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Abstract: Recently, a new severe disease has been reported in the Salento area (Apulia region, southern
Italy) in the multimillennial olive agro-ecosystem, given the common name “olive quick decline
syndrome” (OQDS). Together with Xylella fastidiosa subsp. pauca, some pathogenic fungi such as
Phaeoacremonium spp. have been found associated with the disease. The main predisposing factors to
the disease seem to be local cultivar susceptibility, depletion of some micronutrients in the soil that
could be related to some agronomical practices favoring the depletion of soil fertility, an incorrect
pruning cycle, climatic changes that result in increased soil waterlogging, and frost and drought
events. The possible synergistic action of microorganisms other than X. f. subsp. pauca cannot be
excluded. The features characterizing the areas where OQDS first appeared and subsequently spread,
described and discussed here, would point to a rather fragile environment where one or more adverse
climatic and/or edaphic factors could have acted together. The intrinsic peculiarities and management
of the Salento olive agro-ecosystem could also have played a fundamental role in enhancing the
virulence of X. f. subsp. pauca once introduced from abroad.

Keywords: Xylella fastidiosa; olive agro-ecosystem; cultivar susceptibility; soil fertility; agronomical
practices; pruning; climate change; frost; drought

1. Introduction

For plant disease to develop, besides a susceptible host and a virulent pathogen, the environmental
factors acting in the area where the initial disease outbreak is found are fundamental for the pathogen
to settle and for the disease to spread [1]. Indeed, a number of environmental factors can interact
with the host and the pathogen either to predispose and enhance host colonization and infection
by the pathogen or to incite microorganism pathogenicity in terms of virulence and aggressiveness.
Soil conditions in terms of texture, chemical composition, microbial fertility, and management as
well as some climatic parameters (rain, humidity, drought, strong winds, adverse temperatures) can
promote or reduce the disease progression in a particular area [1,2].

Recently, a new severe disease in olive (Olea europea L.) has been reported in the Salento area
(Apulia region, southern Italy) [3,4], which has been given the common name “olive quick decline
syndrome” (OQDS) [5]. Main symptoms include leaf and twig wilting, branch die-back, and plant
death. Despite the indication given by the name, an olive tree can collapse within two to five years from
the initial infection [6–8]. Xylella fastidiosa subsp. pauca is a plant quarantine bacterium according to the
European and Mediterranean Plant Protection Organization (EPPO). Quarantine pathogens previously
not found in the European territories are ruled out by strict phytosanitary laws aimed at impeding
their further spread. X. f. subsp. pauca, a pathogen transmitted by sap-feeding insect vectors, has been
frequently found associated with the syndrome, so it has been considered to be mainly responsible for
the disease [5]. Some other phytopathogenic fungi were also found to be associated with the disease at
the beginning of the outbreak [9].
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Many studies have been performed on OQDS, aiming at elucidating the cultivar susceptibility,
detection aspects, taxonomy, pathogen origin and vector spread in the area, economic implications,
and eradication measures [6]. However, very little attention has been given to the predisposing factors
that could have played a role in promoting the initial outbreak and further spread of the disease in the
Salento area. In the present brief report, some environmental factors that may have interfered with
the particular olive agro-ecosystem of Salento in enhancing the epidemic of OQDS are presented and
discussed. They could serve as points for further insights.

2. Resilience of Olive Agro-Ecosystem of Salento

The occurrence of olive in Salento (Apulia, Italy) dates back to the Bronze Age [10], and over
the subsequent millennia always represented a fundamental component of the local agriculture and
landscape. Before the initial outbreak of OQDS, the total amount of olive groves located in the three
provinces of Salento (Brindisi, Taranto, and Lecce) was about 200,000 ha [11]. In most cases the groves
were obtained by grafting wild olive plants with scions of local cultivars, namely Ogliarola salentina
and Cellina di Nardò. Considering the economic importance of the crop, the golden age was reached
during the 19th century, when lamp oil produced in the area was considered to be the best oil for
lighting in all major capitals of Europe and North America [12], and most of the oil from the area
was intended for this purpose. During this time, this agro-ecosystem demonstrated its resilience to
some abiotic and biotic dangers that sometimes severely threatened the crop. Two episodes of severe
leaf scorch and twig withering, locally called brusca, threatened part of the olive groves of Salento
at the end of the 18th and the beginning of the 20th centuries. In both cases, mainly in the eastern
areas in Lecce province, trees of the cultivars Ogliarola salentina and, to a lesser extent, Cellina di
Nardò were severely affected during autumn and early spring by unknown foliar disease that caused
extensive twig die-back, defoliation, and associated economic losses [13]. Studies performed during
the 20th century allowed researchers to distinguish two kinds of brusca: an abiotic brusca incited by
physical causes that affect the water supply to the tree (i.e., insufficient water in soil, damage to the
root system, hot and dry winds, salty winds, nutrient deficiency), and a biotic brusca caused by a weak
foliar pathogen, Phyllosticta panizzei [13]. Lionello Petri, the pathologist who described the cycle of
disease of the biotic brusca, described the phenomenon as “a specific marker of an internal alteration
of the physiological processes of the leaf, alteration which in the absence of a parasite could remain
without external visible symptoms” [14,15]. However, with both kinds of brusca, olive trees returned to
being productive in a short time, indicating a remarkable equilibrium between the agro-ecosystem of
Salento and the environmental threats occurring in the area in those times.

3. Current Characteristics of the Olive Groves of Salento

Ogliarola salentina and Cellina di Nardò are still the main cultivars of the Salento olive groves and
yield an oil characterized by a very high polyphenol content [16] when trained with modern methods
of cultivation and harvest. Their production is regulated by the European Commission according to the
Protected Geographical Indication (PGI) rules. Besides orchards of the same age and the same cultivar
obtained by clonal propagation and trained with regular spaces, there are many examples of olive
groves where trees of different ages coexist and the two cultivars are intermingled. In addition, the
occurrence of centennial trees, usually obtained by grafting wild plants scattered in the area, is quite
frequent. Traditionally, the number of trees per hectare in such groves ranges between 80 and 120 [17],
and the tree is trained as a “vase” with two or three main branches. All the soils are of calcareous
origin with a sandy texture, with the frequent occurrence of rocks at ground level. The agronomic
techniques usually applied in the area concerned the maintenance of a regular shape of the tree crown
through pruning performed on an irregular timeframe and the spraying of agrochemicals to control the
main pests and pathogens (Bactrocera oleae, Spilocea oleaginea, Colletothricum gloeosporioides). In general,
applying soil fertilizers is quite rare, whereas using herbicides to control weeds and prepare the ground



Agronomy 2020, 10, 1445 3 of 15

for harvest is quite frequent. In the past, the latter practice also induced some problems in the area
where OQDS was subsequently found for the first time [18].

The introduction of the Statutory Management Requirements by the European Commission in
2004 for maintaining the land in good agricultural and environmental conditions (GAEC) ruled by
standard 4.3, “Maintenance of olive groves in good vegetative conditions,” and the single payment
scheme influenced olive farmers in the application of basic agronomic techniques [19]. The GAEC
standards were intended to ensure a minimum level of land maintenance and avoid the deterioration
of habitats. This should be obtained through (a) pruning olive trees at least every five years, and
(b) removing suckers, brambles, weeds, and vegetation between the rows every three years. However,
each region modified the timeframe of the conditions, and in the Salento area, tree pruning been
generally been performed every four to five years, whereas weed control, mainly with herbicides,
is applied several times per year, resulting in a strong increase of their utilization in the whole area
during a prolonged timeframe [20].

4. Occurrence of Olive Quick Decline Syndrome in the Salento Olive Agro-Ecosystem

The first symptoms of an olive disease of unknown origin were observed in the Gallipoli area
(Lecce province) around 2007–2008 when extensive leaf scorching and twig and branch die-back were
observed on both young and centennial trees [21]. Considering that the time between the pathogen’s
colonizing of the tree and the appearance of the first visible symptoms can be more than one year,
as observed with artificially inoculated young olive plants [22] and epidemiological parameters [8],
the initial infection could have taken place a few years before. Subsequently, the disease spread in the
area surrounding Gallipoli to the point where, at the time of the first official record (October 2013) the
number of hectares showing symptoms of OQDS ranged between 8000 and 10,000 [4,21], corresponding
to about 800,000–1,000,000 olive trees. At Oria (Brindisi province), another OQDS outbreak was found
a few months later. The plant quarantine bacterium X. f. subsp. pauca was found associated with
the disease [3,4] and the rules established by the EPPO to try to eliminate it from the area had to be
applied. However, according to the criteria elucidated by Sosnowski et al. [23], successful pathogen
eradication in a certain area requires: (a) prompt identification of the causal agent found in a new
site, (b) a restricted and limited infected area, (c) effective local organization for crop uprooting, and
(d) biological features of the micro-organism that guarantee its complete elimination. Such a huge
infected area and the fact that X. f. subsp. pauca can survive on many wild plant species [24,25] would
not have facilitated the reliable elimination of the microorganism from the area, so it was retained as
“infected” and the eradication measures were applied northward.

Together with X. f. subsp. pauca, some pathogenic fungi such as Phaeoacremonium parasiticum,
P. rubrigenun, P. aleophilum, P. alvesi, and Neofusicoccum sp. and the leopard moth Zeuzera pyrina
were frequently found associated with OQDS [4,9,26]. However, due to the relevance to plant
quarantine pathogens, most of the studies concerned X. f. subsp. pauca and its vectors. Studies on
the vectors established that the meadow spittlebug Philaenus spumarius acts as an efficient vector for
the bacterium [27], and it has been estimated that such a vector can spread the pathogen, starting at
one site, up to a distance of 20 km per year [7]. The continuous occurrence of olive trees over many
kilometers in Salento has largely facilitated the expansion of the pathogen in the area [28].

5. Predisposing Factors for Olive Quick Decline Syndrome Acting on the Salento
Olive Agro-Ecosystem

The introduction of X. f. subsp. pauca in Salento has been linked with the import of infected
ornamental coffee plants (Coffea arabica L.) from Central America [29,30]. Subsequent to their
introduction in Apulia, Xylella-infected coffee plants from Central America have been repeatedly
intercepted in northern Italy [31] and Europe [32]. In addition, the interception of other X. f. subsp. pauca
strains associated with ornamental coffee plants has also occurred in France [33]. In Italy and Europe,
ornamental coffee plants are utilized for indoor ambience. Considering the huge amount of ornamental
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plants that are globally marketed from Central America every year (more than 43,000,000 plants just from
Costa Rica during 2012; https://www.focus.it/ambiente/natura/xylella-il-batterio-killer-degli-olivi),
the possibility that, over many years of commerce, one or few coffee plants infected by X. f. subsp.
pauca reached only two nurseries in Gallipoli and Oria appears rather small, since this ornamental
plant has been utilized quite a bit in Italy. In addition, the cultivation of olive is widespread almost
everywhere, except in the most northern areas of the country. Similarly, the meadow spittlebug is
widespread in Italy and in all Mediterranean countries [34]. The possibility that some particular factors
predisposed the olive groves of Salento to the OQDS outbreaks and spread cannot be excluded and
deserves examination.

5.1. Cultivar Susceptibility

The cultivar susceptibility to pathogens is an important factor that can deeply influence the
outcome of a disease in a territory. In the case of OQDS, the local olive cultivars Ogliarola salentina
and Cellina di Nardò are very susceptible to attack by X. f. subsp. pauca [5]. X. fastidiosa proliferates
within the xylem vessels of the plant, thus impeding the normal water translocation from the root
to the crown, which subsequently leads to plant death [35]. There are also indications that the plant
reacts to xylem colonization by the pathogen by inciting cavitation and embolism, followed by the
production of tyloses containing gums, pectin gel, crystals, resins, and phenolic compounds, which
causes vessel occlusion and twig die-back [36]. Generally, the most susceptible cultivars show more
vessel occlusions [37]. A similar situation was observed for olive cultivars with symptoms of OQDS
that showed many occlusions and relatively few X. f. subsp. pauca cells in the xylem of the branches [38].
However, within the leaf petiole of the same cultivar a very high number of X. f. subsp. pauca cells was
observed, causing xylem vessel blockage that led to leaf and twig die-back [39]. It would seem that,
in any case, the local cultivars suffer from bacterium attack by producing tyloses in the branches or by
being directly occluded in the leaf petiole xylem vessels.

In addition to X. f. subsp. pauca, Ogliarola salentina and Cellina di Nardò can also be damaged
by some fungi and bacteria that can contribute to OQDS, such as Phaeoacremonium spp. [9,26] and
Pseudomonas savastanoi pv. savastanoi, the causal agent of olive knot. In Salento, the latter have
affected both cultivars since ancient times [40]. It should also be noted that this bacterium, during
its colonization and multiplication stages, can contribute to the overall decrease of plant defense
substances. Indeed, a reduction of phenolic compounds released from plant cell vacuoles during the
induction of cavity formation incited by the pathogen’s pectolytic and hemicellulolytic enzymatic
activity has been observed (Figure 1) [41].
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Consequently, if there are frequent attacks, the tree could be depleted of such compounds.
However, the possible synergistic effect of X. f. subsp. pauca, fungi, and P. s. pv. savastanoi in inciting
and/or increasing the symptoms of OQDS has not been investigated and would deserve particular
attention. It should be noted, indeed, that there can be a long period of time between the initial
observation of OQDS symptoms and the final collapse of the tree, and during this period detrimental
pathogens could interact.

5.2. Soil Ionome Characteristics

Similar to Salento, the areas of northern Apulia are considered suitable for the survival and spread
of X. f. subsp. pauca in olive trees [42]. However, there are some epidemiological features of OQDS
that should be carefully analyzed. Taking into account that the initial outbreaks of OQDS occurred
15 years ago and the estimated spread of the vector is 20 km per year [7], the expected arrival of the
pathogen in the northern areas of Apulia or the neighboring region (Basilicata) has not occurred, so far.
It should also be added that the vector could spread the bacterium in the olive groves as hitchhikers
or by feeding on wild plant species [25]. The bacterium has spread from the initial outbreak area to
a distance of about 100 km [8]. Consequently, it would be important to investigate how it has been
possible to arrive at such a different situation considering that the origin of soils in both areas is quite
similar. Apulia soils, even though they have different geological ages, are all of calcareous origin [43].

The soil environmental conditions can also deeply influence the plant when facing disease, and
soil management is critical in order to apply effective pathogen control strategies [1,44]. A study
carried out by comparing the ionome composition of soil and leaves taken from olive groves of distinct
areas of Apulia characterized by the presence or absence of OQDS (Lecce, Taranto, and Brindisi groves
with OQDS and areas north of Bari without) revealed a marked difference between the two areas [45].
In particular, a higher content of zinc, copper, and manganese in both soil and leaves was found in
areas north of Bari still free from OQDS with respect to southern Salento areas (Figure 2).
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Figure 2. Soil ionome comparison between areas of Apulia and Basilicata (BAT-PZ) not affected by
olive quick decline syndrome (OQDS) and areas of Salento (BR, LE, TA) characterized by the occurrence
of OQDS revealed different zinc (Zn) and copper (Cu) content despite a similar calcareous origin. Areas
where OQDS is present show a marked reduction of both ions. BAT-PZ, Barletta–Andria–Trani province;
PZ, Potenza province; BR, Brindisi province; LE, Lecce province; TA, Taranto province. Reproduced
from [45].

These ions are micronutrients essential for plant growth: zinc is involved as a cofactor in many
enzymes, specifically alcohol dehydrogenase, carbonic anhydrase, and RNA polymerase [46], whereas
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copper is essential for the formation of chlorophyll [47]. These ions are also deeply involved in the
plant defense mechanisms [48]. Capsicum annuum Zinc Finger Protein 1 (CAZFP1), a zinc-finger
protein gene, encodes a transcription factor that is accumulated in the early phase of the infection
caused by Xanthomonas campestris pv. vesicatoria in pepper fruits [49]. In addition, the zinc finger
binding domains are related to the effector-triggered immune response [50]. In addition, high zinc
concentrations can protect plants by direct toxicity and by zinc-triggered organic defenses [51,52].
Copper is linked in the receptor molecule for ethylene, an important signal for plant development
and disease resistance [53]. In addition, high in planta content of copper stimulates the expression of
peroxidase gene (CAPO1), sesquiterpene cyclase (CASC1), and glucanase [54] as well as salicylate and
ethylene-dependent pathways [55]. Manganese is involved in the synthesis of phenolic compounds
and terpenes [56] are other important molecules related to plant defense. It is important to stress
that zinc and copper are also deeply involved in the interaction between X. fastidiosa and host plant.
X. fastidiosa biofilm formation is inhibited by copper and zinc concentrations higher than 200 and
0.25 mM, respectively [57], and in planta zinc detoxification is required to trigger the full virulence of
the pathogen [58]. Within this context, it has been observed that olive trees infected by X. f. subsp.
pauca show a low copper content within the leaves [59].

It is evident that Salento soils show a depletion of some important micronutrients (zinc, copper,
manganese) and that such reduction can have direct negative consequences for the olive physiology
and reaction to biotic stress.

5.3. Agronomical Practises

Over the long term, the agronomical practices applied to soil are strictly linked to its fertility
and could have putatively played a role in augmenting the severity of OQDS in Salento. In the
whole area, regular light tillage and/or harrowing of soil surface became rare during the last decades,
whereas the utilization of herbicides, mainly glyphosate, to clean the soil and prepare the harvest is
quite common [20,60]. This practice, when performed over a long period and more than once per
year, can have negative effects on olive trees [61]. In the Salento area, herbicide is applied to the soil
on average about three times per year [60]. Despite the advantage of obtaining a clean grove and
eliminating weeds that compete with the trees for water resources, the overall availability and content
of organic matter, nitrogen, and phosphorous in the soil decreases over the years [61]. In addition,
over the long term there is a strong reduction of pseudomonads that control soil-borne pathogenic
fungi and an increase of agrobacteria that act in manganese oxidation [62,63]. Prolonged utilization of
glyphosate can also induce reduced zinc and copper assimilation in the plant [64]. The latter features
could be related to the reduced manganese, copper, and zinc content found in Salento soils and olive
leaves [45], as well as in Brazil in leaves of orange trees infected by X. f. subsp. pauca that were grown
in glyphosate-treated soil [65]. A perturbation of metabolic pathways in the beneficial pseudomonads
has been also observed in soils repeatedly treated with glyphosate [66], leading to a reduced capacity
to face disease [67]. Impairment of the shikimic acid pathway due to the utilization of glyphosate
has been observed to be strictly linked to crop vulnerability to disease [65,67]. It should be added
that soil fertilization has been rarely performed on a regular basis in the Salento area. The agronomic
practices for soil management over the last decades have mainly been based on the repeated utilization
of glyphosate, which could have led to a relevant perturbation of the metabolic activity of the soil
microflora and a depletion of some micronutrients, thus predisposing the trees to OQDS. These aspects
deserve ad hoc studies to clarify all possible interrelationships between the different parameters to
establish a direct link to OQDS, as recently observed for algae [68].

5.4. Tree Pruning

The pruning of olive trees has a direct influence on both the tree physiology and the quality
of the oil [69]. It is worth noting that in adult trees, pruning is carried out to possibly maintain the
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equilibrium between vegetative and reproductive functions in order to reduce the alternate bearing,
and to facilitate pest and disease control as well as the harvest (Figure 3) [70,71].
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Performing hard pruning on a four- to five-year basis, as usually done in many olive groves in
Salento, has a negative influence on the trees, causing shading, an irrational spatial distribution of the
canopy, shorter and compact vegetation, and deadwood in the inner part of the vegetation, resulting in
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5.5. Climatic Changes

The climatic changes currently affecting Mediterranean areas could have played a role in enhancing
the susceptibility of the local cultivars to OQDS. In recent years, extreme precipitation phenomena
have dramatically increased in the Mediterranean Basin [73]. During the last years, the Salento area
faced relatively more extreme precipitation events (a very large amount of rain in few hours on a
relatively small area), sometimes accompanied by strong wind and hail. Apart from the direct damage
to vegetation, there are also indirect negative consequences for the tree physiology due to prolonged
water permanence on soils that in many cases are very compact due to the absence of proper and
regular management or the presence of emerging rocks (Figure 5). When the soil is saturated with
water for some days, anaerobic conditions prevail, inducing root hypoxia and leading to negative
consequences for the olive trees [74,75].
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Figure 5. Waterlogging in olive groves due to a relative excess of precipitation occurring over a short
time. The soil of Salento where olive groves are cultivated can be very solid, which does not allow the
water to infiltrate. Prolonged anaerobic conditions in the soil can occur, causing deleterious effects to
the root system of the trees.

As a consequence of waterlogging there is a reduction of the photosynthesis rate [76] and reduced
absorption and transport of water and nutrients, negatively influencing growth, flowering, fruit set, and
drupe development [77]. Recurrent instances of waterlogging can dramatically worsen the situation.
In addition, strong wind and hail can cause direct damage to the trees and favor the colonization
of other phytopathogens such as P. s. pv. savastanoi. In the area, there are also frequent hot winds
that usually blow from the south, causing extensive leaf withering and defoliation during spring and
autumn [13]. A warm wind blowing from the east in early May 2020 augmented the wilting of olive
groves facing the Adriatic Sea that already showed OQDS.

In the Mediterranean Basin, frost and drought events are becoming less rare than in previous
decades. Frost occurs not only in winter, but sometimes also in early spring. As an example, in the
first decade of January 2017, in some areas of Lecce province, over one week the daily minimum
temperature reached values below 0 ◦C and on some days it reached −4.0 and −5.1 ◦C (Figure 6) [78].

Such low temperatures can have direct negative effects on olive, like defoliation and bark
fissuration [79]. By contrast, during July–August 2015, for more than 40 consecutive days the maximum
temperature in areas of Lecce province was 1–4 ◦C higher than historical records for the area, whereas
in summer 2017, in the same areas, the total rainfall was only 7.8 mm from 1 June to 30 August [78].
The frost events of January 2017 reduced the X. f. subsp. pauca cell density within the olive leaves,
although, as the air temperature increased during spring, the bacterium proliferated again [78].
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Figure 6. During 2017 the Salento area faced frost (first part of January) and drought (only 7.8 mm of rainfall from 1 June to 30 August). These severe phenomena have
occurred more often in the last decades than in the past. Reproduced with permission from [78].
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Drought can also cause harmful consequences for olive cultivation, particularly under rainfed
conditions, and represents one of the most critical factors for crop maintenance in the Mediterranean
Basin [80]. It causes a decrease in leaf water content, resulting in a loss of turgor and an associated
reduction of photosynthesis [81]. In addition, since xylem potential decreases, there is an increase of
xylem cavitation, which can cause embolism and the interruption of water transport from the root
to the canopy [82]. Drought stress results in a marked reduction of nutrient uptake within the plant,
resulting in reduced yield, fruit dry mass, and oil accumulation [83,84]. Ethylene might inhibit plant
growth under drought conditions, as it is involved in leaf abscission [85]. It is evident that such adverse
and recurrent climatic events could negatively predispose the trees to any kind of further biotic and
abiotic perturbation, possibly including also OQDS.

6. Conclusions

The current olive agro-ecosystem of Salento appears to be managed differently now than in
the past and seems to be more prone to damage by pests and pathogens introduced from abroad.
The features that characterize the areas where OQDS first appeared and subsequently spread reveal a
rather fragile environment where one or more adverse climatic and/or edaphic factors acting together
with the peculiarities of the olive groves could have played a role in enhancing the virulence of X. f.
subsp. pauca once introduced from abroad. The susceptibility of the local cultivars and some agronomic
practices that have depleted the soil fertility over the long term could have further worsened the
situation. The bacterium has also found a very efficient vector that favors tree colonization and further
spread of the disease in the territory.

During the last decades, most of the olive groves received just basic care, mainly to maintain
the shape of the crown and harvest what the tree yielded, with little attention paid to restoring or
improving the soil fertility. In addition to climatic stress, such as excess precipitation, frost, and
drought, the additional negative impact could have been due to the occurrence of other phytopathogenic
microorganisms that, together with X. f. subsp. pauca, further weakened the tree [86], so that over a
little more than a decade, a great part of the olive groves of Lecce province became totally withered.

The restoration of the Salento agro-ecosystem nowadays appears quite problematic, since many
areas have been abandoned by farmers discouraged from the very beginning to apply any kind of control
strategy that could have reduced the impact of X. f. subsp. pauca and OQDS [87]. This abandonment
of any kind of agronomical practice largely contributed to augmenting the proliferation of the vector,
and consequently further expansion of the pathogen in the area (Figure 7).
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