in mind that each equation is
specific to each agent. The flux components f n(k) related to Equation (2) are computed
following the sequence proposed by [23]. The crop transpiration f1(k) is given by

f1(k) = min(θ1(x1(k)− θ2θ5), w2(k)), (6)

where θ1 is the water uptake coefficient, θ2 is the wilting point, θ5 is the root-zone depth,
and w2 is the reference evapotranspiration. The surface runoff f2(k) is computed as

f2(k) =

{
(w1(k)−θ3)

2

(w1(k)+4θ3)
, w1(k) > θ3

0, w1(k) ≤ θ3,
(7)

where θ3 is the initial abstraction. The deep drainage f3(k) is estimated as

f3(k) =

{
θ4(x1(k) + w1(k)− f2(k)− θ6θ5), x1(k) + w1(k)− f2(k) > θ6θ5

0, x1(k) + w1(k)− f2(k) ≤ θ6θ5,
(8)

where θ4 is the drainage coefficient, and θ6 is the field capacity. The incoming flux f4(k) is
computed as the sum of outflows fout(k) from all the neighbours, which have a normalized
elevation γ higher than the considered agent. The outflow of such an agent is given by
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fout(k) =

{
(x1(k)−θ6θ5)+ f2(k))

Nr
, x1(k) > θ6θ5

0, x1(k) ≤ θ6θ5,
(9)

where Nr is the number of receiving neighbours. The function h1(k) in Equation (3)
represents the daily mean temperature added to the state variable x2, i.e.,

h1(k) =

{
w3(k)− θ7, w3(k) > θ7

0, w3(k) ≤ θ7,
(10)

where w3(k) is the mean air temperature and θ7 is the base temperature for phenology
development and growth. The cumulative temperature required to reach 50% of radiation
interception during canopy senescence x3 is increased by heat stress (i.e., faster canopy
senescence) and drought stress. The heat stress h2(k) is computed as follows

h2(k) =


1, w6(k) ≤ θ9

1− w6(k)−θ9
θ10−θ9

, θ9 < w6(k) ≤ θ10

0, w6(k) > θ10,

(11)

where θ9 is the threshold temperature to start accelerating senescence from heat stress, θ10
is the extreme temperature threshold when radiation use efficiency (RUE) becomes 0 due
to heat stress, and w6(k) is the maximum daily temperature. The drought stress h3(k) is
built based on the ARID index [21],

h3(k) = 1− θ14h4(k), (12)

where θ14 is the sensitivity factor to RUE, and

h4(k) =

{
1− f1(k)

w2(k)
, f1(k) < w2(k)

0, f1(k) ≥ w2(k).
(13)

One of the novel features of the model is to consider the negative effect of water excess.
Hence, a waterlogging stress factor h5(k) is proposed in Equation (14), i.e.,

h5(k) =


1, St(k) ≤ θ15

1− St(k)−θ15
θ16−θ15

, θ15 < St(k) ≤ θ16

0, St(k) > θ16,

(14)

where θ15 is the stress time lower limit, and θ16 is the stress time upper limit. These limits
are specific for every crop, and the values can be retrieved from literature. This index is
built based on the anaerobic root stress reported by [24,25]. The rationale behind this index
is that the negative effect is proportional to the amount of days (St(k)) under anaerobic
stress. The limits are taken from the literature. The stress shape is also suggested by
Steduto et al. [8]. The counting of days under waterlogging stress is computed as

St(k) =

{
St(k) + 1, x1(k) > θ6θ5

0, x1(k) ≤ θ6θ5.
(15)

The combined negative effect of water excess, lack, and excessive heat is summarized
into h6(k) using a minimum function due to the rationality that the crop never suffers
simultaneously of more than one stress related to transpiration, in other words,

h6(k) = min(h2(k), h3(k), h5(k)). (16)

The impact of low temperatures on biomass growth rate is calculated as follows
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h7(k) =


0, w3(k) < θ7
w3(k)−θ7

θ8−θ7
, θ7 ≤ w3(k) < θ8

1, w3(k) ≥ θ8,

(17)

where θ8 is the optimal temperature for biomass growth. Then, the CO2 impact in biomass
growth rate h8(k) is estimated as

h8(k) =

{
1 + θ17(w7(k)− 350), 350 ≤ w7(k) < 700
1 + 350θ17, w7(k) ≥ 700,

(18)

where θ17 is the relative increase in RUE due to a higher CO2 concentration, and w7(k) is
the atmospheric CO2 concentration. Finally, the growth function gn(k) is estimated as

gn(k) =


θ19

1+e−0.01(x2(k)−θ20)
, x2(k) ≤ θ18

2
θ19

1+e0.01(x2(k)+x3(k)−θ18)
, x2(k) >

θ18
2 ,

(19)

where θ18 is the cumulative temperature requirement from sowing to maturity, θ19 is the
maximum fraction of radiation interception that a crop can reach, and θ20 is the cumulative
temperature requirement for leaf area development to intercept 50% of radiation.

2.2. Irrigation Agent

This agent is the only one that interacts with all crop-soil agents. Its mission is to
distribute water for irrigation, either following an arbitrary policy determined by some
heuristics or an optimal policy resulting from the formulation of a performance index and
the solution of an optimal control problem. There is an array of optimal control policies that
could be considered including crop yield, water consumption, and constraints on water
availability or distribution. Here, a very simple problem is considered at first, where the
performance index corresponds to the average daily biomass, subject to the constraint of
maximum available water on a daily basis Wmax, i.e.,

max
un(k)

1
N

N

∑
n=1

x̂n
4 (k) (20)

s.t. 0 ≤ un(k) ≤Wmax, (21)

where N is the number of agents, x̂n
4 (k) is the biomass estimate and un(k) is the irrigation

for the crop-soil agent n at day k, respectively.
After the definition of the model agents, it is necessary to examine the flow of infor-

mation from the sensor.

2.3. Sensor

The sensing technology considered in this work is based on images. Images have
the advantage of capturing the whole cropping area and can be calibrated with punc-
tual measurements of climatic variables either by a meteorological station in situ, or by
ground sensors. For every agent n = 1, ..., N, only xn

1 (k), xn
2 (k), and xn

4 (k) are measurable
accordingly to [26–28]. The sensor equation is

zn(k) = Hnxn(k) + vn(k), (22)

where zn(k) is the vector of sensor outputs, Hn is the measurement matrix, and vn(k) is a
vector that represents the measurements errors. In this preliminary study, the measurement
noise is assumed to follow a normal distribution with covariance matrix Rn(k), but other
distributions could be considered as well. All measurements are assumed uncorrelated.
For the case of xn

4 (k), the measurement is a fraction of the crop biomass (i.e., above ground
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biomass) [5]. With these signals, the next step is to infer the unmeasurable state variables
using state estimation techniques.

2.4. Estimator

There are two reasons to incorporate an estimator in the model. First, not all state
variables are measurable, and second, it is necessary to incorporate sensor data to adjust
the model predictive capabilities. In view of the assumed Gaussian distribution of the
noise, a classical solution is provided by an extended Kalman filter (EKF) in discrete-time
form [29]. In the framework of the ABM model, the filter is deployed in a decentralized way
by associating to each agent a simplified version of the filter where the coupling between
agents is partly neglected.

The discrete-time state space representation of a crop-soil agent (Equation (1)) becomes

xn(k + 1) = φn(xn(k), w(k), un(k), Θn) + ωn(k), (23)

with the consideration of a zero-mean Gaussian process noise ωn(k) with covariance matrix
Qn(k). The state space equation is linearised along the estimated trajectory and the Jacobian
matrix is obtained by partial differentiation

Φ(k) =
∂φn(·)

∂xn

∣∣∣∣
xn=x̂n(k)

, (24)

where the coupling between agents is neglected so as to achieve a simple local evaluation
(the form of Φ(k) is detailed in Appendix B).

The recursive algorithm of the filter begins with the initialisation with the initial state
x̂n(0), and the error covariance matrix Pn(0). Hereafter, the n super index is omitted for
simplicity and prior estimates are denoted with an index −. The algorithm is divided into
a prediction (or time update) step:

x̂−(k) = φ(x̂(k− 1), wj(k), un(k), Θn). (25)

P−(k) = Φ(k− 1)P(k− 1)Φ>(k− 1) + Q(k− 1). (26)

and a correction (or measurement update) step using the correction gain K(k):

K(k) = P−(k)H>(k)[H(k)P−(k)H>(k) + R(k)]−1, (27)

x̂(k) = x̂−(k) + K(k)[z(k)− H(k)x̂−(k)], (28)

P(k) = [I − K(k)H(k)]P−(k). (29)

Every agent daily iterates the sequence of Equations (25) to (29). The considerations
about the selection and computation of matrices Q(k), R(k) and P(k), follow the recom-
mendations of Reif et al. [30] to guarantee that ‖Φ(k)‖ is bounded and Φ(k) is nonsingular.
These recommendations include a positive upper and lower bound for P(k), and a positive
lower bound for Q(k) and R(k) (which are positive definite matrix defining the process
and measurement noise covariances).

As the exchange flux f4 is not considered in the Jacobian evaluation, the estimator
may be affected particularly regarding the estimation of the water content x̂1. An ad-hoc
procedure is therefore suggested, which consists in “retuning” the variance of the process
noise on the first state variable as follows

Qm(1, 1)(k) = Q(1, 1)(k) + αV[w1(k)], (30)

where α is a weight factor and V[w1(k)] is the variance of rainfall. There is indeed a
direct relation between the rainfall pattern and the intensity of the exchange flux f4. This
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modification allows modulating the uncertainty related to the lack of exchange flux in the
model linearisation. An example of tuning of the EKF is given in Appendix B, which is not
meant to be optimal, but gives reasonable results.

2.5. Agent Spatial Environment

The construction of the ABM requires the selection of the crop and geographic location,
e.g., species, cultivar, soil properties. Based on aerial images of the field, image processing is
performed, e.g., color to grayscale, binarization, edge detection and region extraction [31,32].
This processing yields a 2-D map, which can be discretized using a spatial grid. The grid
size is established based on the properties of the image and the knowledge about the field,
e.g., information of the previous crop season. Then, an assignment of the N agents is
carried out. The minimum ground area for parameter calibration is equal to 1 m2, which
is selected as the lower limit of agent size. Then, the maximum number of agents is the
ratio between the minimum ground area and the total crop area. Once a label is assigned
to an agent, the algorithm extracts extra information from the image, e.g., the normalized
elevation parameter γ for every agent [33,34]. Subsequently, a graph is created, as well as
the adjacency matrix and the matrix of neighbours. As the number of agents increases, the
graph can be used to decompose the cropping region into smaller portions while keeping
the relationships between neighbours.

2.6. Model Implementation

The survey paper [35] presents a comprehensive comparative literature review of
the state-of-the-art software development in agent-based modelling. Mesa, a modular
agent-based modelling framework in Python [36], appears as an efficient tool to develop
the crop-soil model proposed in this study. It allows users to create agent-based models
using built-in core components, such as spatial grids and agent schedulers, or customized
implementations, to visualize them using a browser-based interface, and to analyse the
results using Python data analysis tools. The modules are grouped into three categories:

1. Modeling: Modules used to build the models themselves: a model and agent classes,
a scheduler to determine the sequence in which the agents act, and space for them to
move around.

2. Analysis: Tools to collect data generated from the model, or to run it multiple times
with different parameter values.

3. Visualization: Classes to create and launch an interactive model visualization, using
a server with a JavaScript interface.

Once the image processing routine is executed and data is stored in text files, the
model is built. This model is split into three files. The first file contains the model definition,
where the irrigation agent is incorporated as a “method” (an object-oriented programming
procedure) of the model, as there is no physical location of this agent (see Algorithm A2
of Appendix C). The second file contains the crop-soil agent definition and methods (see
Algorithm A1 of Appendix C). Finally, the last file contains the web visualization and
the plotting routine for the state variables. The whole model is intended to advance
daily (k = 1d). However, every agent can behave asynchronously by setting its own
self_time variable.

3. Case Studies

In order to assess the functionality of the model, three different scenarios with het-
erogeneous soil are shown in Figure 4. These examples only consider the water supply
problem, but no nutrient stress. The sample fields are located in the region of Boyacá
(Colombia) between 2400 and 2800 m.a.s.l. (meters above sea level), where there is no in
situ meteorological station. Instead, the data comes from a meteorological station located
3 km away, in Villa Carmen (latitude = 5.51◦, and longitude = −73.50◦). The weather infor-
mation is organized in four data sets between March 2017 and February 2019, considering
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that the sowing months are March and September and the harvest months are August and
February. These datasets expose different rain patterns:

• First dataset (March to August 2017), strong peak of rain in the middle of the season
and 483 mm of rainfall.

• Second dataset (September 2017 to February 2018), strong peak of rain in the first half
of the season and 244 mm of rainfall.

• Third dataset (March to August 2018), persistent rain in the second half of the season
and 323 mm of rainfall.

• Fourth dataset (September 2018 to February 2019), persistent rain in the first half of
the season and 325 mm of rainfall.

For all scenarios, the crop is wheat of the same cultivar (i.e., yecora rojo) and the land
size is 1600 m2. The study area is a square shaped land, and no incoming and outgoing
fluxes beyond this area are considered. After image processing, N = 16 agents are chosen,
and the parameters Θn are adjusted to match the regional reported values. All parameters
are listed in Table A2.

Figure 4. Simulation scenarios and their location in Samacá province of Boyacá region. (a) Flat land. (b) Slope land.
(c) Rugged land. θn

5 and f n
4 are the root-zone depth and incoming flux for every agent, respectively. The green diamond

shows the location of Villa Carmen.

The first scenario is a flat terrain (i.e., slope less than 3%) in which the root-zone depth
θn

5 changes according to a uniform probability distribution as suggested in Woli et al. [37].
This parameter was selected after evaluating the impact that the parameters θ1 to θ6 have
on the state variable x1, following the methodology proposed by Woli et al. [37]. This study
shows that the root-zone depth parameter has a 42% influence on the output based on
the Fourier amplitude sensitivity test. This scenario is evaluated during the two sowing
periods each year. The second scenario considers a sloping ground (i.e., slope around
20%) with the same climatic data as in the previous scenario. Finally, the third scenario is
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concerned with a rugged ground that allows evaluating different interactions between the
agents due to the topography. The soil is mostly loamy and sandy-loamy in all scenarios.

For this case study, aerial images are only considered to configure each of the scenarios
and establish the initial conditions of the parameters and variables. Subsequently, the daily
information from the sensors is generated by the model (i.e., Equations (2) to (5)) with the
addition of Gaussian noise with zero mean and standard deviation in the range described
by [26,27], and [28] for the variables x1(k), x2(k) and x4(k), respectively.

3.1. First Scenario

In this scenario, there is no exchange of water between agents. Instead, the root depth
zone of every agent θ5 is chosen from a uniform distribution U(300, 600). The assignment
of agents is presented in Figure 5. The value of xn

1 (0) is at field capacity for all agents.
To assess the irrigation effect on every agent, the model runs first with no irrigation and then
with the irrigation policy. For illustration purposes, only agent 1 is considered. All state
variables are displayed in Figure 6 as all of them could be considered to make management
decisions, i.e., x1 for water use, x2 to control the phenological development of the crop, x3
to evaluate the effect of stress factors in crop transpiration, and x4 to evaluate production.
The estimator is working satisfactorily with a convergence time of about 30 days. x3, which
is the only unmeasured variable, is estimated with a slight offset. The error of estimation of
the biomass x4, which is used in our performance index to determine the irrigation policy,
is ranging between 0.5 and 5% in the several simulation tests, see Table 1.

(a) (b)

Figure 5. First scenario. (a) Aerial view of the land. (b) Grid representation after image processing. Here, the size of the side
of every patch is 100 m and the coordinates identifier is depicted in the center of patches. The color of every patch indicates
the normalized amount of water at time k, the darker means high water content and the lighter indicate dryness.

Figure 7 shows the normalized soil water content with respect to the field capacity
without and with irrigation. In the latter case, the water level is around field capacity.
Moreover, the water stress indexes (i.e., drought and waterlogging) indicate that only if the
field capacity is exceeded for more than 3 days the waterlogging stress is triggered. After
irrigation, the drought stress decreases and the field becomes prone to waterlogging stress
when the precipitations increase. The positive effect of irrigation is seen in the increment
of the production of biomass. Table 1, shows that the water quantity used for irrigation is
lower than the total rainfall except in the situation of dataset 2 where it is 132 mm higher.
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Figure 6. State variables for sample agent 1 under (a) no irrigation, and (b) irrigation policy for the first weather dataset.

Table 1. Summary of water effect on biomass production for representative agents in each scenario.

No Irrigation Irrigation
Water Stresses Water Stresses

Scenario Dataset Agent Drought Waterlogging x4 x̂4 Drought Waterlogging x4 x̂4 Irrigation
(d) (d) (ton/ha) (ton/ha) (d) (d) (ton/ha) (ton/ha) (mm)

1

1 1 97 1 8.7 8.5 5 1 11.4 11.3 188
2 1 108 0 8.2 8.1 3 0 12.4 12.0 356
3 1 109 1 7.0 6.7 8 3 11.3 11.4 282
4 1 99 0 9.6 9.3 8 0 12.6 12.4 324

2

1 1 89 1 9.2 9.0 7 8 11.2 11.3 324
16 56 37 8.2 8.3 8 55 8.0 8.2 215

2 1 108 0 8.2 8.1 40 1 11.6 9.7 291
16 109 0 8.2 8.0 32 1 11.8 11.1 325

3 1 107 0 7.1 6.7 6 2 11.4 11.3 299
16 107 0 7.1 6.7 8 2 11.4 11.3 275

4 1 93 0 9.8 9.5 7 0 12.6 12.5 303
16 70 4 10.2 10.2 11 19 11.6 12.0 200

3

1 2 96 1 8.7 8.6 5 4 11.3 11.4 227
10 59 38 8.0 7.8 33 58 7.9 7.1 145

2 2 108 0 8.3 8.0 11 0 12.0 11.8 336
10 111 0 8.1 8.0 7 0 12.1 12.1 329

3 2 116 1 6.7 6.4 3 2 11.4 11.2 301
10 115 1 6.8 6.4 4 2 11.4 11.2 259

4 2 93 0 9.8 9.4 13 0 12.6 12.5 318
10 69 4 10.2 10.3 53 22 10.0 6.9 109
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Figure 7. Water effect on agent 1 in a flat ground (first scenario) and (a) dataset 1, (b) dataset 4. In each case, from top to
bottom: soil water content normalized under no irrigation, water stresses under no irrigation, biomass under no irrigation,
water inputs, soil water normalized content after irrigation, water stresses under irrigation, biomass under irrigation.

3.2. Second Scenario

With a sloping ground, the water flux f n
4 (k) 6= 0 from the most elevated side of the

terrain as represented by the arrows in the graph (see Figure 8). To illustrate this situation,
agents 1 and 16 are selected, which are in the highest and lowest part of the ground,
respectively, and also are at maximum distance from one another.

The trajectories of Agent 1 and 16 and their state estimates are shown in Figure 9
for state variables x1, and x3. The performance of the state estimator is satisfactory for
agent 1, but the estimation of the water content x1 of agent 16 suffers from transient errors
particularly in periods of strong rainfall, where the water content is underestimated. The
tuning parameter α can be used to partly alleviate this situation, but is not enough to
guarantee a good estimation in all cases. After irrigation, state x3 decreases as a result of
the reduction in the drought stress and the increase of the crop transpiration.
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(a) (b)

Figure 8. Second scenario: (a) Possible water flux exchanges (b) Grid representation after image processing. The width
of each square represents the normalized elevation of the portion of land with respect to the highest point in the grid.
The maximum elevation considered is around 10 m. The color of every patch indicates the normalized amount of water at
time k, the darker means high water content and the lighter indicate dryness.
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Figure 9. State variables x1, and x3 and their estimates for agents 1 and 16 under (a) no irrigation, and (b) irrigation policy
for the first dataset.

Figure 10 shows the water effect on biomass production for the first and fourth
climatic datasets.

The waterlogging stress during the first 30 days of growth has no significant impact
on the final biomass production. However, after this period the irrigation increases the
waterlogging stress of agent 16 under strong rainfall, and delays the biomass production.
The biomass production x4 increases by 22, and 29% for agent 1 but decreases by 2.4, and
14% for agent 16 for datasets 1 and 4, respectively (see Table 1).
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Figure 10. Water effect on agent 1 and 16 in a sloppy land (scenario 2) with (a) dataset 1 and (b) dataset 4. In each
case, from top to bottom: soil water content normalized under no irrigation, water stresses under no irrigation, biomass
under no irrigation, water inputs, soil water normalized content after irrigation, water stresses under irrigation, biomass
under irrigation.

3.3. Third Scenario

In this scenario there are several interactions between agents (Figure 11). Agent 2 repre-
sents the highest point in the field and agent 10 corresponds to the lowest location.

The estimation of the state variables x1 and x3 with and without irrigation for the
first meteorological dataset is shown in Figure 12. Again, it can be observed, that the
water content of agent 10, which is at a low point and therefore receives more water, is
underestimated under stronger precipitations. The estimation of x3 with and without
irrigation is subject to a slight offset. The reduction of x3 by irrigation is related to the
decrease in the drought stress and therefore an increase of crop transpiration.

Figure 13 shows the water effect on biomass production for datasets 1 and 4. For
the first dataset it is noticeable that the gusts of rain generate a waterlogging stress even
for the agents in the highest points of the terrain (e.g., agent 2). This effect is enhanced
by irrigation. Moreover if the waterlogging stress is triggered in the growth stage, the
biomass production is affected negatively. The positive effect of irrigation on the biomass
production is about 30% for agent 2 and between 1.2 to 2.5% for agent 10 for datasets 1 and
4 (see Table 1).



Agronomy 2021, 11, 85 16 of 24

(a) (b)

Figure 11. Third scenario: (a) Possible water flux exchanges (b) Grid representation after image processing. The width of
each square represents the normalized elevation of the portion of land with respect to the highest point in the grid. The
maximum elevation considered is around 10 m. The color of every patch indicates the normalized amount of water at time
k, the darker means high water content and the lighter indicate dryness.
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Figure 12. Rugged Land (scenario 3)—state variables x1 and x3 and their estimates for agents 2 and 10, under (a) no
irrigation, and (b) irrigation policy for the first weather dataset.

In order to compare the performance of the irrigation policy in the various cases, a
consume ratio is proposed as

CR =

M
∑

m=1

N
∑

n=1
un

M.N.Wmax
, (31)

where Wmax = 20 mm, N = 16 and M = 160 (the harvest day is t f = 160 d).
Table 2 presents a global view of the biomass production and water consumption

for irrigation. The latter represents 6 to 11% of the maximum available water in all cases.
The positive effect of irrigation is evidenced by a global rise of the production ranging
between 10 to 62% depending on the case (land topology and weather). Obviously, the
total biomass maximization does not necessarily increase the individual agent biomasses as
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shown in Table 1, where for scenarios 2 and 3 the agents that are located at low points (i.e.,
agents 16 and 10) suffer from waterlogging instead of drought. The estimator is performing
reasonably well, with usual errors in a range of 5%, but with transient discrepancies up to
20% for low points of uneven lands and strong precipitations.
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Figure 13. Water effect on agents 2 and 10 in a rugged land (third scenario) with (a) dataset 1 and (b) dataset 4. In each
case, from top to bottom: soil water content normalized under no irrigation, water stresses under no irrigation, biomass
under no irrigation, water inputs, soil water normalized content after irrigation, water stresses under irrigation, biomass
under irrigation.

Table 2. Total biomass and irrigation for the whole cropping area (16 ha).

No Irrigation Irrigation

Scenario Dataset x4
(ton)

x̂4
(ton)

x4
(ton)

x̂4
(ton)

Total
Irrigation

(mm)

Consume
Ratio

1

1 145.0 142.2 180.9 181.5 3369 6.7%
2 128.4 125.1 191.2 187.3 5704 11.3%
3 113.6 107.6 181.5 181.6 4622 9.1%
4 152.1 146.6 189.5 166.0 4165 8.2%

2

1 139.5 133.9 153.6 154.0 3587 7.1%
2 130.0 126.9 186.9 177.0 5439 10.8%
3 111.2 105.3 182.0 180.8 4416 8.7%
4 159.8 157.6 190.2 177.3 3596 7.1%

3

1 137.8 138.0 165.4 168.6 3417 6.8%
2 128.8 124.6 192.7 191.6 5439 10.8%
3 108.4 102.9 182.0 180.7 4324 8.6%
4 156.6 152.7 181.7 150.1 3034 6.0%
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4. Conclusions and Perspectives

An agent-based model of an agricultural system is presented, which can be used to
assess different irrigation schemes and production scenarios. The dynamic crop model
underlying each agent is built based on existing models, but includes a novel waterlogging
stress factor, proposed to consider the negative effect of water excess in soil. The ABM
also includes an estimator of the unmeasured variables in the form of an extended Kalman
filter, and a simple optimal irrigation strategy based on the average daily biomass. This
framework is flexible and scalable, which allows the user to add new agents (or cropping
areas) with diverse crops and different soil properties. Furthermore, crop-soil agents can
be resized to catch the main soil changes across the cropping land based on soil properties
and topographic variations. The ABM model is coded in the Python environment Mesa
which is suitable for this purpose. However, there is the need to develop complementary
modules to enhance the model functionality, e.g., GIS integration.

Future research entails the continued validation of the proposed model, for instance
following the methodology of [38–41], including the use of global sensitivity analysis to
assess the influence of the key parameters and possibly simplify the model structure in
order to ease parameter estimation. Parameter identifiability is a critical aspect to develop
a reliable prediction model, based on the collection of experimental data.

In addition, the consideration of other estimation schemes should be the subject of
further investigation. Indeed, the current study was limited to a simple decentralized
extended Kalman filter scheme, which shows poor performance for uneven grounds where
water can accumulate at low points. Future developments therefore entail the use of
centralized estimation schemes (i.e., encompassing all the agents), and the consideration
of alternative estimation methods in order to avoid model linearisation and to handle
non-Gaussian noise distributions as well as measurement correlations, which might be
more appropriate in the extraction of information from image analysis.

Finally, the definition of the irrigation agent might be refined to describe the situation
where irrigation is not available everywhere and/or not in the same supply. Different per-
formance indexes might also be investigated, including weather forecast, in the framework
of model predictive control. After validation and additional tests, an updated version of
the ODD protocol [42] will be made available to the readers upon request.
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Appendix A. Variables and Parameters

Table A1. Description of variables for every agent and units.

Name Description Units

x1 Water content in soil mm
x2 Cumulative mean temperature ◦C d
x3 Cumulative temperature required from maturity to ◦C d

50% of radiation interception during canopy senescence

x4 Cumulative biomass ton
ha−1

w1 Daily rainfall mm
w2 Reference evapotranspiration mm
w3 Mean daily temperature ◦C
w4 Daily solar radiation MJ m−2

w5 Daily minimum temperature ◦C
w6 Daily maximum temperature ◦C
w7 Atmospheric CO2 concentration ppm

f1 Crop transpiration mm
d−1

f2 Surface runoff mm
d−1

f3 Deep drainage mm
d−1

f4 Incoming flux mm
d−1

h1 Daily mean temperature ◦C
h2 Heat stress -
h3 Drought stress -
h4 ARID index -
h5 Waterlogging stress -
h6 Combined stress on transpiration -
h7 Low temperature stress -
h8 CO2 growth factor -
g Growth function g m−2

Table A2. Parameters and constants. The values in the fourth column related to management for the case study are adjusted to
match the regional production values reported by the Colombian Ministry of Agriculture in its website (https://www.agronet.gov.co/
estadistica/Paginas/home.aspx?cod=1).

Parameter Description Units Value Reference

θ1 Water uptake coefficient (alpha) - 0.096 [21]
θ2 Wilting point - 0.06 [21]
θ3 Initial abstraction mm 27.4 [21]
θ4 Drainage coefficient (Beta) - 0.55 [19]
θ5 root-zone depth mm 300–600 [37]
θ6 Field capacity - 0.21 [21]
θ7 Base temperature for phenology development and growth ◦C 0 [22]
θ8 Optimal temperature for biomass growth ◦C 15 [22]
θ9 Threshold temperature to start accelerating senescence ◦C 34 [22]

from heat stress
θ10 The extreme temperature threshold when RUE becomes 0 ◦C 45 [22]

due to heat stress
θ11 The maximum daily reduction in x3 due to heat stress ◦C d 100 [22]
θ12 The maximum daily reduction in x3 due to drought stress ◦C d 25 [22]
θ13 Radiation use efficiency (above ground only g MJ−1 1.24 [22]

and without respiration)
θ14 Sensitivity of RUE to drought stress (ARID index). - 0.4 [43]
θ15 Stress time lower limit d 3 [43]
θ16 Stress time upper limit d 13 [43]
θ17 Relative increase in RUE per ppm elevated CO2 above 350 ppm. - 0.08 [22]
θ18 Cumulative temperature requirement from sowing to maturity. ◦C d 2200 [22]
θ19 Maximum fraction of radiation interception the crop can reach - 0.95 [22]
θ20 Cumulative temperature requirement for leaf area development ◦C d 480 [22]

to intercept 50% of radiation

https://www.agronet.gov.co/estadistica/Paginas/home.aspx?cod=1
https://www.agronet.gov.co/estadistica/Paginas/home.aspx?cod=1
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Appendix B. Jacobian and EKF Tuning

The Jacobian is computed as follows

Φ(k) =


∂φ1
∂x1

0 0 0
0 1 0 0

∂φ3
∂x1

0 1 0
∂φ4
∂x1

∂φ4
∂x2

∂φ4
∂x3

1


∣∣∣∣∣∣∣∣∣∣
xn=x̂n(k)

, (A1)

where
∂φ1

∂x1
= 1− ∂ f1(k)

∂x1(k)
− ∂ f3(k)

∂x1(k)
, (A2)

∂ f1(k)
∂x1(k)

=

{
θ1, θ1(x̂1(k)− θ2θ5) ≤ w2(k)
0, otherwise,

(A3)

∂ f3(k)
∂x1(k)

=

{
θ4, x̂1(k)− w1(k)− f2(k) > θ5θ6

0, otherwise,
(A4)

∂φ3

∂x1
=

{
− θ1θ12θ14

w2(k)
, f1(k) < w2(k)

0, otherwise,
(A5)

∂φ4

∂x1
=

{
θ1θ13θ14h− 7(k)h8(k)g(k)w4(k), f1(k) < w2(k)
0, otherwise,

(A6)

∂φ4

∂x2
=


0.01[e(−0.01(x̂2(k)−θ20)) ]θ19

[1+e(−0.01(x̂2−θ20)) ]2
, x̂2(k) ≤ θ18

2

− 0.01[e(−0.01(x̂2(k)+x̂3(k)−θ18)) ]θ19

[1+e(−0.01(x̂2+x̂3(k)−θ18)) ]2
, x̂2(k) >

θ18
2 ,

(A7)

∂φ4

∂x3
=

0, x̂2(k) ≤ θ18
2

− 0.01[e(−0.01(x̂2(k)+x̂3(k)−θ18)) ]θ19

[1+e(−0.01(x̂2+x̂3(k)−θ18)) ]2
, x̂2(k) >

θ18
2 ,

(A8)

The selection of the parameters of the extended Kalman filter has not been fine tuned,
and the following values are given as examples:

R =

0.16 0 0
0 0.01 0
0 0 0.1225

 (A9)

Table A3. Suggested tuning for Q(k), where γn =
altitude o f agent n(m.a.s.l)

altitude o f the higuest point o f the terrain (m.a.s.l) and Nr,n

is the number of agents connected to the agent n with γj < γn for j = 1, ..., N and n 6= j. The physical
units are R11 (mm2), R22 (◦C2), R33 ((ton/ha)2), Q11 (mm2), Q22 (◦C2), Q33 (◦C2) and Q44 ((ton/ha)2).

Scenario Q(k) α

1 0.1I 1
2 0.4I 0.1(1 + Nr,n)
3 0.7I 0.05(1− γn)
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Appendix C. ABM Algorithms

Algorithm A1: Crop-soil agent Python structure.

#Import modules from mesa
import: Agent
#Import other modules
import: numpy, random
#Define agent class

1 class CropSoil(Agent):
2 spatial inputs← data from images
3 wj ←meteorological data
4 Initialize attributes (position, id, sel f _time, and Θn)
5 #Define methods
6 def get: irrigation # Method to collect data from the irrigation

agent
7 def get: neighborhood # Method to retrieve neighbors from the graph
8 def get: measurements # Method to collect data from sensors
9 collect measurements by Equation (22)

10 def get: Jacobian
11 compute the jacobian of φ(k) by Equation (24)
12 def get: Extended Kalman filter # Method to collect the estimation of states
13 project x̂−(k) by Equation (25)
14 propagate P−(k) by Equation (26) with Qm(k) as in

Equation (30)
15 compute the Kalman gain matrix by Equation (27)
16 state estimate update by Equation (28)
17 error covariance update by Equation (29)
18 def step (un, wj):
19 update neighborhood (get: neighborhood)
20 compute x1 by Equation (2) from Equations 6,7,and 8
21 compute f4 from neighbors’ data (x1 and elevation) by

Equation (9)
22 compute x2 by Equation (3) from Equation (10)
23 #compute stress factors
24 Heat stress by Equation (11) # High

temperature
25 Temperature stress by Equation (17) # Low

temperature
26 Drought stress by Equation (12) from Equation (13) # Lack

of water
27 Waterlogging stress by Equation (14) from Equation (15) #

Excess of water
28 compute x3 by Equation (4)
29 compute CO2 effect by Equation (18)
30 compute x4 by Equation (5) from Equations 16 and 19
31 get measurements (get: measurements)
32 compute Φ(·) (get: Jacobian)
33 execute EKF (get: Extended Kalman filter)
34 get irrigation (get: irrigation)
35 k = k + 1
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Algorithm A2: Model class structure.

#Import modules from mesa
import: Model, DataCollector, space (Grid), and time (RandomActivation)
#Import other modules
import: numpy, random, scipy
#Define model class

1 class CropSoilModel(Model) :
2 Load data from the field (image processing info)
3 Initialize attributes (simulation_time, N)
4 #Set up model objects
5 Schedule = RandomActivation
6 Space = Grid
7 Define variables to collect (x1, x2, x3, x4, u)
8 #Create agents
9 From input data create N agents on their corresponding site in the grid

10 #Define methods
11 def get: state variables
12 collect data from sensors
13 execute the estimator
14 def get: Irrigation agent
15 compute Equation (20)
16 def step (self):
17 execute schedule step
18 execute irrigation agent
19 collect data (get: state variables)
20 simulation_time = simulation_time + 1
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