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Abstract: Halophytic plants can adapt to grow and thrive in highly saline conditions. Suaeda
species are annual halophytes with high salt tolerance and are most suitable in the restoration of
salinized or contaminated saline land and as food, forage, medicine, and bioenergy. In this study,
we comprehensively analyzed the different metabolic responses of Suaeda species under salt and
drought stress at ambient and elevated CO2 conditions. Seedlings of Suaeda species were treated with
500 mM NaCl and 5% of polyethylene glycol under elevated CO2 stress conditions for 24 h. Then,
widely untargeted metabolites were detected by gas chromatography–mass spectrometry. Different
metabolites involved in amino acid metabolism, glycolysis, photorespiration, and tricarboxylic acid
cycle were quantitatively determined after stress treatments. A total of 61 primary metabolites were
annotated. Different treatments increased the contents of certain metabolites, such as amino acids,
sugars, and organic acids, as well as some antioxidants, such as quininic acid, kaempferol, and
melatonin. These substances may be correlated with osmotic tolerance, increased antioxidant activity,
and medical and nutritional value in the species. This study suggests that various metabolites
differentially accumulated in C4 Suaeda species under varying stress conditions. Furthermore, this
work provides new insights into the key secondary metabolite pathway involved in stress tolerance.

Keywords: abiotic stress; C4 plants; drought; elevated CO2; halophyte; salinity

1. Introduction

Plants are affected continuously by various environments, such as abiotic and biotic
factors, although the consequences of these factors on the plant system depends on their
intensity or quantity. Abiotic stresses, including elevated CO2, high temperature, lower
precipitation, cold, salinity, drought, heavy metals, and different oxidative stress, are the
primary sources of the comprehensive loss of agricultural productivity, total biomass yield,
and crop quality [1–3]. Elevated CO2 increases the net photosynthesis and water use
efficiency in C3 and C4 plants, and this may also compensate for savings in growth and
plant yield under drought stress [4–7]. C3 plants were previously reported to increase
their net photosynthesis rate and growth by about 35% under enhanced CO2 conditions,
stimulating biomass production [8,9]. Elevated CO2 can also diminish the effects of abiotic
stresses on plants, including heat, ozone, and drought [10]. Particularly, the mitigation
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of drought stress responses is triggered by stomatal factors, including increased stomatal
closure and reduced stomatal density, improving the water use efficiency in plants [11,12].

Drought and salinity stresses are severe threats to plant growth and photosynthesis
metabolism due to recurring global climate changes. Photosynthesis inhibition, alterations
of cell metabolism, and deterioration of proteins and membranes are commonly detected
under stress conditions. Worldwide, salinization is a significant problem. Approximately
2% of total land is affected by salinity, and 45 million ha of the available 230 million ha
of irrigated land is salt-affected [13]. To cope with these environmental changes, plants
induce numerous physiological, biochemical, and molecular changes by activating cor-
responding key genes essential for plant defense mechanisms [14]. Recent studies have
revealed that plants respond within seconds to minutes to different stress stimuli through
different physiological, biochemical, metabolic, and molecular networks [15]. Some rapid
responses include electrolyte leakage, membrane stability, antioxidant enzyme activities,
stomatal conductance changes, quenching of reactive oxygen species (ROS), accumula-
tion of osmolytes, and expression of key genes involved in signal pathways and defense
systems [15]. Therefore, elevated ROS levels and imbalances in redox homeostasis lead
to changes in metabolites, creating oxidative stress [16]. However, understanding the
metabolic responses in plant systems under salt and drought effects and under predicted
future climate conditions could help identify new strategies to improve stress tolerance.

Halophytes have a remarkable ability to tolerate high salinity and adverse drought
stress during their lifespan [17]. Taxa with C4 carbon fixation appear to be overrepresented
among halophytes. They have evolved from C3 ancestors accordingly to survive in these
environmental stress conditions. Further, they (halophytes) develop efficient features,
such as a high photosynthesis rate, uptake or elimination of selective ions, synthesis of
the enzymatic and non-enzymatic antioxidant defense system, alterations in metabolite
levels, and high gene expression compared to glycophytes, in order to cope with induced
stress through environmental changes [18,19]. Previous studies have demonstrated that
plants accumulate low molecular weight organic compounds, including sugars, proline,
and glycine betaine, and act as an osmoprotectant under salt stress in halophytes [20].
Halophytes are most suitable for the restoration of salinized or contaminated saline land
for removing heavy metals from saline soils. They can be utilized as food, forage, medicine,
and bioenergy [21–24]. Halophytes are a good source of salt-resistant genes [25–36] and
promoters [37–40].

Due to favorable climate and edaphic conditions, one of the world’s best salt marsh
flora occurs along a 5700 km stretch of coastline in India and Saudi Arabia. The higher
plants present in this vegetation are mangroves, halophytes, and sea grasses. An extreme
halophyte, Suaeda, an annual plant, also known as seep weed or sea blite, belongs to the
Amaranthaceae family, is widely dispersed on India’s east and west coasts, and completes
its life cycle in saltmarsh areas, such as coastal and intertidal regions near estuaries. Both
Suaeda monoica and Suaeda fruticosa possess unique C4 carbon assimilation, in which the
photosynthesis pathway occurs within a single elongated chlorenchyma cell [41]. The
optimal growth range for both Suaeda species is between 200 and 500 mM NaCl [42].
To deal with this stressed environment and to conserve water accessibility, halophytes
accumulate compatible solutes, such as glycine betaine, sucrose, and proline, in vacuoles
together, maintaining osmotic potential via the uptake of osmotically active ions [43].
Naturally, C4 plants have a higher photosynthetic rate and water use efficiency compared
to C3 plants. Enzymes involved in C4 carbon assimilation also play a fundamental role in
plant defense responses under different abiotic and biotic stress conditions [44,45].

Metabolite profiling is one of the efficient and quantitative methodologies that provide
a functional analysis approach in order to connect physiological and metabolic responses
to phenotypic and genetic information [46–51]. Such technologies can be used to better
understand the mechanisms underpinning plant responses to global climate change [52,53].
A metabolomics study estimating the nutritional value examined whether these metabo-
lites are associated with stress tolerance [54,55]. This technique can be used to provide
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perceptions into metabolic pathways and instabilities during stress; therefore, it can reveal
targets for improving plant performance in the future. A previous omics study showed that
deviations in the nature and amount of metabolites can show how the plant acclimatizes
to environmental changes [56]. Metabolites are anxious under stress conditions, and the
plant system needs to regulate the metabolite levels to maintain basal metabolism and
reach new homeostasis [57]. Therefore, metabolomics is the most direct tool for studying
metabolite changes under different stress conditions [58]. During plant stress, changes
in primary metabolites are most prominent and also show a general trend of response to
abiotic stress. This involves the accumulation of compatible solutes, such as amino acids,
sugars, and sugar alcohols, to cope with osmotic stress [59]. Several reports are available
on the metabolic responses of C4 plants, while the roles of different amino acids and
metabolites of the tricarboxylic acid cycle (TCA) cycle have been evaluated under different
abiotic stress treatments in Suaeda species [20,60–64]. Briefly, some specific metabolites and
their derivatives, including nucleotides, amino acids, organic acids, lipids, antioxidants
such as quercetin, and intermediates of the TCA cycle, increase in Suaeda salsa under salt
stress, confirming their role in tolerance [65,66].

Similarly, the concentrations of hexose phosphate, intermediates of the TCA cycle,
and osmoprotectant metabolites increase concomitantly with salt concentrations in a salt-
tolerant variety of Hordeum vulgare [67]. Moreover, in Zea mays, a significant accumulation
of organic solutes plays an essential role in osmotic stress resistance [68]. Furthermore,
metabolites play indispensable roles in stress tolerance [57,69], nitrogen metabolism [70,71],
regional differences [72], and phenotypic changes [73]. Interestingly, C4 guinea grasses
(Panicum maximum Jacq.) alter their transcript and metabolite profiling associated with
environmental response, stomatal function, and secondary metabolism under elevated
CO2 and temperature [69]. Overall, previous reports have shown that metabolites play an
essential role in providing plant tolerance under different stress conditions.

Previous investigations have proven that S. monoica and S. fruticosa are two Suaeda
species that exhibit distinct physiological performance under elevated CO2 stress [74,75].
There is an increasing need to investigate and understand plant metabolic responses in
terms of biochemical and physiological levels to global climate change or abiotic stress.
With a broad objective of assessing how elevated CO2 can mitigate the detrimental effects
of plants under stress conditions, this study was carried out to investigate whether these
two Suaeda species respond differently under salt and drought stress conditions under
ambient and elevated CO2 conditions using metabolites as indicators. Different metabolites
involved in amino acid metabolism, glycolysis, photorespiration, and the TCA cycle were
quantitatively determined after stress treatments. The effects of elevated CO2 integrated
with salt or drought stress on the physiological and metabolic adaptation mechanisms of
both Suaeda species were investigated for the first time.

2. Materials and Methods
2.1. Plant Materials and Stress Treatments

Seeds of S. monoica and S. fruticosa were germinated in garden soil and irrigated
with a half-strength nutrient solution [74]. Seedlings were allowed to grow in a culture
room under control conditions with a 12 h light/12 h dark cycle at 25 ◦C ± 2 ◦C. After
2 months, seedlings were initially cultivated in half-strength Hoagland hydroponic culture
medium [76] for 1 month. Three-month-old Suaeda plants were divided into two sets.
The first set of plants was shifted to a plant growth chamber (Percival, Iowa, USA) under
ambient CO2 (~400 ppm) conditions, then acclimatized plants were subjected to salt
(500 mM NaCl) and osmotic (5% polyethylene glycol (PEG)) stress for 24 h. The second
set of plants was acclimatized in elevated CO2 (~900 ppm) conditions (in a plant growth
chamber) followed by stress treatments with salt (500 mM NaCl) and osmotic 5% PEG
for 24 h. All stress treatments were carried out under plant growth chamber conditions
involving a 12 h light/12 h dark photoperiod at 25 ◦C ± 2 ◦C, 1100 µmol quantum−2 s−1

light, and 55% to 60% relative humidity. Mature fresh leaves of all treated plants and the
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corresponding control plants were harvested, frozen in liquid N2, and stored at −80 ◦C for
further analysis.

2.2. Metabolite Extraction

Metabolites were extracted from leaves of control and treated plants and analyzed
by gas chromatography–mass spectrometry (GC-MS) [77]. Leaf samples (~0.1 g) were
ground into fine powder in liquid N2, then ice-cold 100% methanol (0.7 mL) was added
for enzyme inactivation, followed by the addition of 30 µL adonitol (0.2 mg/mL) as an
internal reference [78]. The samples were mixed by vortexing for 20 s, incubated at 70 ◦C,
sonicated for 10 min at room temperature, then centrifuged at 10,000× g for 10 min. A
clear solution was transferred into a 2 mL tube, approximately 325 µL chloroform and
700 µL water were added, then the samples were mixed thoroughly and centrifuged at
10,000× g for 5 min at room temperature. The upper polar phase (600 µL) was transferred
in a fresh 1.5 mL tube, dried in a vacuum concentrator (without heating), then stored
at −80 ◦C for further analysis. Before derivatization, the samples were again vacuum
dried for 30 min, then 60 µL methoxyamine hydrochloride (20 mg/mL in pyridine) was
added, followed by incubation for 2 h at 37 ◦C in shaking conditions. Finally, 130 µL
N-methyl-N-(trimethylsilyl) trifluoroacetamide was added and incubated for 30 min at
37 ◦C. The sample was transferred into glass vials for GC-MS analysis.

2.3. Metabolite Analysis by GC-MS

The GC-2010 instrument (Shimadzu, Kyoto, Japan, model GC-MS TQ8040) was used
for the analysis in collaboration with King Saud University. The chromatographic pa-
rameters were as follows: column, RTX-5MS (diphenyl dimethyl polysiloxane: 30.0 m
× 0.25 mm); injection, split injection; injection volume, 1 µL; split ratio: 50.0. The initial
temperature was 80 ◦C with a hold time of 2 min; after this, the temperature was raised to
315 ◦C with a rate of 10 ◦C/min and held for 15 min. Helium gas was used as a carrier, with
a flow rate of 2 mL/min, and the total processing time was 40 to 50 min. The obtained picks
were analyzed by matching with the available NIST GC-MS database and the concentration
(calculated using the peak area of the internal reference adonitol) was expressed as µg/g
fresh weight.

2.4. Statistical Analysis and Data Visualization

Metabolomics datasets were analyzed by multivariate analysis methods, including
principal component analysis (PCA), partial least squares discriminant analysis (PLS-DA),
and orthogonal projections to latent structures discriminant analysis (OPLS-DA) [79]. The
Kyoto Encyclopedia of Genes and Genomes database was used to annotate metabolites and
different heatmaps were constructed to represent the differential expression of metabolites
under varying stress conditions.

3. Results
3.1. Differential Accumulation of Metabolites under Different Stress Conditions

Metabolites were extracted from both Suaeda plants grown under different abiotic
stress conditions and analyzed by GC-MS. A total of 61 primary metabolites were detected
in the leaves of both Suaeda species under different conditions (Table 1). These identified
metabolites belong to different groups: 14 amino acids, 20 sugars, 11 sugar acids, 6 fatty
acids, 9 different compounds, and 1 flavonoid (kaempferol). These metabolites were
commonly observed and quantified in various abiotic stress conditions in both Suaeda
species. Of the 14 amino acids, some are nutraceutical essential amino acids that are
necessary ingredients for functional food and play a vital role in human health, including
the proper functioning of numerous biosynthesis mechanisms.
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Table 1. Comprehensive metabolite profiling of Suaeda spp. under different integrated abiotic stress conditions.

Metabolites

Ambient CO2 (400 ppm) Elevated CO2 (900 ppm)

Suaeda monoica Suaeda fruticosa Suaeda monoica Suaeda fruticosa

Control Salt Drought Control Salt Drought Control Salt Drought Control Salt Drought

Amino acids

Asparagine 0.39 ± 0.01 3.67 ± 0.27 2.27 ± 0.19 - - - 0.71 ± 0.01 0.65 ± 0.01 1.05 ± 0.01 1.78 ± 0.11 0.70 ± 0.01 0.61 ± 0.01
Citramalic acid - 2.08 ± 0.18 0.45 ± 0.01 0.48 ± 0.01 0.41 ± 0.01 0.55 ± 0.01 0.42 ± 0.01 0.32 ± 0.01 0.56 ± 0.03 2.22 ± 0.18 0.46 ± 0.01 0.38 ± 0.01

Glycine - 2.04 ± 0.14 - 0.65 ± 0.01 0.71 ± 0.01 - 0.78 ± 0.01 1.01 ± 0.01 0.70 ± 0.01 4.61 ± 0.37 0.84 ± 0.01 0.74 ± 0.01
Alanine 0.30 ± 0.01 - 3.63 ± 0.01 0.26 ± 0.01 0.18 ± 0.01 0.66 ± 0.01 0.56 ± 0.01 - 0.18 ± 0.01 1.85 ± 0.01 0.31 ± 0.01 0.12 ± 0.01

Aspartic acid 3.07 ± 0.02 1.68 ± 1.62 27.96 ± 2.47 1.54 ± 001 1.69 ± 0.02 3.57 ± 0.01 4.09 ± 0.01 3.41 ± 0.04 4.55 ± 0.03 15.53 ± 1.22 2.69 ± 0.03 2.81 ± 0.01
Glutamic acid 6.56 ± 0.05 38.04 ± 2.86 8.28 ± 0.01 4.86 ± 0.01 4.80 ± 0.04 9.48 ± 0.01 8.53 ± 0.03 4.40 ± 0.05 4.99 ± 0.04 25.99 ± 2.07 4.38 ± 0.03 4.93 ± 0.02

Glutamine 0.29 ± 0.01 6.71 ± 0.50 6.161 ± 6.11 0.72 ± 0.01 1.26 ± 0.02 0.64 ± 0.01 3.46 ± 0.01 3.06 ± 0.04 5.56 ± 0.06 17.55 ± 1.41 3.42 ± 0.02 1.67 ± 0.01
Norvaline 0.17 ± 0.01 - 0.25 ± 0.01 0.09 ± 0.01 0.24 ± 0.01 0.28 ± 0.01 - - 0.94 ± 0.01 7.40 ± 0.01 1.07 ± 0.01 0.61 ± 0.01

Proline 0.40 ± 0.02 10.80 ± 0.83 6.82 ± 0.60 0.41 ± 0.01 0.81 ± 0.03 1.07 ± 0.01 5.35 ± 0.02 5.83 ± 0.03 7.78 ± 0.06 21.76 ± 1.78 8.47 ± 0.11 4.88 ± 0.04
Serine 2.30 ± 0.02 16.86 ± 1.28 11.99 ± 104 1.55 ± 0.01 2.14 ± 0.02 1.48 ± 0.01 2.32 ± 0.01 1.67 ± 0.01 2.34 ± 0.02 8.99 ± 0.72 1.70 ± 0.01 1.36 ± 0.01

Threonine 0.26 ± 0.01 3.40 ± 0.25 3.12 ± 0.27 0.24 ± 0.01 0.44 ± 0.01 0.40 ± 0.01 0.92 ± 0.01 0.76 ± 0.01 0.87 ± 0.01 3.30 ± 0.26 0.63 ± 0.01 0.55 ± 0.01
Tryptophan 0.82 ± 0.01 3.96 ± 0.30 4.39 ± 0.41 0.36 ± 0.01 0.81 ± 0.03 0.80 ± 0.01 1.49 ± 0.01 1.14 ± 0.03 0.80 ± 0.01 4.29 ± 0.35 1.61 ± 0.01 0.72 ± 0.01

Valine - 2.71 ± 0.19 4.72 ± 0.01 - - - 1.11 ± 0.01 1.16 ± 0.01 1.17 ± 0.01 0.81 ± 0.01 - 0.05 ± 0.01
Phenylalanine - 1.36 ± 0.10 2.30 ± 0.01 - - - 0.40 ± 0.01 0.34 ± 0.01 0.38 ± 0.01 2.25 ± 0.18 0.57 ± 0.01 0.37 ± 0.01

Sugars

3-.α.-Mannobiose - 6.32 ± 0.01 - 0.06 ± 0.01 - - 1.62 ± 0.03 1.09 ± 0.01 0.55 ± 0.01 - 0.44 ± 0.01 -
Cellobiose 0.70 ± 0.01 0.17 ± 0.01 4.65 ± 0.43 0.80 ± 0.01 0.74 ± 0.05 0.74 ± 0.01 0.99 ± 0.01 0.55 ± 0.01 0.19 ± 0.01 1.19 ± 0.04 0.72 ± 0.05 0.33 ± 0.02

Fructopyranose - - 5.39 ± 0.44 0.42 ± 0.01 - 0.59 ± 0.01 0.98 ± 0.01 1.78 ± 0.01 - 0.79 ± 0.01 3.51 ± 0.04 1.96 ± 0.01
Fructose 0.74 ± 0.01 9.18 ± 0.68 0.32 ± 0.01 1.48 ± 0.01 1.60 ± 0.01 2.39 ± 0.01 - - - - - -

Galactopyranose 0.60 ± 0.01 - - 1.31 ± 0.01 1.14 ± 0.01 2.07 ± 0.04 - - - 10.42 ± 0.01 2.07 ± 0.01 -
Galactose 1.20 ± 0.01 28.30 ± 2.15 92.50 ± 8.03 2.90 ± 0.01 3.52 ± 0.04 1.18 ± 0.01 11.71 ± 0.01 27.43 ± 0.01 25.85 ± 0.01 0.47 ± 0.01 70.32 ± 6.98 103.9 ± 0.57

Glucopyranoside 117.83 ± 0.66 272.49 ± 2.5 45.54 ± 3.81 87.70 ± 0.44 81.64 ± 0.04 128.52 ± 0.2 129.4 ± 0.23 25.30 ± 0.01 102.1 ± 0.05 - - -
Glucose 0.24 ± 0.01 0.21 ± 0.01 8.41 ± 0.01 0.95 ± 0.01 0.25 ± 0.01 0.97 ± 0.01 - - 0.26 ± 0.01 6.63 ± 0.01 0.83 ± 0.06 0.61 ± 0.01
Lactose 0.64 ± 0.03 0.49 ± 0.02 2.91 ± 0.22 4.92 ± 0.06 3.39 ± 0.03 4.39 ± 0.01 0.95 ± 0.01 0.40 ± 0.01 1.01 ± 0.01 15.38 ± 1.24 6.01 ± 0.08 4.09 ± 0.05

Ribono-1,4-lactone 1.07 ± 0.01 6.59 ± 0.48 1.42 ± 0.01 1.43 ± 0.01 0.87 ± 0.05 1.00 ± 0.02 1.25 ± 0.01 1.26 ± 0.01 0.93 ± 0.01 1.46 ± 0.07 0.49 ± 0.02 0.17 ± 0.01
Trehalose - 3.24 ± 0.01 - - - - - - 0.16 ± 0.01 2.13 ± 0.01 0.20 ± 0.01 -
Turanose 0.78 ± 0.01 6.17 ± 0.58 1.12 ± 0.06 0.33 ± 0.02 0.72 ± 0.01 0.93 ± 0.05 1.27 ± 0.01 0.66 ± 0.01 1.62 ± 0.01 1.14 ± 0.04 0.75 ± 0.03 0.37 ± 0.01

Xylopyranose - - 5.51 ± 0.01 - - - - 4.15 ± 0.01 4.44 ± 0.01 15.74 ± 1.32 4.42 ± 0.09 4.07 ± 0.01
Galactinol 2.23 ± 0.01 21.03 ± 1.57 17.51 ± 1.56 3.38 ± 0.04 3.83 ± 0.05 4.85 ± 0.01 3.60 ± 0.02 2.40 ± 0.18 4.02 ± 0.02 26.91 ± 2.16 6.01 ± 0.09 2.69 ± 0.04
Rhamnose 3.26 ± 0.30 13.39 ± 0.01 - 10.41 ± 0.01 11.88 ± 0.01 3.91 ± 0.35 1.07 ± 0.01 - 4.22 ± 0.36 41.29 ± 4.06 2.90 ± 0.04 11.52 ± 0.99
Melibiose 0.29 ± 0.01 5.03 ± 0.41 22.13 ± 1.96 5.85 ± 0.56 0.46 ± 0.02 4.42 ± 0.32 0.67 ± 0.04 0.45 ± 0.01 1.27 ± 0.01 7.67 ± 0.01 0.60 ± 0.04 0.40 ± 0.02

Methyl galactoside 0.22 ± 0.01 1.02 ± 0.08 1.61 ± 0.13 0.22 ± 0.01 - - - - - 0.80 ± 0.06 0.23 ± 0.01 0.77 ± 0.06
Scopolin 0.46 ± 0.01 0.40 ± 0.01 - - - - 0.34 ± 0.01 - 0.86 ± 0.01 0.83 ± 0.01 0.69 ± 0.01 0.34 ± 0.01
Sucrose 204.74 ± 1.21 377.9 ± 0.19 395.72 ± 0.2 422.7 ± 2.57 538.86 ± 7.2 464.75 ± 0.1 722.2 ± 2.38 464.7 ± 0.15 743.6 ± 0.10 448.8 ± 0.22 775.6 ± 0.99 372.8 ± 1.63

Trimethylsilyl 0.77 ± 0.01 0.98 ± 0.01 1.33 ± 0.07 - - 1.50 ± 0.03 1.10 ± 0.01 0.77 ± 0.02 1.27 ± 0.02 - - -
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Table 1. Cont.

Metabolites

Ambient CO2 (400 ppm) Elevated CO2 (900 ppm)

Suaeda monoica Suaeda fruticosa Suaeda monoica Suaeda fruticosa

Control Salt Drought Control Salt Drought Control Salt Drought Control Salt Drought

Sugar acids

Galacturonic acid 1.10 ± 0.01 9.35 ± 0.47 39.39 ± 0.02 2.85 ± 0.02 3.03 ± 0.01 3.53 ± 0.01 2.31 ± 0.01 2.17 ± 0.04 3.92 ± 0.02 14.19 ± 1.13 3.81 ± 0.01 2.93 ± 0.02
Mannitol 0.36 ± 0.02 - - - - - - 0.34 ± 0.01 0.45 ± 0.01 7.68 ± 0.01 0.57 ± 0.01 1.32 ± 0.01

Glyceric acid 1.96 ± 0.03 13.52 ± 1.02 16.57 ± 1.45 1.73 ± 0.01 1.71 ± 0.02 1.48 ± 0.01 5.37 ± 0.01 2.19 ± 0.01 1.93 ± 0.01 6.28 ± 0.50 1.32 ± 0.03 1.23 ± 0.01
Threonic acid 4.30 ± 0.05 5.63 ± 0.01 6.91 ± 0.60 1.75 ± 0.01 1.23 ± 0.10 3.11 ± 0.28 3.50 ± 0.11 1.35 ± 0.06 0.97 ± 0.01 7.63 ± 0.60 0.65 ± 0.02 1.80 ± 0.04
Ribonic acid 0.94 ± 0.01 5.99 ± 0.44 6.74 ± 0.59 1.30 ± 0.01 1.44 ± 0.01 1.15 ± 0.01 1.38 ± 0.01 0.99 ± 0.01 7.62 ± 0.64 7.64 ± 0.01 1.37 ± 0.02 0.81 ± 0.01
Citric acid 3.06 ± 0.05 46.95 ± 3.40 39.58 ± 3.49 9.21 ± 0.01 17.27 ± 0.30 12.33 ± 0.15 10.34 ± 0.12 6.95 ± 0.11 5.56 ± 0.14 24.09 ± 1.96 10.93 ± 0.21 4.30 ± 0.08

Glucuronic acid 0.16 ± 0.01 1.32 ± 0.05 2.50 ± 0.01 0.22 ± 0.01 3.52 ± 0.01 2.34 ± 0.01 4.81 ± 0.03 - - - - -
Psicose - 17.23 ± 0.01 45.89 ± 0.02 1.41 ± 0.01 - 2.50 ± 0.01 14.68 ± 0.06 22.96 ± 0.38 12.24 ± 0.07 35.37 ± 2.75 13.04 ± 0.01 8.69 ± 0.02

Galactaric acid 8.92 ± 0.14 44.58 ± 3.33 6.78 ± 0.17 18.29 ± 0.08 16.08 ± 0.12 27.66 ± 0.30 7.76 ± 0.05 5.24 ± 0.04 9.29 ± 0.22 5.01 ± 0.45 2.21 ± 0.21 8.08 ± 0.11
Tartaric acid 10.39 ± 0.10 40.53 ± 3.06 37.43 ± 3.28 9.67 ± 0.06 10.00 ± 0.07 12.99 ± 0.05 10.26 ± 0.02 6.18 ± 0.07 9.91 ± 0.15 39.20 ± 3.15 10.07 ± 0.26 6.81 ± 0.06
Oxalic acid 0.24 ± 0.01 - 1.19 ± 0.02 0.11 ± 0.01 0.17 ± 0.01 - 0.37 ± 0.01 0.24 ± 0.01 0.29 ± 0.01 0.67 ± 0.04 0.14 ± 0.01 0.21 ± 0.01

Fatty acids

2-Aminobutanoic
acid 0.60 ± 0.01 1.76 ± 0.11 2.95 ± 0.25 0.39 ± 0.01 0.10 ± 0.01 0.36 ± 0.01 0.39 ± 0.01 0.40 ± 0.0 1.30 ± 0.01 2.79 ± 0.22 0.57 ± 0.01 0.47 ± 0.01

Butanedioic acid 0.74 ± 0.01 4.36 ± 0.33 4.20 ± 0.34 0.93 ± 0.01 0.73 ± 0.01 0.73 ± 0.02 1.51 ± 0.01 1.02 ± 0.01 1.67 ± 0.01 5.50 ± 0.44 0.71 ± 0.01 0.91 ± 0.01
Glucopyranose - 9.95 ± 0.78 21.15 ± 1.78 0.83 ± 0.01 1.98 ± 0.05 - 1.40 ± 0.01 2.38 ± 0.04 2.18 ± 0.11 10.29 ± 0.92 3.26 ± 0.04 2.62 ± 0.01

Malic acid 18.12 ± 0.19 205.7 ± 15.6 301.8 ± 26.3 27.15 ± 0.03 26.48 ± 0.06 32.37 ± 0.05 77.16 ± 0.21 42.68 ± 0.30 29.26 ± 0.29 136.3 ± 10.8 24.85 ± 0.43 19.28 ± 0.02
Myo-Inositol 0.76 ± 0.01 7.81 ± 0.58 7.81 ± 0.64 0.48 ± 0.01 1.10 ± 0.01 1.35 ± 0.01 1.35 ± 0.01 0.81 ± 0.01 1.11 ± 0.01 4.25 ± 0.34 0.99 ± 0.02 0.86 ± 0.01

β-
Galactopyranoside 0.63 ± 0.02 2.01 ± 0.01 - 1.10 ± 0.01 0.96 ± 0.01 0.78 ± 0.01 1.18 ± 0.01 - 0.85 ± 0.01 4.18 ± 0.33 2.67 ± 0.02 2.03 ± 0.02

Miscellaneous

2-Butenedioic acid 0.13 ± 0.01 1.39 ± 0.10 2.03 ± 0.01 0.43 ± 0.01 0.38 ± 0.01 0.16 ± 0.01 0.40 ± 0.01 0.15 ± 0.01 0.21 ± 0.01 0.98 ± 0.08 0.21 ± 0.01 0.20 ± 0.01
3-Hydroxy-DL-

tyrosine 0.47 ± 0.01 7.06 ± 0.53 25.32 ± 2.21 1.57 ± 0.01 1.54 ± 0.04 3.48 ± 0.07 3.92 ± 0.03 0.48 ± 0.01 1.59 ± 0.02 13.78 ± 1.11 2.30 ± 0.02 2.01 ± 0.01

Erythrono 0.30 ± 0.01 2.09 ± 0.18 3.11 ± 0.01 0.20 ± 0.01 0.34 ± 0.01 0.21 ± 0.01 0.31 ± 0.01 0.36 ± 0.01 0.18 ± 0.01 0.97 ± 0.07 0.14 ± 0.01 0.22 ± 0.01
Ethanolamine 0.08 ± 0.01 1.92 ± 0.16 3.14 ± 0.01 0.36 ± 0.01 0.53 ± 0.01 0.55 ± 0.01 0.54 ± 0.01 0.39 ± 0.0 0.96 ± 0.02 3.91 ± 0.31 0.58 ± 0.01 0.44 ± 0.01

Ferulic acid 0.36 ± 0.01 2.39 ± 0.19 - 0.34 ± 0.01 0.40 ± 0.01 0.55 ± 0.02 0.49 ± 0.01 0.29 ± 0.01 0.72 ± 0.01 2.90 ± 0.24 0.23 ± 0.01 0.18 ± 0.01
Melatonin 36.72 ± 0.75 198.8 ± 13.6 527.2 ± 45.7 63.54 ± 0.40 71.22 ± 1.27 176.1 ± 9.71 125.3 ± 0.01 135.7 ± 4.70 159.7 ± 0.45 685.1 ± 55.1 231.8 ± 0.19 58.47 ± 0.13

Quininic acid 0.24 ± 0.01 1.01 ± 0.08 2.44 ± 0.01 0.26 ± 0.01 0.38 ± 0.01 0.19 ± 0.01 - 0.16 ± 0.01 0.34 ± 0.01 1.10 ± 0.09 0.37 ± 0.01 0.22 ± 0.01
Silanol 3.25 ± 0.07 15.67 ± 1.18 9.60 ± 0.84 1.58 ± 0.01 1.19 ± 0.01 2.46 ± 0.01 3.59 ± 0.04 0.41 ± 0.01 2.58 ± 0.02 13.00 ± 1.02 0.61 ± 0.02 1.17 ± 0.01
Uridine 0.14 ± 0.01 1.82 ± 0.14 1.18 ± 0.01 0.39 ± 0.01 0.23 ± 0.01 0.17 ± 0.01 - - - - - -

Flavonoid
Kaempferol - - - 0.20 ± 0.01 0.25 ± 0.01 0.36 ± 0.01 0.28 ± 0.01 2.91 ± 0.01 0.60 ± 0.01 2.33 ± 0.20 0.27 ± 0.01 0.13 ± 0.01

Note: -, not detected or trace amount. Metabolite concentration is expressed as mean ± SE (n = 3) µg/g fresh weight.
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Amino acids, including proline, serine, threonine, aspartic acid, glutamic acid, glu-
tamine, and tryptophan, accumulate differentially in both Suaeda species under salt and
drought stress under ambient CO2 conditions. In contrast, under elevated CO2 conditions,
their concentrations decreased under salt or drought stress compared to the corresponding
control conditions, but the overall level was higher than ambient CO2 conditions. As-
paragine, valine, and phenylalanine were not detected in S. fruticosa under ambient CO2
(control and stress) conditions. However, these amino acids were detected under elevated
CO2 (control and stress; salt or drought) conditions in S. monoica. Some photorespiratory
essential amino acids, such as serine and glycine, were also detected in both Suaeda species.
We found that the serine concentration was higher in S. monoica compared to S. fruticosa un-
der different stress conditions. Interestingly, their concentrations decreased under elevated
CO2 stress conditions compared to their respective control conditions.

Sugars are also major metabolites contributing to stress tolerance. About 20 different
sugars were detected under varying stress conditions. Sugars are an essential energy source
for any biosynthesis process, including lipids and proteins, and act as a vitamin C precursor.
Furthermore, sugars, also known as osmoprotectants, are commonly accumulated under
stress conditions in plants. One of the sugars (i.e., fructose) was detected in both Suaeda
species under ambient CO2 (control and stress) conditions but not under elevated CO2
conditions. Some important sugars, including galactose, turanose, rhamnose, melibiose,
cellobiose, sucrose, lactose, galactinol, lactose, galactinol, and ribono-1,4-lactone, were de-
tected in both Suaeda species. High accumulation was determined under stress conditions,
but their contents were not significantly affected under elevated CO2 stress conditions.

Four sugar acids, including ribonic acid, galacturonic acid, glyceric acid, and threonic
acid, were detected in both Suaeda species under salt and drought stress at ambient or
elevated CO2 stress conditions. These sugar acids accumulated under ambient CO2 stress
conditions compared to control, whereas their content decreased under elevated CO2 stress
conditions. Likewise, other sugar acids and metabolites of the TCA cycle, such as citric
acid, tartaric acid, glucuronic acid, oxalic acid, psicose, and galactaric acid, showed a
similar trend. Aside from these metabolites, nine miscellaneous metabolites, including
2-butanedioic acid, 3-hydroxy-DL-tyrosine, erythrono, ethanolamine, ferulic acid, mela-
tonin, quininic acid, silanol, and uridine, were detected in both species under control
and stress conditions (Table 1). Two of the most important bioactive compounds that act
as antioxidants and antidiabetics (melatonin and quininic acid) accumulated in ambient
CO2 stress conditions, especially under drought stress in both Suaeda plants. In contrast,
their accumulation decreased under elevated CO2 stress conditions compared to control in
S. fruticosa.

3.2. Multivariate Statistical Analysis

The integrated PCA showed the possible correlation of plant responses to different
stress conditions. A bi-plot deduced from the PCA separated treatments into the first two
components with an overall variability of 84.91% (PC1: 75% and PC2: 9.91%). The bi-plot
clustered metabolites according to the effects of stress treatments. The most significant
effects were observed with elevated CO2 among all other stress combinations in both
Suaeda species (Figure 1). Similarly, a score plot was generated based on PLS-DA. The
score plot represented a clustering of different metabolites detected in plants treated
with different stress conditions (Figure 2). The score plot revealed that drought and salt
stress significantly affect the metabolism of S. monoica compared to other stress conditions,
whereas in S. fruticosa, elevated CO2 had a significant effect on plants compared to other
stresses. OPLS-DA is a regression model used to calculate a correlation between the
multivariate data and a response variable in the metabolomics. OPLS-DA of S. monoica and
S. fruticosa showed a correlation between two plants treated with different stress conditions.
The R2 and Q2 values revealed that the model is more stable, reliable, and excellent for
the study. A hierarchical cluster analysis was performed and heatmaps generated based
on Spearman’s rank correlation coefficients showed a correlation among pairs of plants
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treated with varying stress conditions and pairs of extracted metabolites. Spearman’s rank
correlation analysis is commonly used to study a relationship between two variables. In
this correlation study, we determined whether two variables covary (vary together with
another variable). A cumulative heatmap showing a correlation between metabolites and
plants grown under different stress conditions (Figure 3) revealed differential expression
or accumulation of metabolites under stress conditions.
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elevated CO2; D: drought or osmotic (5% PEG) stress under ambient CO2 conditions; DE: drought or osmotic (5% PEG) 
stress under elevated CO2 conditions. 

Figure 1. An integrated bi-plot-based principal component analysis. Bi-plot-correlated metabolites expressed in response to stress
conditions in (A) S. monoica and (B) S. fruticosa. C: plants grown under ambient conditions; EC: plants under elevated CO2 conditions;
S: salt (500 mM NaCl) stress under ambient CO2 conditions; SE: salt (500 mM NaCl) stress under elevated CO2; D: drought or osmotic
(5% PEG) stress under ambient CO2 conditions; DE: drought or osmotic (5% PEG) stress under elevated CO2 conditions.
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DA represents the important metabolites and their relative accumulation in (A) S. monoica and (B) S. fruticosa in response 
to different stress conditions based on the variable importance in projection score. C: plants grown under ambient 
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drought or osmotic (5% PEG) stress under elevated CO2 conditions. 

 

Figure 2. Partial least squares discriminant analysis (PLS-DA) of plants treated with different stress conditions. The PLS-DA
represents the important metabolites and their relative accumulation in (A) S. monoica and (B) S. fruticosa in response to
different stress conditions based on the variable importance in projection score. C: plants grown under ambient conditions;
EC: plants under elevated CO2 conditions; S: salt (500 mM NaCl) stress under ambient CO2 conditions; SE: salt (500 mM
NaCl) stress under elevated CO2; D: drought or osmotic (5% PEG) stress under ambient CO2 conditions; DE: drought or
osmotic (5% PEG) stress under elevated CO2 conditions.
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Figure 3. Heatmap representing the correlations between metabolites and plants treated with different stress conditions.
The heatmap represents the correlation between metabolites and (A) S. monoica and (B) S. fruticosa grown under varying
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In ambient CO2 conditions, intermediates of the Krebs cycle, including malic acid,
accumulate in leaves of S. monoica under salt and drought stress conditions, whereas in S.
fruticosa, no significant difference was found between control and stress conditions. In con-
trast, in elevated CO2 conditions, the malic acid concentration was decreased under stress
conditions compared to control conditions in both Suaeda species. This study demonstrated
that the key metabolites involved in plant metabolism were differentially accumulated or
expressed under varying stress conditions in Suaeda plants (Figure 4). These metabolites
are involved in basic metabolic pathways.
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Figure 4. Schematic presentation of the pathways for certain important metabolites. Metabolites were differentially
accumulated or expressed under varying stress conditions. The relative quantification of metabolites was performed by
GC-MS. Samples were analyzed and the average metabolite abundance was used to calculate the differences of the changes
(represented by different colors) relative to control. C: plants grown under ambient conditions; EC: plants under elevated
CO2 conditions; S: salt (500 mM NaCl) stress under ambient CO2 conditions; SE: salt (500 mM NaCl) stress under elevated
CO2; D: drought/osmotic (5% PEG) stress under ambient CO2 conditions; DE: drought/osmotic (5% PEG) stress under
elevated CO2 conditions.

4. Discussion

Plants have different strategies to deal with stresses, including adjusting their metabolic
status [14]. Plants under individual or a combination of salt, drought, and elevated CO2
stress conditions are coordinated with the activation of different molecular and physio-
logical responses. However, these changes lead to alterations in plant metabolism that
mitigate the damaging effects of stress combinations. The acclimatization of plant species
to any stress seems to be diverse from a metabolic point of view. Different stresses in-
duce differential gene expression and modifications in various metabolites, including
amino acids, organic acid, and carbohydrates, which play essential roles in carbon assim-
ilation, photorespiration, signal regulation, and protein synthesis [80,81]. Many studies
have demonstrated that elevated CO2 could promote plant metabolism and ameliorate
the detrimental effects of abiotic stress on plant species varieties. In C4 plants, elevated
CO2 decreases ROS production and oxidative damage; however, this means that other
non-stomatal processes and reduced photorespiration contribute to stress mitigation [82].
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Omics methodologies widely used to study plant responses provide multiple metabolic
progressions under elevated CO2 stress conditions [10,53,83]. Therefore, we speculated
that although these two halophytes belong to the same genus (but different species), their
strategies to deal with different stresses may be quite different.

Metabolite profiling is an effective and quantitative process used to elucidate the
stress tolerance mechanism. Plants under different stress combinations (salt, drought, and
elevated CO2) have revealed a wide variety of metabolites that precisely change during
stress, such as osmoprotectants, amino acids, fatty acids, carbohydrates, sugar acids, and
some intermediates of the Krebs cycle [84,85]. The accumulation of osmoprotectants, such
as compatible solutes (proline and sucrose), is a typical plant response involved in several
mechanisms, such as maintaining the membrane’s protein stability and cell osmotic pres-
sure (adjustment) [86]. Proline accumulated under salt and drought stress under ambient
CO2 conditions in both Suaeda species. In contrast, under elevated CO2 (control and stress)
conditions, the proline concentration significantly increased compared to ambient CO2
control and stress conditions. Likewise, sucrose accumulation was considerably higher
among other metabolites during stress conditions. Sucrose accumulated under salt and
drought stress conditions in both Suaeda species in ambient CO2 conditions as compared to
control (Table 1). Similar results were also observed in Arabidopsis thaliana under drought
and heat stress conditions, where proline accumulated during drought stress, whereas
sucrose accumulated during a combination of stresses to protect the mitochondrial and
cellular components during stress [87]. In contrast, purslane plants accumulated proline
under individual, heat, and drought stress conditions but not in combination [88]. In ambi-
ent CO2 conditions under heat stress, different metabolites were significantly accumulated,
such as succinic acid, aspartic acid, some essential amino acid, malic acid, and some sugars
in Poa pratensis (Kentucky bluegrass) [89].

An accumulation of other metabolites and their concentrations was also observed
in Suaeda species exposed to salt and drought stress with a combination of ambient and
elevated CO2 conditions (Figures 1–3). In this study, Suaeda species can cope with the
adverse effects of abiotic stress conditions by accumulating different sugars, amino acids,
fatty acids, and other metabolic compounds. Furthermore, different amino acids, including
asparagine, citramalic acid, glycine, alanine, glutamic acid, aspartic acid, glutamine, norva-
line, proline, serine, threonine, valine, tryptophan, and phenylalanine, showed increased
accumulation under ambient CO2 stress conditions compared to controls. In S. monoica,
asparagine content increased under salt and drought stress, supporting the observation
that accumulation is up to a substantial extent under stress conditions [90], implying that
certain amino acids have different sensitivity toward stress responses in different plants
under different stress conditions.

Similarly, A. thaliana and purslane plants accumulate different types of amino acids,
including tyrosine, tryptophan, glutamine, valine, and ornithine, to play an essential
role in the osmotic adjustment of cellular components aimed at maintaining leaf turgor
under stress treatment [83,84]. Aromatic amino acids, such as tryptophan, involved in
the downstream regulation of the shikimic acid pathway increased in both Suaeda species
under salt and drought stress in ambient CO2 conditions. Furthermore, aromatic amino
acids were decreased in both Suaeda species under salt and drought stress in elevated CO2
conditions as compared to control plants (Table 1). Accumulation of important amino acids
under stress could be correlated with protein synthesis to protect and initiate fast recovery
after stress in plant metabolism and osmotic adjustments [91]. This observation indicated
that salt and drought stress rigorously affected C4 Suaeda physiological constraints, and
that these detrimental effects were alleviated by elevated CO2 when combined with salt
and drought stress.

In addition to amino acids, an increase in carbohydrates within a cell may be another
strategy used for osmotic adjustment under stress conditions. Certain soluble sugars,
including fructose, glucose, and sucrose, increased in Thellungiella and Arabidopsis [92]. The
sucrose content in the xero-halophyte species, Atriplex halimus, increased significantly under
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salt stress conditions [93]. In this study, different sugar molecules accumulated in the leaves
of both Suaeda species, however the accumulation was found to be insignificant, demon-
strating the efficient protection of membranes and photosystem II from photo-oxidation
damages. Koussevitzky et al. [94] reported that during a combination of high temperature
and drought stress, accumulated malic enzyme in A. thaliana was correlated with its in-
creased activity and a decline in malate and oxaloacetate concentrations, whereas under
elevated CO2 conditions, a C3 turf grass species (Festuca arundinacea) showed improved
abiotic stress tolerance under a combination of drought and heat stress by improving
plant water use, photosynthesis efficiency, cellular membrane stability, and reduced rate of
photorespiration [95]. Hence, it was considered that the metabolic alteration associated
with the mitigation of abiotic stress damage by elevated CO2 would offer further insights
into the collaborative effects of salt stress, drought stress, and enhanced environmental
CO2 concentrations in plant species.

Thus, different bioactive compounds, such as quininic acid, kaempferol, and mela-
tonin, were present in both Suaeda species in precise concentrations. Melatonin is a
pleiotropic metabolic compound that not only plays a role in antioxidant activity but also
induces the regulation of gene expression in various physiological progressions, including
plant growth [96], germination, rooting [97], photosynthesis [98], and osmoregulation [99],
and protects against different abiotic and biotic stresses [100–102]. Recently, the melatonin
receptor was first identified and characterized in Arabidopsis [103]. Interestingly, different
studies have indicated that melatonin might be considered as an emerging phytohormone,
and its multiple functions also include being a vital redox homeostasis regulator in plant
systems [104,105]. In this study, the melatonin content was higher in stress conditions in
both Suaeda plants under ambient CO2 conditions but decreased under elevated CO2 stress
conditions. Previous research suggested that kaempferol and quininic acid possess potent
antioxidant and antidiabetic properties [106–108]. Kaempferol is a natural flavonoid that
shows antioxidant, anticancer, and anti-inflammatory therapeutic properties and is present
in different plant species [78,109].

Similarly, the ethanolic extract from Calotropis procera leaves was analyzed using ultra-
high performance liquid chromatography quadrupole time-of-flight mass spectrometry
(UHPLC-QTOF-MS/MS). The extract also showed higher rates of antidiabetic and antiox-
idant metabolites, such as quininic acid, kaempferol, and p-hydroxybenzoic acid [108].
Kaempferol identified from S. maritima leaf extracts showed cytotoxic activity against
human tumor cell lines [110]. Different types of metabolites accumulate in different species
to provide osmotic protection under varying stress conditions. Differential synthesis
and accumulation of metabolites are associated with enhanced stress tolerance [111], and
may be result of the various pathways initiated in the different species in response to
varying stresses.

This study addressed the variability of the metabolites in halophytes using metabolomics
and analyzed their effects on stress tolerance, and also confirms that Suaeda is a valuable
source of bioactive compounds with significantly potent antioxidant effects. Overall,
this study suggests that differential accumulation of various metabolites of C4 Suaeda
in response to different stress conditions, such as salt, drought, and elevated CO2 stress
conditions, provides insights into stress tolerance in C4 plant species in relation to climate
change. This work provides new perspectives on the important secondary metabolite
pathway involved in stress tolerance between Suaeda species. Consequently, a detailed
study of the tolerance mechanism of wetland plants is still needed.
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