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Abstract: Selecting wheat with favorable spike characteristics has been a popular breeding strategy to
improve sink capacity and yield potential. In the present study, quantitative trait loci (QTLs) for yield
potential traits were identified using a recombinant inbred line (RIL) population derived from the
cross between Taejoong and Keumkang, two Korean wheat cultivars. A linkage map encompassing a
total genetic length of 6544.8 cM was constructed using 838 single nucleotide polymorphisms from
the 35K Axiom Wheat Breeder’s Array. We detected eight QTLs for four yield potential traits that are
consistently identified in at least two of the three environments, that is, one for days to heading date
(QDHD-1 on chromosome 7B), three for spike length (QSL-1, QSL-2, and QSL-3 on chromosomes 1D,
5A, and 6A, respectively), one for tiller number (QTN-1 on chromosome 5B), and three for length of
center rachis (QLCR-1, QLCR-2, and QLCR-3 on chromosomes 1B, 5B, and 6A, respectively). Notably,
Taejoong contributed the alleles for long spike at all three spike length QTLs with the additive effects
of 0.6 cm, 0.6 cm, and 0.9 cm at QSL-1, QSL-2, and QSL-3, respectively. No significant two-way or
three-way interaction was observed among QSL-1, QSL-2, and QSL-3, indicating that pyramiding the
Taejoong alleles at the three QTLs can increase spike length additively. While the Taejoong alleles
at QSL-1, QSL-2, and QSL-3 were associated with increased days to heading date, more kernels per
spike, and reduced tiller number per plant, the extent of the pleiotropic effects were different among
the three QTLs. Due to the limited number of molecular markers and mapping resolution, further
work is required to narrow down the identified QTLs and characterize their effects more precisely.
Our results would provide useful information for modulating spike characteristics and improving
yield potential in wheat breeding programs.

Keywords: wheat; spike; yield; QTL; SNP

1. Introduction

Improving grain yield is an important goal in wheat breeding to secure stable food
production under changing climate and increasing world population [1,2]. Wheat grain
yield is a complex trait involving a number of genes and their interactions which are
largely influenced by various environmental factors including temperature, photoperiod,
rainfall, and fertilization [3,4]. Therefore, studies on wheat yield generally focus on specific
yield component traits such as spikes (or tillers) per unit area, kernels per spike, and
kernel weight that are more stably inherited than the final grain yield [5,6]. While studies
genetically dissecting a specific yield component trait can provide useful molecular tools
for breeding programs, optimizing the balance between different yield components is also
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critical as the yield component traits are interrelated and an increase in one component is
frequently associated with a decrease in another, i.e., the yield improvement effect of an
increase in kernels per spike can be canceled out by a decrease in kernel weight [7–11].

In many wheat breeding programs, kernels per spike has been a major target for
improving yield as it often shows stronger positive correlation with the final grain yield
compared with other yield components [12]. For example, the yield increasing trend of the
major Argentinian wheat cultivars released between 1920 and 1990 was associated better
with the increases in kernels per spike compared with those in spikes per unit area or grain
weight [13]. Similarly, over 400 European winter wheat cultivars released since the 1950s
showed continuous increases in kernels per spike over time [14]. At the International Maize
and Wheat Improvement Center (CIMMYT), large spike wheat cultivars were developed by
wide crossing between common wheat and accessions of Agropyron elongatum or Triticum
polonicum to improve yield potential through increasing kernels per spike [15]. While
these lines showed significant increases in both kernels per spike and kernel weight, the
final grain yield fell short of expectations mainly due to the decrease in spikes per unit
area [16,17].

In South Korea, a large spike wheat cultivar Taejoong was developed from the cross
between the Chinese wheat Xian83 and the Korean cultivar Keumkang at the National
Institute of Crop Science (NICS) [18,19]. In the regional yield trials conducted for three
years (2014–2016) at the NICS, spike length and kernels per spike of Taejoong were 13.4 cm
and 48, respectively, which were 76% longer and 66% more than those of Keumkang,
respectively [19]. Taejoong also exhibited a ten-thousand kernel weight of 48.3 g, which
was 5% heavier than Keumkang. Although Taejoong exhibited limited tillering capacity, i.e.,
417 spikes per square-meter, which was 42% less than Keumkang, its final grain yield was
moderately higher (13–21% higher depending on the cropping patterns) than Keumkang,
mainly due to the superior spike characteristics in terms of kernel number and size [19].
As the genetic factors underlying the large spike characteristics of Taejoong remain unclear,
we aimed to identify quantitative trait loci (QTLs) for yield potential characteristics of
Taejoong using a recombinant inbred line (RIL) population derived from the cross between
Taejoong and Keumkang and generate useful information for improving yield potential in
wheat breeding programs.

2. Materials and Methods
2.1. Plant Materials

A total of 94 F10 RILs were produced from the cross between two Korean wheat
cultivars, Taejoong and Keumkang. The main phenotypic feature of Taejoong is a large
spike (Figure 1) [19,20]. The RIL population was cultivated in upland conditions at Jeonbuk
National University (35◦85′ N 127◦13′ E) in Jeonju, South Korea, during three growth
seasons (2017, 2018, and 2019). The seeds were sown in late October each year, and
each plot consisted of three 2-m rows spaced 25 cm apart. Application of fertilizers was
conducted as 50–70–50 kg/ha of N–P2O5–K2O, and weeds, disease, and insect pests were
stringently controlled according to the standard wheat cultivation manual of the Rural
Development Administration (RDA), South Korea [RDA. 2012, standard of research and
analysis for agricultural technology].



Agronomy 2021, 11, 22 3 of 14Agronomy 2021, 11, x FOR PEER REVIEW 3 of 14 
 

 

 
Figure 1. Phenotype comparison of Taejoong and Keumkang: (A) plants at heading , and (B) spike, 
rachis, and kernels per spike after maturity. 
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heading date (DHD) as the number of days from sowing to spike exsertion from the stem 
in 50% of a plot, culm length (CL) as the length from ground level to the base of the spike, 
spike length (SL) as the length of the spike excluding awn, number of tillers (TN) counted 
as the number of stems per plant, kernels per spike (KS) counted as the number of grains 
per spike, length of center rachis (LCR) as measured excluding flowerets, and the value 
of compactness (COM) as calculated according to the number of kernels per spike divided 
by spike length. CL, SL, and TN were measured from 20 plants randomly selected in each 
plot at maturity. KS, LCR and COM were determined from the main spikes of the same 
20 plants. 

2.3. Genotypic Analysis 
Genomic DNA (gDNA) from the young leaves of the F10 RIL population was ex-

tracted using a DNA extraction kit (Solgent, Korea) according to the manufacturer’s in-
structions. Concentration of each gDNA was adjusted to 20 ng/μL with distilled water. 
The final concentration of gDNA was measured by Biodrop (Biodrop Ltd., Cambridge, 
UK). The 94 RILs were genotyped by DNA Link, Inc. (Korea, http://www.dnalink.com) 
with AxiomTM 35K Wheat Breeder’s Genotyping Array (ThermoFisherScientific, Applied 
BiosystemsTM, Waltham, US) in a 384-array plate format. Genotype calling was conducted 
by Affymetrix Power Tools (APT, release 2.11.1). 

2.4. QTL Mapping and Statistical Analysis 
A linkage map was constructed using the IciMapping program version 4.2 [21]. To 

select polymorphic single nucleotide polymorphisms (SNPs), the genotyping result of the 
35,042 SNPs was converted by the “SNP” function of the program. Out of 35,042 SNPs, 
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population. Using the “BIN” function in IciMapping, SNPs with more than 10% missing 
data and/or significant segregation distortion (Chi squared test P-value < 0.001) were de-
leted. Finally, 838 SNPs were used to construct a linkage map by the “MAP” function. 
QTL mapping for yield potential traits (DHD, CL, SL, COM, KS, TN, and LCR) was per-
formed by composite interval mapping. Significant QTLs were initially identified based 
on the threshold logarithm of odds (LOD) score of 3.0 in each year, and those consistently 
identified in at least two of the three years were declared as stable QTLs. Statistical anal-
yses including ANOVA and correlation analysis were conducted using R (The R Project 
for Statistical Computing version 3.4.4, https://www.r-project.org). 

Figure 1. Phenotype comparison of Taejoong and Keumkang: (A) plants at heading, and (B) spike,
rachis, and kernels per spike after maturity.

2.2. Measurement of Yield Potential Traits

Major agronomic traits affecting yield potential were recorded as follows: days to
heading date (DHD) as the number of days from sowing to spike exsertion from the stem
in 50% of a plot, culm length (CL) as the length from ground level to the base of the spike,
spike length (SL) as the length of the spike excluding awn, number of tillers (TN) counted
as the number of stems per plant, kernels per spike (KS) counted as the number of grains
per spike, length of center rachis (LCR) as measured excluding flowerets, and the value of
compactness (COM) as calculated according to the number of kernels per spike divided
by spike length. CL, SL, and TN were measured from 20 plants randomly selected in each
plot at maturity. KS, LCR and COM were determined from the main spikes of the same
20 plants.

2.3. Genotypic Analysis

Genomic DNA (gDNA) from the young leaves of the F10 RIL population was extracted
using a DNA extraction kit (Solgent, Daejeon, Korea) according to the manufacturer’s
instructions. Concentration of each gDNA was adjusted to 20 ng/µL with distilled water.
The final concentration of gDNA was measured by Biodrop (Biodrop Ltd., Cambridge, UK).
The 94 RILs were genotyped by DNA Link, Inc. (Seoul, Korea, http://www.dnalink.com)
with AxiomTM 35K Wheat Breeder’s Genotyping Array (ThermoFisherScientific, Applied
BiosystemsTM, Waltham, MA, USA) in a 384-array plate format. Genotype calling was
conducted by Affymetrix Power Tools (APT, release 2.11.1).

2.4. QTL Mapping and Statistical Analysis

A linkage map was constructed using the IciMapping program version 4.2 [21]. To
select polymorphic single nucleotide polymorphisms (SNPs), the genotyping result of the
35,042 SNPs was converted by the “SNP” function of the program. Out of 35,042 SNPs,
2061 were polymorphic between Taejoong and Keumkang, the parental lines of the RIL
population. Using the “BIN” function in IciMapping, SNPs with more than 10% missing
data and/or significant segregation distortion (Chi squared test P-value < 0.001) were
deleted. Finally, 838 SNPs were used to construct a linkage map by the “MAP” function.
QTL mapping for yield potential traits (DHD, CL, SL, COM, KS, TN, and LCR) was
performed by composite interval mapping. Significant QTLs were initially identified based
on the threshold logarithm of odds (LOD) score of 3.0 in each year, and those consistently
identified in at least two of the three years were declared as stable QTLs. Statistical analyses
including ANOVA and correlation analysis were conducted using R (The R Project for
Statistical Computing version 3.4.4, https://www.r-project.org).

http://www.dnalink.com
https://www.r-project.org
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3. Results
3.1. Phenotype Evaluation of the RIL Population

Descriptive statistics of the yield potential traits of the Taejoong × Keumkang RILs
are summarized in Figure 2 and Table S1. The average DHD (184.9 days) of the RILs
was shorter than Taejoong (192.7 days) and longer than Keumkang (180.3 days), and its
distribution was skewed toward late DHD. The distribution of CL was normal and the
average (85.3 cm) was taller than Keumkang (66.1 cm) and similar to Taejoong (84.6 cm).
The average SL (11.5 cm) was shorter than Taejoong (14.5 cm) and longer than Keumkang
(8.4 cm), and its distribution was skewed toward short SL. The distribution of COM was
normal and the average (4.5) was higher than both Keumkang (4.4) and Taejoong (4.2).
The distribution of KS was normal and the average (50.1) was between Keumkang (36.7)
and Taejoong (61.6). The average TN (6.1) was greater than Taejoong (5.1) and fewer than
Keumkang (8.1), and its distribution was skewed toward a low value. The average LCR
(0.68 cm) was shorter than Taejoong (0.75 cm) and similar to Keumkang (0.69 cm), and its
distribution was skewed toward a low value.

Of 21 correlation pairs among the seven yield potential traits, nine were significant
in all three years, 2017, 2018, and 2019 (Figure 3 and Figures S1–S3). Strong positive
correlations were observed between SL and LCR (r = 0.69 in all three years). KS showed
moderate to low levels of positive correlations with COM (r = 0.45–0.47), SL (0.34–0.40), and
DHD (r = 0.26–0.30). Relatively strong negative correlations were observed between COM
and SL (r = −0.62 to −0.57), and COM and LCR (r = −0.54 to −0.50). TN was negatively,
but weakly correlated with SL (r = −0.37 to −0.33), KS (r = −0.33 to −0.29), and LCR
(r = −0.28 to −0.25). CL was not correlated with any of the six other yield potential traits,
except for a weak positive correlation with SL (r = 0.21) significant in only one of the three
years (Figure S3).

3.2. QTLs for Yield Potential Traits

A linkage map spanning a total genetic length of 6544.8 cM was constructed using 838
SNPs selected from the 2061 polymorphic SNPs after excluding those with >10% missing
data and/or significant segregation distortion (Chi squared test p-value < 0.001, Table S2).
The number of SNPs polymorphic between Taejoong and Keumkang was relatively small
(5.9% of the 35K SNPs) mainly due to the fact that Taejoong had been derived from the cross
between Xian83 and Keumkang and shared similar genetic background with Keumkang.

Of the 838 SNPs used for mapping, 233 (27.8%) were distributed on the A genome,
344 (41.1%) were on the B genome, and 261 (31.3%) were on the D genome. Among the
838 SNP markers, chromosome 1B had the greatest number of markers (86), whereas
chromosome 6A had the smallest number of markers (9). Chromosome 5B showed the
longest length (578.4 cM), whereas chromosome 4D showed the shortest length (113.1 cM).
The average length between two adjacent markers were the longest on chromosome 6A
(19.5 cM) and the shortest on chromosome 2B (4.1 cM).
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We detected eight QTLs for four yield potential traits that are consistently identified
in at least two of the three years (Table 1 and Figure 4). One QTL for DHD, QDHD-1 on
chromosome 7B was defined by AX-94684729 and AX-94474044 (within a 5.0 cM confidence
interval) with the LOD scores of 3.90–4.24 explaining 11.8–13.7% of the DHD variation.
Taejoong contributed the allele for late heading with the additive effects of 1.30–1.37 days.
Three QTLs were identified for SL. QSL-1 on chromosome 1D was defined by AX-94390275
and AX-94918964 (within a 5.0 cM confidence interval) with the LOD scores of 3.63–5.37
explaining 11.2–15.6% of the SL variation. QSL-2 on chromosome 5A was defined by AX-
94831718 and AX-94846616 (within a 16.0 cM confidence interval) with the LOD scores of
3.55–3.82 explaining 12.2–15.1% of the SL variation. QSL-3 on chromosome 6A was defined
by AX-94411823 and AX-94602621 (within a 13.5 cM confidence interval) with the LOD
scores of 5.88–7.59 explaining 26.0–28.8% of the SL variation. Taejoong provided the alleles
for long spike at all three QTLs with the additive effects of 0.59–0.72 at QSL-1, 0.61–0.62 at
QSL-2, and 0.84–0.95 at QSL-3. One QTL for TN, QTN-1 on chromosome 5B was defined by
AX-95176502 and AX-94429067 (within an 18.0 cM confidence interval) with the LOD scores
of 4.10–4.17 explaining 16.3–16.4% of the TN variation. Unlike SL, Keumkang provided
the allele for high tillering with the additive effects between −0.75 and −0.74. Three QTLs
were identified for LCR. QLCR-1 on chromosome 1B was defined by AX-94414200 and AX-
94757158 (within a 3.0 cM confidence interval) with the LOD scores of 3.62–8.67 explaining
8.7–19.1% of the phenotypic variation. QLCR-2 on chromosome 5B was defined by AX-
94904781 and AX-95257493 (within a 7.0 cM confidence interval) with the LOD scores of
9.14–10.82 explaining 22.2–34.5% of the phenotypic variation. QLCR-3 on chromosome 6A
was defined by AX-94411823 and AX-94602621 (within a 17.5 cM confidence interval) with
the LOD scores of 5.54–6.77 explaining 17.4–22.7% of the phenotypic variation. Taejoong
provided the alleles for long LCR at QLCR-2 and QLCR-3 with the additive effects of
0.06–0.07 and 0.05, respectively, and Keumkang provided the allele for long LCR at QLCR-1
with the additive effect between −0.05 and −0.03. Only one QTL affected two or more
traits, i.e., QSL-3/QLCR-3 flanked by AX-94411823 and AX-94602621 on chromosome 6A.
No stable QTL was detected for CL, COM, and KS.

Table 1. Quantitative trait loci (QTLs) for yield potential traits identified from the Taejoong × Keumkang recombinant.
inbred lines.

QTL a Year Chromosome Position
(cM)

Left
Marker

Right
Marker

Interval
(cM) b LOD c PVE (%) d Add e

QDHD-1 2017 7B 172.0 AX-
94684729

AX-
94474044 5.0 3.90 11.8 1.37

2019 4.24 13.7 1.30

QSL-1 2017 1D 268.0 AX-
94390275

AX-
94918964 5.0 3.63 11.2 0.59

2018 5.37 15.6 0.72
2019 4.04 15.1 0.62

QSL-2 2018 5A 208.0 AX-
94831718

AX-
94846616 16.0 3.82 12.2 0.62

2019 3.55 15.1 0.61

QSL-3 2017 6A 175.0 AX-
94411823

AX-
94602621 13.5 7.59 26.0 0.88

2018 7.25 28.8 0.95
2019 5.88 28.8 0.84

QTN-1 2017 5B 269.0 AX-
95176502

AX-
94429067 18.0 4.17 16.3 −0.75

2018 4.10 16.4 −0.74
2019 4.15 16.4 −0.75
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Table 1. Cont.

QTL a Year Chromosome Position
(cM)

Left
Marker

Right
Marker

Interval
(cM) b LOD c PVE (%) d Add e

QLCR-1 2017 1B 330.0 AX-
94414200

AX-
94757158 3.0 8.67 19.1 −0.05

2018 3.62 8.7 −0.03
2019 3.75 8.7 −0.04

QLCR-2 2017 5B 419.0 AX-
94904781

AX-
95257493 7.0 9.14 22.2 0.06

2018 10.82 34.5 0.07
2019 9.73 30.3 0.07

QLCR-3 2018 6A 171.0 AX-
94411823

AX-
94602621 17.5 5.54 17.4 0.05

2019 6.77 22.7 0.05
a DHD, days to heading date; SL, spike length; TN, number of tillers; LCR, length of center rachis. b Interval means 2-LOD confidence
interval. c Logarithm of the odds. d Phenotypic variance explained. e Additive effect of allele substitution. The units are those of the
corresponding traits. A positive sign indicates that the Taejoong allele increased the trait value.

3.3. Effects of QSL-1, QSL-2, and QSL-3 on Spike Length and Other Yield Potential Traits

To evaluate the main effects of the three QTLs for SL and their interactions on yield
potential traits, three-way factorial ANOVAs of QSL-1, QSL-2, and QSL-3 were carried out
for each trait with the year (2017, 2018, and 2019) as a random factor (Table 2). Spike length
(SL): The main effects of QSL-1, QSL-2, and QSL-3 were highly significant for SL. Compared
to the RILs carrying the Keumkang allele at each QTL, those carrying the Taejoong allele
exhibited significantly longer spike, i.e., 1.2, 1.2, and 1.8 cm longer for QSL-1, QSL-2, and
QSL-3, respectively. Notably, there was no significant two-way or three-way interaction
among the three QTLs, indicating that pyramiding of the Taejoong alleles at QSL-1, QSL-2,
and QSL-3 would increase SL additively. While the average SL of the RILs carrying the
Keumkang alleles at all three QTLs was 9.7 cm, those carrying the Taejoong allele at one of
the three QTLs exhibited the average SL of 10.6–11.1 cm (Figure 5). The RILs carrying the
Taejoong alleles at two of the three QTLs exhibited the average SL of 11.8–12.5 cm. The RILs
carrying the Taejoong alleles at all three QTLs exhibited the longest average SL of 13.8 cm.
Days to heading date (DHD): QSL-1 and QSL-2 had significant main effects on DHD, with
the Taejoong alleles for long spike being associated with late heading. The RILs carrying
the Taejoong allele at QSL-1 headed 1.0 day later than those carrying the Keumkang allele.
Similarly, the RILs carrying the Taejoong allele at QSL-2 headed 0.8 days later than those
carrying the Keumkang allele. The main effect of QSL-3 was not significant for DHD. While
there was no significant two-way interaction, the three-way interaction was significant and
explained 4.7% of the DHD variance. Culm length (CL): While the main effects of QSL-1 and
QSL-2 were not significant for CL, that of QSL-3 was highly significant. The RILs carrying
the Taejoong allele at QSL-3 were 3.9 cm taller than those carrying the Keumkang allele.
The QSL-2 × QSL-3 interaction and the three-way interaction were significant for CL, but
explained limited levels (3.0% and 2.3%, respectively) of the CL variance. Compactness
(COM): The main effects of QSL-1, QSL-2, and QSL-3 were highly significant for COM,
with the RILs carrying the Keumkang allele exhibiting more compact spike than those
carrying the Taejoong allele. No significant two-way or three-way interaction was observed.
Kernels per spike (KS): QSL-1 and QSL-3 had significant main effects on KS. Compared to
the RILs carrying the Keumkang allele at QSL-1, those carrying the Taejoong allele had
2.8 more kernels per spike. Similarly, those carrying the Taejoong allele at QSL-3 had 2.8
more kernels per spike than those carrying the Keumkang allele. Two-way or three-way
interactions were not significant, indicating that the Taejoong alleles at QSL-1 and QSL-3
would increase KS additively. Tiller number (TN): The main effects of QSL-1, QSL-2, and
QSL-3 were significant for TN, with the RILs carrying the Keumkang allele exhibiting
more tillers than those carrying the Taejoong allele. The QSL-1 × QSL-2 interaction and
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the QSL-2 × QSL-3 interaction were significant for TN, explaining the limited level (3.6%
and 1.6%, respectively) of the TN variance. Length of center rachis (LCR): The main effects
of QSL-1, QSL-2, and QSL-3 were highly significant for LCR, with the RILs carrying the
Taejoong allele exhibiting longer LCR than those carrying the Keumkang allele. The
QSL-1 × QSL-2 interaction and the QSL-1 × QSL-3 interaction were significant, explaining
the limited level (2.0% and 1.4%, respectively) of the LCR variance.
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Table 2. Three-way ANOVAs of QSL-1, QSL-2, and QSL-3 for different yield potential traits.

Trait a Allele b Main Effect c Interaction d

QSL-1 QSL-2 QSL-3 Q1 × Q2 Q1 × Q3 Q2 × Q3 Q1 × Q2 × Q3

SL
(cm)

T 12.2 12.2 12.5
K 11.0 11.0 10.7

P-value **** **** **** ns ns ns ns
PVE (%) 20.2 15.2 18.6

DHD
(no.)

T 185.5 185.4 185.1
K 184.5 184.6 184.9

P-value **** ** ns ns ns ns ***
PVE (%) 5.7 2.6 4.7

CL
(cm)

T 84.4 84.5 87.4
K 86.5 86.4 83.5

P-value ns ns **** ns ns ** **
PVE (%) 6.5 3.0 2.3

COM
(no./cm)

T 4.4 4.3 4.3
K 4.6 4.7 4.7

P-value **** **** **** ns ns ns ns
PVE (%) 5.4 7.5 5.9

KS
(no.)

T 51.7 50.6 51.7
K 48.9 50.0 48.9

P-value **** ns ** ns ns ns ns
PVE (%) 6.0 3.6

TN
(no.)

T 5.7 5.8 6.0
K 6.4 6.3 6.1

P-value **** ** * *** ns * ns
PVE (%) 8.3 2.6 1.6 3.6 1.6

LCR
(cm)

T 0.71 0.73 0.73
K 0.66 0.64 0.64

P-value **** **** **** ** ** ns ns
PVE (%) 9.9 21.6 11.9 2.0 1.4

a SL, spike length; DHD, days to heading date; CL, culm length; COM, compactness; KS, kernels per spike; TN, number of tillers; LCR,
length of center rachis. b Mean values of the recombinant inbred lines (RILs) carrying the Taejoong (T) allele and the Keumkang (K) allele
are indicated for each QTL. An asterisk indicates significance (* P ≤ 0.05, ** P ≤ 0.01, *** P ≤ 0.001, and **** P ≤ 0.0001; ns: not significant)
from the three-way factorial ANOVA with the year (2017, 2018, and 2019) as a random factor and the three QTLs as fixed factors. Phenotype
variance explained (PVE) is indicated only for significant effects. c QSL-1, QSL-2, and QSL-3 were represented by the markers AX-94918964,
AX-94831718, and AX-94602621, respectively. d Q1, Q2, and Q3 indicate QSL-1, QSL-2, and QSL-3, respectively.
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QSL-3. The symbol “+” indicates the Taejoong allele for a long spike while “-” indicates the
Keumkang allele for a short spike. QSL-1, QSL-2, and QSL-3 were represented by the markers
AX-94918964, AX-94831718, and AX-94602621, respectively. Different letters above the bars indicate
that there was significant difference from Duncan’s multiple range test at P < 0.05. Error bars indicate
standard errors.

4. Discussion
4.1. Potential Use of the Spike Length QTLs in Breeding

Improving yield potential has been one of the most important goals in wheat breed-
ing [22–25]. As kernels per spike is strongly correlated with the final grain yield, selecting
breeding lines with large spike has been a popular strategy for increasing sink capacity and
improving yield potential [12,26]. To genetically dissect the large spike characteristics of the
Korean wheat cultivar Taejoong, we identified three major QTLs for spike length, QSL-1,
QSL-2, and QSL-3, using F10 RILs which were derived from the Taejoong × Keumkang
cross and genotyped with high density SNPs. At all three QTLs, the Taejoong alleles for
long spike were associated with greater number of kernels per spike. Therefore, the SNPs
linked to QSL-1, QSL-2, and QSL-3 would provide useful molecular tools to develop breed-
ing lines with increased sink capacity through marker assisted selections. QSL-1, QSL-2,
and QSL-3 are especially promising as they exhibited no significant two-way or three-way
interactions on spike length and kernels per spike, indicating that pyramiding the Taejoong
alleles at these QTLs would additively increase sink capacity (Table 2, Figure 5).

Nevertheless, caution is required as the effect of increased kernels per spike is fre-
quently compensated for by decreased tiller number per unit area [27–30]. Our results
showed that the Taejoong alleles for long spike at QSL-1, QSL-2, and QSL-3 are also as-
sociated with reduced tiller number, and that the three QTLs exhibit different levels of
tradeoffs between kernels per spike and tiller number. For example, while the effect of
the Taejoong allele increasing kernels per spike was similar between QSL-1 and QSL-3,
the effect of the Taejoong allele decreasing tiller number was nearly seven times greater
at QSL-1 compared with that at QSL-3 (Table 2). While further investigation is required
to characterize the effects of the spike length QTLs on other yield potential traits under
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different environments and genetic backgrounds, the current results suggest that QSL-3 is
likely more beneficial than QSL-1 in terms of optimizing the balance between kernels per
spike and tiller number. Our results also illustrate the importance of dissecting individual
genetic factors underlying yield potential traits and characterizing their effects on other
yield components in order to provide breeding programs with useful molecular tools for
optimizing the balance among different yield components.

4.2. Comparison of QSL-1, QSL-2, and QSL-3 with Previously Reported Spike Length QTLs

Using the IWGSC RefSeq v1.0 wheat reference genome information [31], we compared
the locations of QSL-1, QSL-2, and QSL-3 with other spike length QTLs identified from
previous studies. Interestingly, the QSL-2 region flanked by the markers AX-94831718
(503.8 Mb) and AX-94846616 (640.2 Mb) on chromosome 5A overlapped with many previ-
ously reported spike length QTLs, that is, QSL.caas-5AL near the marker JD_c15758_288
(595.4 Mb) identified from the Zhou 8425B × Chinese Spring RIL population [32], Qsl.cau-
5A.4 near BS00096756_51 (538.8 Mb) identified from the Yumai 8679 × Jing411 RIL pop-
ulation [33], qSl-5A.3 flanked by AX-110071854 (478.6 Mb), AX-111139819 (541.3 Mb)
identified from the Kenong 9204× Jing411 RIL population [34], and QSL-5A.4 peaking near
BS00066143_51 (533.1 Mb) identified from the Yanzhan 1 × Hussar RIL population [35].
While QSL.caas-5AL was detected in only one out of three tested environments [32], Qsl.cau-
5A.4, qSl-5A.3, and QSL-5A.4 were stably detected in seven (out of nine), eight (out of
eight), and two (out of eight) different environments, respectively [33–35]. These QTLs
explained 1.9% (QSL-5A.4) to 20.6% (qSl-5A.3) of the spike length variation in the relevant
RIL populations, and their additive effects ranged from 0.27 cm (qSl-5A.3) to 0.62 cm (QSL-
5A.4) [32–35], which were smaller than or similar to that (0.61–0.62 cm) of QSL-2 (Table 2).
While further work is required to narrow down each QTL and determine whether QSL-2
from the present study and the other four previously reported QTLs represent the same
gene or not, our study and the previous reports suggest the QSL-2 region as an important
locus affecting spike length in different genetic backgrounds and environments. Although
a few spike length QTLs have been previously reported on chromosomes 1D and 6A,
that is, QSl-1D and QSl-6A from the NongDa3331 × Zang 1817 RIL population [36] and
QSl.czm-6A from the MD233 × SS8641 doubled haploid population [37], we were unable
to precisely compare the chromosomal locations of them with QSL-1 and QSL-3 from the
present study.

Supplementary Materials: The following are available online at https://www.mdpi.com/2073-439
5/11/1/22/s1, Figure S1: Distribution and correlation of yield potential traits in 94 F10 recombinant
inbred lines produced from the cross between Taejoong and Keumkang in 2017. T and K indicate
Taejoong and Keumkang, respectively. M (black dia-mond) indicates the average value of each trait.
DHD, days to heading date; CL, culm length; SL, spike length; COM, compactness; KS, kernels per
spike; TN, number of tillers; LCR, length of center rachis. An asterisk indicates significance (, *, and
*** at P ≤ 0.05, P ≤ 0.01, and P ≤ 0.001 levels, respectively). Figure S2: Distribution and correlation of
yield potential traits in 94 F10 recombinant inbred lines produced from the cross between Taejoong
and Keumkang in 2018. T and K indicate Taejoong and Keumkang, respectively. M (black dia-mond)
indicates the average value of each trait. DHD, days to heading date; CL, culm length; SL, spike
length; COM, compactness; KS, kernels per spike; TN, number of tillers; LCR, length of center rachis.
An asterisk indicates significance (, *, and *** at P ≤ 0.05, P ≤ 0.01, and P ≤ 0.001 levels, respectively).
Figure S3: Distribution and correlation of yield potential traits in 94 F10 recombinant inbred lines
produced from the cross between Taejoong and Keumkang in 2019. T and K indicate Taejoong and
Keumkang, respectively. M (black dia-mond) indicates the average value of each trait. DHD, days
to heading date; CL, culm length; SL, spike length; COM, compactness; KS, kernels per spike; TN,
number of tillers; LCR, length of center rachis. An asterisk indicates significance (, *, and *** at
P ≤ 0.05, P ≤ 0.01, and P ≤ 0.001 levels, respectively). Table S1: Descriptive statistics of the yield
potential traits in the Taejoong × Keumkang recombinant inbred linesa. Table S2: SNP-based genetic
map for QTLs related to yield potential traits in 94 F10 recombinant inbred lines produced from the
cross between Taejoong and Keumkang.
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