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Abstract: Sprouts and microgreens have attracted tremendous interest across multiple disciplines in
recent years. Here, we critically review the most recent advances to underscore research prospects
and niches, and related challenges, not yet addressed or fully pursued. In particular, we report a
number of themes that merit special attention as a result of their relevance to plant science, nutrition,
health, and zootechnics: (1) species not yet or inadequately investigated, such as wild plants, and fruit
tree strains; (2) abiotic and biotic factors, and biostimulants, for elicitation strategies and metabolic
engineering; (3) sanitization and processing technologies to obtain high-quality products; (4) digestive
fate and impact of bioactive elements, antinutrients, and allergens on human nutrition; (5) experimental
challenges to researching health benefits; (6) the opportunity to generate natural product libraries for
drug discovery; and (7) sprouts in animal feeding to improve both animal health and the nutritional
value of animal products for the human diet. The convergence of different themes involving
interdisciplinary competencies advocate fascinating research pursuits, for example, the elicitation of
metabolic variants to generate natural product collections for identification and selection of bioactive
chemicals with a role as nutraceuticals, key constituents of functional foods, or interactive partners of
specific drugs.

Keywords: plant; elicitation; post-harvest; food safety; human nutrition; functional foods;
nutraceuticals; drug; human health; animal feeding

1. Introduction

In recent years, microscale vegetables have become increasingly popular for homemade food
preparations and have been the subject of progressively higher interest by the ready-to-eat market
and the dietary supplements industry. While this trend is true for a vast variety of young plants
and their constituents [1–3], this review is centered on sprouted seeds and microgreens, namely, shoots
with fully expanded cotyledons, including grasses (i.e., shoots of Poaceae) [4].
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Sprouts and microgreens can be produced quickly, easily, and cost-effectively due to simple
requirements for equipment and supplies, and a rapid developmental process varying from a few days
(sprouts) to approximately two weeks (microgreens). This, in turn, suggests a unique opportunity
for industrial scalability coupled with the prospect for consumers to independently access food with
proven or purported nutritional benefits [5,6]. Compared to seeds or mature plants, both sprouts
and microgreens are known to contain low amounts of antinutrients, while being rich in amino acids,
fatty acids, and simple sugars as a result of enzymatic breakdown of large macromolecules, and bioactive
compounds, namely, a cohort of secondary metabolites, also known as phytochemicals [4,7–10].

Most phytochemicals are low-molecular-weight and anti-microbial compounds synthesized
de novo (i.e., phytoalexins) or from existing precursors (i.e., phytoanticipins) [11,12]. Among
phytoanticipins, glucosinolates are commonly found in Brassicaceae sprouts, and among phytoalexins,
terpenoids and phenolic compounds are widespread in sprouts of most plant species. Their high
concentration in seedlings contributes to increased vigor and tolerance to any stress potentially
occurring in early stages of development Table 1.

Table 1. Main functions recognized to the principal phytochemical classes and subclasses.

Class Function in Plants References

Polyphenols

Flavonoids

Pigments (i.e., anthocyanins, flavanols, and flavones);
UV protection (i.e., flavones and flavonols);
scavenger of H2O2, superoxide, hydroxyl radical, singlet oxygen,
peroxyl radical;
feeding and wounding deterrents (i.e., hydrolyzable tannins);
insecticidal and antimicrobial action (i.e., isoflavones).

[13–15]

Phenolic acids

Plant-microbe symbiosis;
allelopathic effect (caffeic and ferulic acid);
feeding deterrents as astringent compounds (i.e., condensed tannins);
resistance to pathogen attack;
components of cell-wall;
attract pollinators and seed dispersers;
signaling molecules (i.e., salicylic acid).

[14,15]

Stilbenes
Defensive response to pathogens or stress conditions;
protective agents from viral and microbial attack, injuries, diseases, UV
exposure, aluminum, etc.

[15,16]

Lignans Building blocks for the fiber lignin;
plant defense diseases and pests. [15,17]

Terpenoids

Overall

Plant growth regulators;
defense against herbivores and pathogens;
attracting pollinators influence the growth and the development of
neighbor plant.

[13,18]

Carotenoids
Pigments;
protection against photooxidation;
light-harvesting pigments.

[13,14]

Tocotrienols and tocopherols

Singlet oxygen scavengers in photosystem ii;
signaling molecules;
maintain the integrity of long-chain polyunsaturated fatty acids in
the cell membranes.

[19]

N-containing metabolites Glucosinolates Herbivore toxins and feeding repellents;
insects deterrents and pathogens growth inhibitors (isothiocyanates). [12–14,20]

Notably, a large array of phytochemicals exhibit antioxidant properties, and, in many instances,
the presence of phytochemicals in the diet has been shown to provide beneficial effects to human
health; Table 2.
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Table 2. Phytochemicals and health benefits.

Chemical Class Subclass Health Benefits References

Polyphenols

Flavonoids
Antioxidants: long-lived radical anions scavengers;
anti-lipoperoxidant, -tumoral, -platelet, ischemic, -allergic,
-inflammatory activities.

[21]

Phenolic acids

Radical scavengers;
singlet oxygen quenching;
block biosynthesis of leukotrienes involved in immunoregulation
disease, asthma and allergic reaction (caffeic acid).

[21]

Stilbenes
Anti-oxidative, -carcinogenic, -tumor properties; retard cardiovascular
disease and cancer;
prevent lipid oxidation and the formation of toxic oxidation products.

[21]

Phytoestrogens (i.e., isoflavones,
lignans, coumestans)

Prevent menopausal symptoms (hot-flashes, vasomotor symptoms,
vaginal atrophy);
anti-aging effect on the skin;
enhance bone formation and increase bone mineral density;
beneficial effects on endothelial cells, vascular smooth muscle;
reduce levels of low-density lipoprotein (LDL) cholesterol;
anti-mutagenic, -proliferative, -angiogenic, pro-apoptotic and general
anti-cancer effects.

[22]

Terpenoids

Carotenoids

Chemical quenchers of 1O2;
reduce the risk of prostate cancer and age-related macular degeneration;
stimulate the immune system in inflammatory diseases or human
immunodeficiency disease.

[23]

Tocotrienols and tocopherols

Retard cancer lesions and tumors;
tackle free radical reactions;
scavengers of lipid peroxyl radicals;
singlet oxygen quenchers.

[23]

Phytosterols

Reduce cholesterol levels;
attenuate inflammatory processes;
induce apoptosis when added to cultured human prostate, breast,
and colon cancer cells.

[24]

N-containing metabolites Glucosinolates

Protect against Helicobacter pylori infections, light-induced damage of
retina brain ischemia/reperfusion, traumatic brain injury, intracerebral
hemorrhage, and contusion spinal cord injury (sulforaphane);
decrease infarct size, brain (or spinal cord) edema, and cortical
apoptosis (sulforaphane);
restoration of skin integrity;
inhibit growth of human tumor cells.

[25]

In the last decade, the scientific literature on sprouts has dramatically increased and has been
widely reviewed [1–4,23,26]. Nonetheless, there are aspects that have been scarcely or never explored.
These gaps in knowledge offer perspectives for multidisciplinary studies involving collaboration
across competencies in plant biology, food science and technology, human and animal nutrition,
pharmacology, and medicine. This review is aimed at identifying intriguing areas of investigation that
merit special attention.

2. Plant Species Scarcely Studied for Sprouting: Limits and Opportunities

Plant species in the Poaceae, Brassicaceae, and Fabaceae families are most exploited for sprouting
purposes and therefore most reported by the scientific literature. For these species, research has
provided a lot of information on the nutritional traits of sprouts and microgreens [3,4,27].

Other cultivated species are used for sprouting, being appreciated for several peculiar traits:
vivid colors (i.e., red for red basil; green for spinach), intense smells (i.e., aromatic herbs), pleasant
textures (i.e., regular for Asteraceae; juicy for sunflower and beet; crunchy for celery), and variable
tastes (i.e., regular for Asteraceae; slightly sour for beet; bitter for Cucurbitaceae) [3,5]. In this regard,
the definition and quantification of organoleptic traits represent a subject still unexplored, even for
the species commonly used for sprouting, borrowing the methodology and technology used for
vegetables and fruits, such as the gas chromatography-olfactometry. A first preliminary work on
this has been carried out by Bianchi et al. [28] to analyze taste quality traits and volatile profile in
sprouts and wheatgrass of Triticum spp. Another recent study compared 12 microgreens in terms of
sensory attributes and visual appearance, by means of a consumer test [29]. Other grains, such as
amaranth, quinoa, and buckwheat have been also studied in detail and appreciated as gluten free [30].
Several other cultivated species have been studied occasionally, for example hemp, whose sprouts are
destined to become very popular [31].
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This section, however, is focused on opportunities and research challenges offered by species
underexplored for sprouting like voluntary species, wild relatives, ancestors, and neglected/local
accessions of cultivated species, and fruit tree species. All of these would be very interesting for
sprouting because they are supposed to have a higher phytochemical content compared to cultivated
species [32–34].

Research should identify and quantify phytochemicals of these species but also investigate
germination performances (% germination, mean germination time, time to reach a minimum
germination threshold) and related methods for improvements. In fact, these species may show
dormancy or unpredictable germination, which is a key impediment for sprouting.

2.1. Voluntary Species, Wild Relatives, Ancestors, Neglected/Local Accessions of Cultivated Species

None of these species, unlike cultivated species, were subject to breeding programs aimed at
increasing yield and fruit size to the detriment of adaptability. They are characterized by high rusticity
and tolerance to extreme environmental conditions that can cope with the negative effects of climate
change, thereby representing potential contribution to world food security [35]. Their resilience
(adaptability) is often due to biochemical mechanisms involving higher contents of secondary
metabolites [36]. This also contributes to the high seedling vigor and fast vegetative growth, which
warrants competitive adaptability in early growth stages [37]. For these reasons, sprouts from these
species are expected to have a very high nutritional value. Some wild species were proposed and studied
for micro-scale vegetables production (Table 3) and many other might be considered for sprouting:
Galium aparine L. [38], Convolvulus arvensis L. [39], Solanum nigrum L. [40], and Papaver rhoeas L. [41].
An example of sprouts from ancestors of modern species is offered by einkorn, whose sprouts were
found to be richer in phenolic substances than those of soft and durum wheat [42].

Table 3. Micro-scale vegetables from voluntary species, wild relatives, and ancient species.

Family Species Days after Sowing
(DAS) Secondary Metabolites References

Amaranthaceae

Amaranthus caudatus–amaranth 10 PAs, total PC, FC [43]

Amaranthus cruentus–amaranth 4, 6, 7 Total PC, AA [44]

Amaranthus hypochondriacus–amaranth 2 AA [45]

N.S. Carotenoids [46]

Chenopodium album–pigweed

48 h AA, total PC [47]

48 h Total PC [48]

48 h Tocopherols [49]

Chenopodium quinoa–quinoa

4, 6, 7 Total PC, AA [44]

82 h Total PC, AA, single phenolics [50]

4 Total PC, AA [51]

5 Total PC [52]

Chenopodium berlandieri–huauzontle 12, 24, 36, 48, 72 h N.R. [53]

Apiaceae

Anethum graveolens–dill 8–12 Total PC, FC, AA [54]

Coriandrum sativum L.–coriander
N.S. Carotenoids, total PC, single phenolics [55]

20 AA, carotenoids, total PC, single phenolics [56]

Asteraceae
Artemisia dracunculus–tarragon 1, 3, 5, 7 N/A [57]

Taraxacum officinale–common dandelion 16 Anthocyanins and carotenoids [58]

Boraginaceae Phacelia tanacetifolia–phacelia 7 Total PC, AA, free and bound
PAs and flavonoids [59]

Brassicaceae

Cichorium intybus–chicory 12 Total PC, tocopherols, anthocyanins,
carotenoids [60]

Diplotaxis tenuifolia–wild rocket
4, 7 Total and single GLS [61]

7, 21 Anthocyanins, phenolics, AA, resveratrol [62]

Convolvulaceae Ipomea aquatica–water convolvulus 8–12 Total PC, FC, AA [54]

Malvaceae Corchorus olitorius L.–jute 22 AA, carotenoids, total PC, single phenolics [56]
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Table 3. Cont.

Family Species Days After
Sowing (DAS) Secondary Metabolites References

Poaceae

Coix lacryma-jobi–adlay seed 12, 24, 36, 48, 60 h Free, bound total PC, flavonoid, PAs and AA [63]

Phalaris canariensis–canary seed 24, 48, 72, 96, 120 h Free, bound total PC, PAs and AA [64]

Triticum aestivum spp. spelta–spelt 5 and 12 Total PC, free and bound PAs, AA [42]

Triticum monococcum ssp.
monococcum–einkorn

5 and 12 Total PC, free and bound PAs, AA [42]

5 and 13 Total PC, FC, AA [65]
5 and 12 Total PC, free and bound PAs, AA [66]

5 and 9 Total PC, free and bound PAs, AA [67]

Triticum turgidum spp. dicoccum–emmer

5 and 12 Total PC, free and bound PAs, AA [42]
5 and 13 Total PC, FC, AA [45]

5 and 12 Total PC, free and bound PAs, AA [65]

Zizania latifolia–wild rice Free, bound and total phenolics [68]

Lamiaceae Salvia hispanica–chia 7 Total PC, AA, free and bound PAs and FC [59]

Leguminosae Vigna umbellata–rice bean 6, 12, 18, 24 h Total PC, single PAs, single flavonoids and AA [69]

Onagraceae Oenothera biennis–evening primrose 7 Total PC, AA, free and bound
PAs and flavonoids [59]

Portulacaceae
Portulaca oleracea–common purslane

1–6 N/A [70]

3 Free, bound soluble conjugated total PC,
PAs and flavonoids [71]

Portulaca grandiflora–moss-rose purslane 1–6 N/A [70]

AA = antioxidant activity; FC = flavonoid content; GLS = glucosinolates; N/A = not available; N.R. = not reported;
N.S. = not specified; PAs = phenolic acids; PC = phenolic content.

Of course, all of these species, especially the wild ones, will be effectively suitable for sprouting
only after solving limitations related to low grain yield and seed dispersal at ripening, and seed
dormancy [37]. Since many wild species can be considered weeds in agro-ecosystems, these studies
might also provide information for weed science and management.

2.2. Fruit Tree Species

Seeds of fruit tree species often represent an important by-product of juice/jam food industries,
as well as a relevant source of phytochemicals [72]. This is the case of limonoids in Citrus species [73],
and of secoiridoids in Olea species [74]. In the last decade, many utilizations were proposed to add value
to these agricultural by-products, including the possibility to use them for nutritional purposes [72,75].
The direct consumption of seeds is not possible in many cases, since they are coriaceous, and/or bitter
and astringent. Several processing methods have been proposed for extracting phytochemicals from
these kinds of seeds, while sprouting is a relatively new option, which would help producing high value
food while reducing wastes. To date it has been studied only for grapeseed [76,77], pomegranate [78],
olive [79], and Citrus species [80]. In most cases, the increase in phytochemical content and antioxidant
activity observed in sprouts in relation to seeds were found to be dramatic (e.g., 30-fold for polyphenols
and 90-fold for antioxidant activity in pomegranate), and much higher than in herbaceous species, thus
advocating further research. However, among these species, only pomegranate showed acceptable
germination rate and time, and a suitable consistency and taste to be actually used for the production
of edible sprouts. In the other cases, authors realized that sprouts might better be used for extraction of
food additives, cosmetics, and pharmaceuticals.

By analogy with fruit tree species, also fruit-shrub species such as blackberries, raspberries,
and blueberries, can be postulated as excellent sources of sprouts, but limitations related to seed
dormancy and low germination performances appear hard to overcome. However, considering
the large amount of seed wastes obtained from processing, even low germination percentages could be
suitable for sprouting purposes.
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3. Delving into Elicitors

As previously recalled, phytochemicals have several functions in plants, including protection
against abiotic and biotic stressing agents, which may threaten seedling health. Thus, any stressing
condition during germination can work as an elicitor, i.e., it may stimulate secondary metabolisms
and increase the phytochemical content of sprouts.

Elicitation in sprouts has been recently reviewed by Liu et al. [81]. This section is merely intended
at mentioning some underexplored elicitation strategies (Table 4) while prospecting new alternatives.

Among abiotic elicitors, salts applied during sprouting represent a generally available and cheap
technique to induce plant defense. Recently, a large body of literature has become available about
NaCl and Se elicitation in sprouting [81,82], but even for these salts there are still questions that need
to be addressed. First, the effect of salts may change with the genotype tolerance; thus, evidences
in the literature for any species, often obtained with one genotype or a few, should be validated
over a greater number of genotypes. Moreover, when studying the effect of an elicitor for sprouting
purposes, a much larger variety of doses should be included. In this regard, while a higher level of
stress increases the production of phytochemicals, on the other hand it delays and depresses sprout
growth. Thus, the elicitor application should be finely tuned to find out the dose that can maximize
the “phytochemical yield” as defined by Falcinelli et al. [65], i.e., the product between the sprout
biomass and its phytochemical concentration.

Priming of seeds with salts (halo priming) has been little explored with regard to sprouting.
Evidence by Hassini et al. [83,84] on cabbage and broccoli seeds primed with KCl encourage this option.
More in general, not only halo priming, but any applicable priming techniques appear to be a compelling
area of investigation [85,86].

Se biofortification of sprouts and microgreens represent an intriguing research subject, because it
combines the increase of this health promoting micronutrient in sprout tissue with its elicitation effect
on secondary metabolites, resulting in an overall improvement of sprout nutritional value. However,
this subject is not further discussed here, since it has been thoroughly reviewed in a recent work by
D’Amato et al. [82].

Another research subject still unexplored is the effect on the nutritional value of sprouts following
the application of elicitation agents to the mother plant. For example, a few studies dealt with
the effects of Se in seeds obtained by mother plants subject to Se fertilization [87,88]. In this regard,
a challenging matter is represented by possible epigenetic effects that might impact the nutritional
value of the corresponding sprouts. Here, a key concept is that different environmental conditions
in plants might enhance or suppress the expression of genes associated with phenotypic traits that,
eventually, are transferred to the next generations [89]. For example, Marconi et al. [90] found that
salinity applied to rapeseed induced genome-wide changes in DNA methylation status, and that
these changes accounted for 16.8% of the total site-specific methylation differences in the rapeseed
genome, as detected by methylation-sensitive amplified polymorphism (MSAP) analysis. Preliminary
results from a follow-up experiment on the rapeseed sprouts obtained from seeds harvested from salt
stressed plants have demonstrated that these sprouts have greater phenolic content and antioxidant
activity (Benincasa, unpublished results). It should be pointed out that studies on elicitors would most
likely be facilitated by a multidisciplinary approach including investigations on the physiology of
seed germination and related genetic implications. These studies, altogether, could lead to breeding
protocols towards a higher phytochemical content with beneficial implications on plant adaptation
and, more downstream, human health.
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Elicitation should also be investigated in relation to hormesis [91], i.e., the stimulatory effect
caused by a toxic compound when applied at very low doses. The beneficial response to hormetins
(i.e., the factors inducing hormesis) likely involves an increase of phytochemical content, which has
not yet investigated in detail.

Among physical elicitation factors, several have been recently proposed (Table 4). For example,
wounding injuries to cotyledons were applied alone or combined with other treatments in soybean
sprouts by Aisyah et al. [92]. Ultrasonication has been applied in the sprouting of legumes [93–95],
while audible sounds (in the range 20–20,000 Hz) were used in the sprouting of mung bean [96].

Nanomaterials (1–100 nm) represent another intriguing subject for sprouting. The effect of
nano-silver (NAg) was studied in radish sprouts [97], and that of nano-selenium (NSe) in broccoli
sprouts [98]. High levels (600 and 800 ppm) of CO2, previously shown to induce plant defenses [99],
was applied in the sprouting of pea with positive effects on nutritional traits [100]. Magnetic fields were
applied to mung bean sprouts by Chen et al. [101] and electromagnetic waves, obtained by simply using
a microwave oven, were applied to buckwheat seeds by Wang et al. [102]. Besides their application
as elicitors, microwaves, as well as gamma and UV radiation, may also be utilized to reduce seed
contamination and related sanitary problems [93,103]. The effect of the light spectrum, light intensity,
and photoperiod light in the production of micro-scale has been widely studied, as recently reviewed by
Alrifai et al. [104]. However, the effect of light spectra on sprouts has been found to be genotype-specific
and should be further investigated, considering that the study primarily dealt with red and blue light,
whereas the effect of intermediate wavelengths, especially on phytochemical content, has not yet
clarified [105,106]. Finally, based on the futuristic view of a human presence in the Space, sprouts
and microgreens can be considered as ideal candidates for astronauts’ diet [107]. To this purpose,
Nakajima et al. [108] explored the effect of microgravity by applying clinorotation to the sprouting of
mung bean.

When dealing with literature about elicitation in sprouts, a recurrent issue is that data from
separate studies are often not comparable, due to differences in the process of sprout development.
Moreover, growth stage is often described based on the number of days from the start of incubation,
but this does not help in case of genotypes or germination conditions implying different germination
times and growth rates. For example, in works on rapeseed and wheat sprouted under salinity,
the authors compared treatments in sprouts displaying the same growth stage, therefore sampling
after different number of days from the start of incubation, given that treatments with high salinity
levels had caused delayed germination and growth [65,66,109].

With regard to biotic factors, fungal inoculation represents a new approach in sprouting.
There are several work on this topic [92,110–115], showing evidence about the increase of
phytochemical content [112,116]; however, little is known about the metabolic pathways impacted by
fungal–plant interactions.

The application of yeasts on sprouts is very intriguing, in light of probiotic benefits that may occur
together with the elicitation effects [117–119].

The effect of bacteria inclusion in the substrate or the seeds was studied for buckwheat sprouts
and microgreens by Briatia et al. [120], while Eissa et al. [100] reported the effect of Azotobacter
chroococcum, Bacillus megaterium, Pseudomonas fluorescens, and their combination on growth performances
and nutritional traits of pea sprouts.

Based on the effects shown by fungi and bacteria, one may also wonder whether virus infections
play a role in determining the phytochemical content of sprouts. However, to our knowledge,
no scientific evidence has ever been shown in this regard.
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Another form of biotic elicitation method concerns the application of biostimulants. These include
(1) humic and fulvic acids, (2) animal and vegetal protein hydrolysates, (3) macroalgae seaweeds
extracts, (4) silicon, (5) microorganisms (arbuscular mycorrhizal fungi; N-fixing bacteria like Rhizobium,
Azotobacter, and Azospirillum) [121]. By definition, biostimulants are mainly employed to enhance plant
growth, abiotic stress tolerance and/or quality traits of crops [122], rather than improving the nutritional
value of plants for humans. Nonetheless, Witkowicz et al. [123] found that the application of different
biostimulants had a significant effect on the nutritional traits of buckwheat sprouts. This influential
study, as a result, uncovers new research opportunities, considering the number of key parameters
involved (e.g., type, amount, and combination of biostimulants to any plant species) and, within each
parameter, the variety of available options.

Elicitation as a consequence of insect attacks is another compelling, and unexplored, area of research.
It is well known that plants respond to insects by releasing a wide range of chemical compounds,
including volatile entities that convey molecular signals to alert neighboring plants [18,124]. Such volatile
chemicals cause phenotypic changes and, therefore, carry a potential role as elicitation factors.

It is worth noting that elicitation can be effectively achieved by implementing combinatorial
strategies, as shown by Benincasa et al. [87], when high levels of endogenous Se combined with salinity
stress were found to synergistically increase the phytochemical content of maize sprouts. However,
to date, elicitors have been generally investigated alone and not in combination, thereby precluding
observations about possible additive and synergistic effects that could result from versatile and flexible
application of variable conditions and parameters (e.g., type, dose, and application method of abiotic
and/or biotic factors).
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Table 4. Biotic and abiotic elicitation strategies to raise phytochemical content and corresponding bioactivities in micro-scale vegetables.

Elicitor Application Plant Days after Sowing (DAS) Phytochemicals/Bioactivities Reference

Abiotic elicitation–Priming

Seeds soaked with 30 mL of 50 mM KCl Brassica oleracea var.
capitata–cabbage 10 ↓total and single GLS [83]

Seeds soaked with 50 mM KCl Brassica oleracea var. italica–broccoli 10 ≈total and single GLS and AA;
↑ flavonoids and TP [84]

100% imbibition and aeration of the seeds for 24 h,
with MeJA and JA (250 µM) and MET (10 mM)

Brassica oleracea var. italica–broccoli
Raphanus sativus–radish 8 ↑ total GLS with MeJA and JA priming different

effect on single GLS [85]

Physical factors

Wounding Soaked soybeans were wounded prior to germination
stage by cutting the cotyledon individually Glycine max–soybean 10 ↑glyceollin content (i.e., isoflavones) [92]

Ultrasound Seeds treated with ultrasound at 360 and 180 W for 30,
40, and 60 min in the ultrasonic bath Phaseolus vulgaris–common bean 1–4 ↑ PAs, flavonoids, anthocyanins, and AA [93]

Seeds treated with ultrasound at 100, 200, and 300 W
for 30 min in the ultrasonic bath Glycine max–soybean 5 ↑daidzein and genistein (i.e., isoflavones);

↓daidzein and genistein (i.e., isoflavones) [95]

Seeds subjected to ultrasound at three frequencies (28,
45 and 100 kHz) for 15, 20, and 30 min. Arachis hypogaea–peanut 1, 2, 3, 4, 5 Generally, ↑ resveratrol content (i.e., stilbenes) [94]

Nanoparticles

Seeds sprinkled every day with NSePs (0, 10, 50
and 100 ppm); NSePs prepared by chemical reduction
of NaHSeO3 solution with freshly prepared 0.25%
glucose solution (4:1)

Brassica oleracea–broccoli 9
≈ carotenes;
≈ phenolics and AA;
different effects on single GLS

[98]

Magnetic field Seeds exposed to 600 mT magnetic field pretreatment
(Model: 2G of 755R magnetometer system) Vigna radiata–mung bean 6 ↑anthocyanins [101]

Microwave Seeds exposed to microwave irradiation at 200, 400,
600, and 800 W for 10 or 30 s

Fagopyrum esculentum–tartary
buckwheat 3, 5, 7 ↑total flavonoids and AA at 600 W [102]

Clinorotation

Seeds treated with slow-rotating clinostat (CL) with a
servo motor and an acrylic chamber. An amplifier
controlled the rotation rate, and the chamber was
horizontally rotated at 2 rpm

Vigna radiata–mung bean 2, 3, 4 ≈ carotenoids, except anthocyanins (↓) [108]

Fungi Rhizopus oryzae spore suspension (0.2 mL/g of beans)
added to soybeans during incubation Glycine max–soybean 10

↑ total pterocarpans, coumestans (i.e.,
isoflavonoids);
≈ isoflavones

[92]

Rhizopus oryzae, Fusarium graminearum CBS 104.09
and Fusarium oxysporum CBS 186.53-fungal spore
suspension, applied to 2-day-old seedlings

Sinapis alba–yellow mustard;
Brassica napus–rapeseed;
Brassica juncea–Chinese mustard

7 ≈ total GLS except with Fusarium oxysporum (↓)
in yellow and Chinese mustard [114]

Spore suspension of Rhizopus oryzae (LU581)
and Aspergillus oryzae var. effusus (LU009) (0.2 mL/g
peanuts) added after soaking or after 2 days of
germination

Arachis hypogaea–peanut 5 or 7 Effect on stilbenoids depending on the fungus
and the time of application [110]
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Table 4. Cont.

Elicitor Application Plant Days after Sowing (DAS) Phytochemicals/Bioactivities Reference

Biotic elicitation

Rhizopus oryzae (LU 581) and Rhizopus oligosporus
(approximately 1.5 × 107 CFU/g seed) added to
2-day-old seedlings

Vigna radiata–mung bean;
Phaseolus vulgaris–common bean;
Glycine max–soybean;
Lupinus albus–white lupine;
Lupinus angustifolius–blue lupine;
Lupinus luteus–yellow lupine;
Arachis hypogaea–peanut;

8
↑ TP except in mung bean and blue lupin;
different effects on phenolic subclasses (i.e.,
flavonoids, phenolic acids, stilbenoids, etc.)

[113]

Spore suspension of Rhizopus oryzae (0.2 mL/g beans)
added to 2-day-old seedlings

Phaseolus vulgaris–common bean;
Phaseolus coccineus–runner bean;
Lablab purpureus–Lablab bean;
Vigna angularis–adzuki bean;
Vigna unguiculata–cowpea;
Vigna radiata–mung bean;
Psophocarpus tetragonolobus–Winged
bean

7
↑or ≈all isoflavonoids (i.e., coumestans,
isoflavans, pterocarpans, isoflavones,
isoflavanones)

[111]

Spore suspension of Rhizopus oryzae (0.2 mL/g beans)
added to 2-day-old seedlings

Lupinus albus–white lupine;
Lupinus angustifolius–blue lupine;
Lupinus luteus–yellow lupine

7 ≈ or ↑genistein derivatives [112]

4-day-old seedlings inoculated by soaking in spore
solution of Rhizopus oryzae for 50 min Triticum aestivum–soft wheat 7

↑ variety of secondary metabolites mainly
constituted by benzoxazin-3-one glycosides
and benzoxazolinones

[115]

Yeasts
Seeds soaked in distilled water or Lactobacillus
plantarum 299v water suspension (1 × 108 CFU
per 1 g of seeds (8.00 log10 CFU/g) for 4, 6, and 8 h

Lens culinaris–lentil;
Glycine max–soybean;
Vigna angularis–adzuki bean;
Vigna radiata–mung bean

4 ≈ or ↓ phenolics and condensed tannins [117]

Seeds soaked in water or Lactobacillus plantarum 299v
water suspension (8.00 log10 CFU/g of seeds)

Lens culinaris–lentil;
Glycine max–soybean;
Vigna angularis–adzuki bean;
Vigna radiata–mung bean

4
≈ ability to quench ABTS•+ and •OH; different
effects on the ability to quench O2

•_;different
effects on total and single phenolics

[119]

Seeds soaked in distilled water or probiotic
water suspension (1 × 106 CFU per 1 g of seeds) of
Saccharomyces cerevisiae var. boulardii seedlings
sprayed daily with 5 mL of Milli-Q
water or 5 mL of probiotic water suspension on 1st
day of cultivation (1 × 106 CFU per 1 g of seeds)

Lens culinaris–lentil;
Vigna angularis–adzuki bean 4 ≈ phenolics and antioxidant activities [118]

Seeds soaked in distilled water or a Lactobacillus
plantarum 299 V water suspension (1 × 108 CFU per 1
g of seeds) for 4 h

Glycine max–soybean 4
↓ total isoflavones in fresh sprouts;
different effects on single isoflavones;
↑ antioxidant activity

[125]

Sprouts treated with 50, 100, 200, 400 and 800 mg/L of
YPS (polysaccharide fraction of YE, Y4250) on days 0,
3, 6, and 9

Fagopyrum esculentum–tartary
buckwheat 0, 3, 6, 9 ↑ flavonoids in 3-,6-, and 9-day -old sprouts [126]
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Table 4. Cont.

Elicitor Application Plant Days after Sowing (DAS) Phytochemicals/Bioactivities Reference

Biotic elicitation

Bacteria

Seeds were surface-sterilized with sodium
hypochlorite and rinsed with distilled water. Then,
seeds were soaked in liquid suspension of endophytic
bacterium, (ST-B2 strain, isolated from stem of
buckwheat) at 0, 10% and 20% concentrations for 4 h
at room temperature

Fagopyrum esculentum–buckwheat 10 Not analyzed [120]

Bacillus megaterium 108 CFU/mL added 10 days before
the cultivation of seeds, while Azotobacter chroococcum
and Pseudomonas fluorescens 108–109 CFU/mL were
added after pea sprouts emergence and after the 1st
cut. Eight sub-treatments from different combinations
of microbial inoculants were carried out

Pisum sativum–pea 14 (1st cut) and 12 (2nd cut) Not analyzed [100]

Seeds soaked for 30 min in 1:40 solutions of PGPs
named Serenade ASO, containing Bacillus subtilis QST
713 at a concentration of 13.96 g/L (1.34%)

Fagopyrum esculentum–buckwheat 14 Not analyzed [123]

Algae

Seeds soaked for 30 min in PGPs: 1:100 solution of
Kelpak SL (Ecklonia maxima extract), and 2 g in 500 mL
of Polyversum WP (106 Pythium oligandrum oospores
per 1 g)

Fagopyrum esculentum–buckwheat 14 Not analyzed [123]

Other biostimulants

Seeds soaked for 30 min in 1:500 solution of PGPs
named Asahi SL (mixture of
sodium p-nitrophenolate, sodium o-nitrophenolate,
sodium
5-nitroguaiacolate)

Fagopyrum esculentum–buckwheat 14 Not analyzed [123]

AA = antioxidant activity; CBS = CentraalBureau voor Schimmelcultures (Fungal Biodiversity Centre); CFU = colony-forming unit; GLS = glucosinolates; JA = jasmonic acid; MeJA = ethyl
jasmonate; MET = DL-methionine; PAs = phenolic acids; PGPs = plant growth promoters; TP = total phenolics; YE = yeast extract; YPS = Yu-Ping-Feng polysaccharides.
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4. Sanitization and Processing

Sprouts and microgreens are mainly used for homemade preparations and fresh food markets.
Suitable handling practices, techniques for domestic and industrial food storage, and safety
procedures are therefore required to ensure shelf life and food quality, and prevent microbiological
contaminations that could pose risks to human health. In this regard, research must consider as well
optimized germination protocols while preserving the nutritional value of sprouts and microgreens.
This may include, for example, breeding programs aimed at genetic improvement and valorization
of autochthonous cultivars and/or wild species to select genotypes associated with improved
post-harvest storage.

Sprouts and microgreens are subject to different processing avenues, such as freezing, drying,
waving, microwaving, frying, toasting, boiling, or centrifugation (for sprout juice production), to arrive
at final applications where, ideally, phytochemical content, and overall nutritional value are fully
retained. This is particularly important when sprouts represent the source of supplements to improve
food quality, as in sprouted bread [127], other bakery products, and juices.

Research in this field would therefore benefit most from interdisciplinary collaborations between
geneticists, microbiologists, and food technologists.

4.1. Microbiological Safety of Sprouts and Microgreens

When, in several instances, food-borne illness outbreaks have been linked to sprouts’ consumption,
at the same time no reported outbreaks or illnesses were associated to microgreens. This is not
very surprising if we consider that, from a microecological standpoint, production of sprouts,
and microgreens differ in a number of operating steps: microgreens undergo a brief seed-soaking
period, are generally grown on substrate, and are consumed, after cutting, without the root system.
On the other hand, sprouts are eaten raw together with their roots. Thus, many food agencies classify
sprouts as “high-risk” products, while microgreens are considered much safer, although some (low)
risks can arise from fresh herbs (basil, thyme) or baby-leaf vegetables (baby spinach) [128–131].

The most common agents causing outbreaks in relation to sprouts consumption include
Salmonella, Escherichia coli O157:H7, and Shiga-toxin-producing E. coli [128,129,131,132]. Instead,
other bacterial pathogens (e.g., Bacillus cereus, Staphylococcus aureus, Listeria monocytogenes, and Yersinia
enterocolitica) have rarely been reported [131,133]. Indeed, Salmonella and E. coli O157:H7, unlike Listeria
monocytogenes, can internalize into seedlings, thus, making ineffective simple washing treatments
or topical disinfectants [129,134]. Consequently, pre-harvest interventions could effectively enhance
the microbiological safety of sprouts [129], even in the absence of a validated Critical Control Point
(CCP) intended to at least reduce levels of the fecal pathogen to acceptable standards [131,133,135].

Typically, contaminations occur first in the seeds, and then spread to sprouts. Microbiological
threats can be minimized through Good Agricultural Practices (GAP) as well as Good Handling
Practices (GHP) along seed production stages [136]. In particular, soil amendments (i.e., compost or
manure) and irrigation water require adequate controls, especially for species not usually employed in
the whole sprouts/microgreens production chain (e.g., alfalfa and clover seeds not specifically produced
for sprouts cultivation) and, more particularly, those newly introduced or potentially considered
for consumers and the fresh market. For example, Liu et al. [137] recently showed that S. enterica
and E. coli O157:H7 strains artificially inoculated into alfalfa, fenugreek, lettuce, and tomato flowers,
had subsequently moved into the seeds (produced by contaminated flowers), and then to sprouts
and seedlings, thus, showing the ability of Salmonella to survive and spread.

Efforts regarding sprout safety have mainly been focused on pathogen detection, as well as seed
testing (including seed traceability) and disinfection. In this regard, a large body of literature has been
produced to show effective seed disinfection procedures and, at the same time, specific steps aimed at
ensuring high germination percentage and rate together with optimal yields and quality of sprouts.
Disinfection methods fall into three main categories, i.e., chemical, physical, and biological, which
have extensively been reviewed by Ding et al. [128], and by Warriner and Smal [129].
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The application of 20,000-ppm calcium hypochlorite is likely the most commonly used chemical
treatment. However, although recommended by the Food and Drug Administration (FDA), this method
carries distinct drawbacks concerning worker safety and environmental impact, difficulty to make
organic food claims, disinfection efficacy that may vary in relation to the physical properties of the seed
surface (e.g., smooth vs scarified) [128,130], and impact on product quality [138]. Consequently,
there is a need for alternative methods that optimally combine disinfection efficacy with safety
and environment-friendly features. Table 5 summarizes the studies that have been performed in
this field over the last 5 years (2016 onward) for applications in sprouts production. Notably, it should
be clarified that, to date, seed disinfection is primarily based on physical methods, and that combination
of physical, chemical, and biological treatments have also been shown to be particularly valuable in
light of observed synergistic effects [128].

However, microbial control studies have generally been centered on seeds of a relatively small
number of species, thereby leaving ample room for additional research on those of less common
varieties. In this context, another research gap to fill is about the development of methods that can
routinely be performed in household preparations, when seed disinfection is often neglected [139].

GAP should be applied during sprouting (e.g., germination and irrigation water tests [140])
whereas GHP should be implemented during harvest and post-harvest procedures [141]. Moreover,
post-harvest microbiological control by washing treatments could damage vegetable tissues, thereby
decreasing sprouts’ shelf life. Physical disinfection methods, including irradiation, have proven to
be effective post-harvest practices in the preparation of microbiologically safe sprouts [129]. Gamma
irradiation (1–2.5 kGy) in combination with ultrasonication (4–10 min; 40–50 ◦C), blanching (50–70 ◦C
for 4–10 min using potable water) and ascorbate dip (0.25%, 5% and 1% up to 10 min at 4 ± 1 ◦C)
ensured microbial safety in mung bean, chickpea, and alfalfa sprouts together with an extended shelf
life of the final products [103].

Similar concepts, rationales, and methods apply to microgreen productions although an additional
CCP, as for raw products in general, should be indicated (see also Turner et al. [142]). Indeed, harvesting
by cutting may increase susceptibility to contamination, since the cut site may be a breach from where
pathogens can enter the system [130], as already reported in lettuce [143]. Screening for pathogens
in sprouting seedbeds should also be performed [129], since soil and soil substitutes could provide a
direct nutrient source as well as a protective surface from mechanical damage, thus promoting their
proliferation or survival [144–146]. In this regard, Işık et al. [144] have studied the possible transfer of
non-pathogenic and pathogenic E. coli from contaminated growth media to the edible part of radish
and lettuce microgreens. Moreover, hydroponic systems, which are preferably chosen by modern
commercial facilities, are not safer than other growing systems [142]. Unlike sprouts, microgreens
sanitization processes before and after harvest require additional research, particularly to address
the correlation between morphological characteristics and efficacy of sanitizers.

Lastly, in terms of pathogen detection, efforts are necessary to develop rapid and cost-effective
screening tests that, ideally, are applicable to homemade productions (e.g., biosensors capable of
detecting toxic molecules or pathogens in fresh products).

4.2. Post-Harvest Shelf Life and Processing

Sprouts and microgreens consist of young tissues characterized by higher respiration rates than
their mature counterparts, leading to a more rapid post-harvest deterioration of quality, even at relatively
low temperatures. Several practices can contribute to the extension of sprouts and microgreens shelf
life, including pre-harvest and pre-storage calcium applications [147,148] to pre-packaging washing
and dewatering processes [2]. Microgreens could also be commercialized directly in containers
and harvested by the end user, bypassing post-harvest handling, and ensuring greater freshness
quality [2,6]. Genotype, growing period, cultivation systems and time for harvesting could affect
post-harvest quality of microgreens, since these factors significantly influence the accumulation of
non-enzymatic antioxidant compounds (i.e., carotenoids, phenols and ascorbic acid), as already reported
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for other ready-to-eat vegetables [149]. In sprouts, however, knowledge about polyphenol oxidases
(PPOs) remain elusive except for some data concerning PPO inhibition mechanisms. In this regard,
Sikora et al. [150] found two PPO isoenzymes in lentil sprouts, and over 40% total PPO activity
inhibited by 2 mM ascorbic acid. Notably, ascorbic acid resulted effective also in terms of overall
acceptability characteristics (i.e., color and appearance, taste, aroma, texture) in 7-day old sunflower
microgreens [151].

In any case, temperature (firstly), atmospheric composition, packaging technologies, initial
microbial load, and light exposure during post-harvest are among the most critical factors underlying
shelf life.

A 0 ◦C temperature can be considered the optimal storage temperature for most of leafy
and fresh-cut vegetables, in that it causes a reduction of both plant and microorganisms’ metabolic
activities [7]. However, information on specie-specific chilling sensitivity and respiration rates, together
with the effects of cold storage on nutrient digestibility, bio accessibility of pro-health constituents
and organoleptic quality of sprouts and microgreens, await further investigations in order to improve
post-harvest methodologies. In 4-day-old soybean sprouts, the contents of isoflavones after a 7-day
cold storage (4 ◦C) were generally equal or higher than in fresh sprouts [125], while 4 ◦C storage for
more than 7 days revealed a significant decrease of glucosinolates in Brassica oleracea sprouts [152].
Plant species seem to play a pivotal role also in terms of dynamics of sprouts’ microbiome during cold
storage [153], but further investigations are still needed. Recently, high hydrostatic pressure (HHP)
was effectively tested under cold storage (4 ◦C) on mung bean sprouts, showing positive effects on
amino acid concentrations [154]. Moreover, Westphal et al. [155] have demonstrated that high-pressure
processing (HPP) had no negative effects on the glucosinolate-myrosinase system in broccoli sprouts.

Packaging proved to be significant for the shelf life of sprouts and microgreens [156]. In general,
higher products’ post-harvest performance is supported by a relatively high O2 atmosphere equilibrated
under modified atmosphere packaging (MAP) with high oxygen transmission rate films [2,157].
To this purpose, Wilson et al. [158] reviewed innovative MAP technologies in fresh and freshly-cut
vegetables including differentially permeable films with antimicrobial properties, elevated levels of
non-traditional gases (i.e., argon, xenon), and smart packaging coupled to sensor technologies. Further
efforts should be made to test all these packaging possibilities in sprouts and microgreens production
chains. Studies should also address the effects of light exposure during storage on post-harvest decay
and product’s quality, considering that, especially for microgreens, available data appear somewhat
inconclusive [142].

Beside fresh consumption, sprouts and microgreens are suitable for creating novel food products,
such as juices [159], fermented drinks (i.e., juices [160]), or foods such as breakfast or snack foods,
seasonings (e.g., vinegar or sauce), and weaning foods [161], probiotic beverage or foods [162],
yogurt [163], powder enriched flours [164,165], and bakery products [127,166–168], and, more recently,
tea [169], as well as food matrices [170]. Furthermore, the use in flour mixture of powder from sprouted
wheat pomace, as by-product from juice production, was recently evaluated and found to increase of
nutritional value in relation to wheat flour [171]. Processing treatments play a determinant role in
maintaining biochemical quality of raw material, depending on the specific kind of processing as well as
its application conditions, plant genotype, ontogenetic stage, overall plant composition, and chemical
structure of specific metabolites. Conditions and methods of sprouts drying should be chosen based on
whether quality can be preserved or enhanced. For example, in broccoli sprouts the highest efficiency
of grinding as well as the higher total phenolic content and antioxidant activity were obtained from
freeze-dried (frozen and lyophilized at 40 ◦C; 52 Pa) materials, although air-dried at 40 ◦C (air flowing,
0.5 ms−1) could be also recommended [172]. In alfalfa and flax sprouts, freeze-drying minimized
the chemical alteration of the product, resulting in a better preservation of antioxidants and an increase
in phytosterol availability [173]. Conversely, air drying at 70 and 80 ◦C for 24 h, as opposed to
freeze drying (below −50 ◦C and 0.3 mbar vacuum pressure, 36 h), increased total phenolic content
and antioxidant capacity of mung bean sprouts [174]. Pan-roasting of cereal (barley, wheat) sprouts was
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shown a promising heat processing for tea production, based on higher total phenolics and flavonoid
contents and antioxidative effects in-vitro compared to a steaming process [169]. With respect to plant
varieties, the phenolic content measured in 4-days-old sprouts of Chenopodium quinoa appear to be
thermostable in the range 30–60 ◦C in the white variety (from Chile), whereas it significantly decreased
after drying at 60 ◦C in the red variety (from Bolivia) [175]. The impact of bread-making on secondary
plant metabolites was evaluated in dough enriched with 7-days-old pak choi and kale microgreens [165].
Authors confirmed the effects of thermal processing in reducing the concentrations of secondary
plant metabolites; however, after bread-making it was observed the formation of structurally different
secondary plant metabolites (e.g., pheophytin) and the increase in hydroxycinnamic acid derivatives
(in kale), which may also confer health-promoting effects. In the case of legume-enriched breads,
the bread-making process led to a slight reduction in kaempferol glycosides and chrysoeriol glycosides
in bread supplemented with pea and lupin microgreens, respectively [176].

For juice production, thermal processing continues to be the principal pasteurization method
given its historical use, cost, and predictability [177]. However, recent nonthermal pasteurization
methods such as HPP and ultraviolet-C (UV-C) have been applied for juice pasteurization [178,179].
For wheatgrass juice, Ali et al. [180] indicated HHP as the preferred alternative pasteurization process
due to its negligible impact on antioxidants and the increase in chlorophyll content.
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Table 5. Overview of recent studies (dated 2016 onward) about disinfection methods applied to seeds employed for sprout production.

Disinfection Method Disinfection Conditions Plant Species Pathogen/s Treatment Effectiveness Effects on Seed
Germination Effects on Sprouts Yield/Quality References

Chemical

Bleach 1 mL NaClO (4% v/v), 15 min Fenugreek Shiga toxin-producing
Escherichia coli O104:H4

On seeds: no detectable
colonies Not affected Not affected [181]

Acidified (organic acids)
essential oil nanoemulsions

50 mM acetic acid
50 mM levulinic acid carvacrol nanoemulsion,
4000/8000 ppm, 30 min

Mung bean,
broccoli

Salmonella enterica
Enteritidis cocktail

On seeds: 2–4 log CFU/g
reduction–specie dependent;
on sprouts: no detectable
pathogens (<1.5 log CFU/g)

Not affected Not affected [182]

Chlorinated water
Treatment 1: seeds soaking, 100 ppm, 60 min;
treatment 2: sprouts washing, 4 times/5 min
each, 100 ppm

Mung bean

Shiga toxin-producing
Escherichia coli
Salmonella spp.
Listeria monocytogenes

On seeds: 3.0 log CFU/g
reduction;
on sprouts: 7.0 log CFU/g
reduction

– – [183]

Chlorine dioxide (ClO2) 3 ppm ClO2, 10 min Alfalfa Listeria monocytogenes On seeds: not effective;
on sprouts: not effective – – [184]

Chlorophyllin (Chl) 1.5 × 10−5 M Chl, incubation time 1 h, 405 nm,
radiant exposure: 18 J cm−2, 1 h

Wheat Escherichia coli On seeds: ∼1.5 log CFU/g. – – [185]

Peracetic acid (PAA)-based
solution

PAA solution (5% v/v) diluted in EtOH (20%
v/v) 1:9

Flax,
chia

Salmonella spp.
Enterococcus faecium

On seeds: 4.0–5.0 log CFU/g
reduction–specie dependent Not affected – [186]

Saline organic acid solutions Tempering solutions: lactic acid (5% v/v)
and NaCl (~26% w/v)

Soft wheat,
durum wheat

Salmonella enterica
Escherichia coli O157:H7
Shiga toxin-producing
Escherichia coli

On seeds: 1.6–2.6 log CFU/g –
specie and pathogen dependent – – [187]

Slightly acidic/acidic
electrolyzed water
(SAEW/AEW)

Available chorine concentrations (ACC)
150 mg/L, 24 h, 1.5 w/v Brown rice Bacillus cereus On sprouts: 2.3 log CFU/g

reduction ↑↓ pH dependent ↑↓ growth–pH dependent [188]

SAEW ACC 10.3-91.7 mg/L
sprouts washing (1:3 w/v), 5 min Buckwheat Escherichia coli O78

Listeria monocytogenes
1.1–2.7 log CFU/g
reduction–pathogen dependent Not affected ↓ sprout length–ACC dependent [189]

SAEW ACC 70.0 mg/L
seeds washing (1:5 w/v), 3 times Pea Natural population of total

bacteria ~ 2.0 log CFU/g reduction. –
Yield not affected;
↑ soluble sugars;
↓ nitrite

[190]

SAEW ACC 25.0-45.0 mg/L
seeds soaking (1:5 w/v), 0.5 h Alfalfa Natural Enterobacteriaceae

On seeds: ~ 2.5 log CFU/g
reduction;
on sprouts: 0.7–1.8 log CFU/g
reduction

↑ or not affected –
pH dependent Not affected [191]

Zinc diacetate Concentration 400 mg/L
seeds soaking 0.66 h, 18 ◦C Durum wheat Natural bacteria population On sprouts: 2.0 log CFU/g

reduction Slightly decreased ↑ ash, lipids, proteins, zinc, vitamin
C, total phenol content [192]

Physical

Atmospheric pressure plasma
discharge

Atmospheric
pressure volumetric dielectric barrier
discharge (DBD), 10 kHz, 8 KV, 500 ns pulses,
5/10 min

Alfalfa,
onion,
radish,
cress

Escherichia coli On seeds: 1.4–3.4 log CFU/g
reduction–specie dependent

↑↓ depending on
temperature, time,
pulse frequency or
voltage

– [193]
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Table 5. Cont.

Disinfection Method Disinfection Conditions Plant Species Pathogen/s Treatment Effectiveness Effects on Seed
Germination Effects on Sprouts Yield/Quality References

Gamma ray irradiation 7 kGy, 0.073 kGy/min, 4–5 ◦C Mung bean, clover,
fenugreek Escherichia coli On seeds: 5.0 log CFU/g

reduction–specie dependent
↓ species
dependent ↓ yield [194]

Electron-beam irradiation 12 kGy, 140 kV, 87 mm/s (12 kGy) and 250
mm/s (4 kGy)

Mung bean, clover,
fenugreek Escherichia coli On seeds: not completely

inactivated–specie dependent Not affected Not affected [193]

Gamma ray irradiation 7 kGy, 0.073 kGy/min, 4–5 ◦C Mung bean, clover,
fenugreek Escherichia coli On seeds: 5.0 log CFU/g

reduction–specie dependent
↓ species
dependent ↓ yield [194]

Chlorine + drying + dry heat
ClO2-200 mg/mL, 5 min;
45 ◦C, 23% RH, 24 h;
80 ◦C, 23% RH, 48 h

Pack choi Salmonella enterica
Escherichia coli O157:H7

On seeds: >3.8 log CFU/g
reduction–pathogen dependent Not affected – [195]

Cold atmospheric pressure
plasma 400 W, 5 min Lentil

Escherichia coli
Salmonella spp.
Listeria monocytogenes

On seeds: ~5.0 log CFU/g
reduction–pathogen dependent ↓ after 180 s – [196]

High-intensity light pulses 19.35 J/cm2, 15s Chia Salmonella Typhimurium On seeds: 4.0 log CFU/g
reduction. – – [197]

Intense pulsed light 24.50 and 20.81 J/cm2 – depending on plant
species

Radish,
pak choi

Natural total aerobic
mesophilic bacteria

On seeds: 1.4–1.8 log CFU/g
reduction–specie dependent

Not affected or
slightly decreased Sprout length not affected [198]

Nonthermal plasma Corona discharge plasma jet, 3 min Radish

Aerobic bacteria
Bacillus cereus
Escherichia coli
Salmonella spp.

On seeds: 1.2–2.1 log CFU/g
reduction–pathogen
dependent;on sprouts: >2.0 log
CFU/g reduction–pathogen
dependent

↑↓ treatment time
dependent

↓↑ yield–treatment time
(min)dependent;
↓ slightly brightness and redness;
not affected reducing sugars, total
phenolics, radical
scavenging activity

[199]

Nonthermal plasma Corona discharge plasma jet, 3 min Rapeseed

Aerobic bacteria
Bacillus cereus
Escherichia coli
Salmonella spp.

On seeds: 1.2–2.2 log CFU/g
reduction–pathogen dependent;
on sprouts: ~2.0 log CFU/g
reduction–pathogen dependent

↑↓ treatment time
dependent

↓↑ yield – treatment time dependent;
not affected reducing sugars, total
phenolics, radical
scavenging activity;
↓ slightly “appearance”, “flavor”,
“taste”, “overall
acceptance”–treatment time
dependent

[200]

Nonthermal plasma Corona discharge plasma jet, 3 min Broccoli

Aerobic bacteria
Bacillus cereus
Escherichia coli
Salmonella spp.

On seeds: 1.2–2.3 log CFU/g
reduction–pathogen dependent;
on sprouts: ~2.0 log CFU/g
reduction–pathogen dependent

↑↓ treatment time
dependent

↓↑ yield – treatment time dependent;
not affected reducing sugars, total
phenolics, radical
scavenging activity;
↑ slightly “flavor”;
↓ slightly “appearance”, “color”,
“taste”, “overall acceptance”–
treatment time dependent

[201]

Nonthermal plasma Corona discharge plasma jet, 3 min Pak choi

Aerobic bacteria
Bacillus cereus
Escherichia coli
Salmonella spp.

On seeds: 1.3–2.1 log CFU/g
reduction–pathogen dependent;
on sprouts: ~2.0 log CFU/g
reduction–pathogen dependent

↑↓ treatment time
dependent

↓↑ yield – treatment time dependent;
not affected reducing sugars, total
phenolics, radical
scavenging activity;
↑ slightly “texture”;
↓ slightly “appearance”, “taste”,
“overall acceptance”–treatment time
dependent

[202]

Ozone water 2 ppm, 5 min Alfalfa Listeria monocytogenes On seeds: not effective;
on sprouts: not effective – – [184]
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Table 5. Cont.

Disinfection Method Disinfection Conditions Plant Species Pathogen/s Treatment Effectiveness Effects on Seed
Germination Effects on Sprouts Yield/Quality References

Plasma-treated water (PTW) 10 mL air-PTW Mung bean Natural population of total
bacteria

On sprouts: 5.2 log CFU/g
reduction ↑

↑ superoxide dismutase (SOD)
activity, indole acetic acid (IAA)
content;
↓malondialdehyde (MDA)
and abscisic acid (ABA) contents.

[203]

Ozone 2000 ppm, 4 h;
4000 ppm, 2 h Wheat Coliforms On seeds: >1.5 log CFU/g

reduction Not tested
Minimum effect on antioxidant
properties, lipid oxidation, moisture
content

[204]

Ozone 5 ppm, 20 min Alfalfa
Salmonella spp.
Shiga toxin-producing
Escherichia coli

On seeds: 2.1 log CFU/g
reduction;
on sprouts: up to 3.6 log CFU/g
reduction–pathogen dependent

Not affected Not affected yield and color [205]

Ultraviolet irradiation,
krypton-chloride excilamp 222-nm, 261 mJ/cm2 Alfalfa Salmonella Typhimurium

Escherichia coli O157:H7
On seeds: 2.8–3.0 log CFU/g
reduction–pathogen dependent

↓ slightly or not
affected – [206]

Chemical + physical

Dry heat + hydrogen peroxide 80 ◦C, 24 h;
H2O2 (30%) solution (2% v/v), 10 min Alfalfa Salmonella Typhimurium On seeds: 1.7–3.6 log CFU/g

reduction ↑ – [207]

Mild heat + hydrogen peroxide
+ acetic acid

60 ◦C, 20 min;
4% (30% w/w in H2O), 15 min;
0.2% (5% distilled white vinegar), 15 min

Mung bean
Escherichia coli O157:H7
Listeria monocytogenes
Salmonella enterica

On seeds: >4.0 log CFU/g
reduction–pathogen dependent;
on sprouts: not effective

Not affected – [208]

Mild heat + hydrogen peroxide
+ AcOH sanitizing solution

50 ◦C, 10 min;
2.0% H2O2 + 0.1% AcOH (Pure White
Vinegar), 10 min

Alfalfa,
radish

Escherichia coli O157:H7
Listeria monocytogenes
Salmonella enterica

On seeds: 4.6–5.0 log CFU/g
reduction – pathogen
dependent

Not affected Yield not affected [209]

Biological

Bacteriocins from Enterococcus
hirae (Eh9)

Eh9 - Lactic acid bacteria (LAB) cell-free
supernatant (CFS), 0.5 g in 30 mL, 10 min Butterhead lettuce Escherichia coli O157:H7 On seeds: 2.0 log CFU/g

reduction Not affected ↑ slightly weight and sprouts length [210]

Bacteriophages Salmonella phage, seed soaking, 2 h, room
temperature Alfalfa Salmonella enterica

On seeds: 2.5 log CFU/g
reduction;
on sprouting seeds: reduced
without significance

Not affected Not affected [211]

Bacteriophages

Escherichia coli O104:H4 phage cocktail,
(i) free phage application: 2 mL (2.5 × 1010

plaque-forming units (PFU)/mL), 1 h;
(ii) impregnated phage application: filter
paper in 7 cm diameter blotting with 6 mL
(2.5 × 1010 PFU/mL);
(iii) encapsulated phage application: seeds
placed onto the paper coated with
encapsulated phage in alginate beads.

Alfalfa Escherichia coli O104:H4

On seeds: below the limits of
detection (< 1.0 log CFU/g);
on sprouts: 1-log cycle
reduction

– – [212]

Non-antagonistic bacterium Erwinia persicina EUS78 strain, 108

colony-forming unit (CFU)/mL seed, dwelling
Alfalfa Salmonella enterica Not affected Not affected – [213]

Lactobacillus plantarum,
Pediococcus acidilactici and
Pediococcus pentosaceus mixture

7 log CFU/g, 20 ◦C, 5 d Alfalfa Listeria monocytogenes
Salmonella spp.

1.0–4.5 log CFU/g
reduction–depending on
pathogen and initial
concentration

Not affected Not affected [214]
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Table 5. Cont.

Disinfection Method Disinfection Conditions Plant Species Pathogen/s Treatment Effectiveness Effects on Seed
Germination Effects on Sprouts Yield/Quality References

Plant extracts

Benzyl isothiocyanate (BIT) 1.5–2.0% (v/v), 15 min, 22 ± 2 ◦C Alfalfa Salmonella enterica serotypes

On seeds: >1.5 and 0.7 log
CFU/g reduction–serovar
dependent;
on sprouts: 1.2–2.3 log CFU/g
reduction–serovar dependent

Not affected Not tested [215]

Grapefruit seed extract 0.05% aqueous solution Lettuce Natural population of total
bacteria Strong seed sterilization effects Not affected No effects on texture and color [216]

Allspice, thyme and rosemary
essential oils

Concentrations variable among species
and pathogens Alfalfa Salmonella Typhimurium

Listeria monocytogenes Strong seed sterilization effects Not affected No effects on sensory properties [217]

Savory, bay leaf and thyme
hydrosols 40 min

Wheat,
lentil,

mung bean

Salmonella Typhimurium
Staphylococcus aureus

Strong seed sterilization
effects–pathogen dependent Not affected – [218]
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5. Sprouts and Human Health: Rewards and Riddles

Numerous studies have been conducted to investigate the role of sprouts as functional foods or
nutraceuticals [219]. These two terms carry slightly different connotations depending on the jurisdiction
of sale, regulatory considerations, and marketing strategies, but largely overlap and are frequently
used interchangeably [220]. While functional foods generally imply health benefits in addition to
nutritional value, nutraceuticals tend to denote a food (or a part of it) with an impact on prevention
and/or treatment of a specific disease or disorder [221].

Sprouts are a good fit for nutrition research due to their wealth of phytochemical content combined
with reduced antinutrient levels, and the expression of distinct cohorts of secondary metabolites that are
subject to spatiotemporal modes of expression, which may largely diverge from patterns and profiles
displayed in seeds and mature plants [219,222,223]. Furthermore, research offers the prospect of
substantial rewards, given that products aimed at benefitting human health have progressively gained
traction in recent years in response to increasing information and awareness about better eating habits
and plant-forward diets, coupled with concerns associated with an aging population at risk of nutrition
frailty [224]. Accordingly, markets for functional foods and nutraceuticals are growing globally at a
stunning pace, accounting for revenues of US $174 billion in 2019 (forecasted to US $275 billion in
2025) for the former and US $383 billion in 2017 (forecasted to US $561 billion in 2023) for the latter
(https://www.statista.com/statistics/591619/global-market-size-nutraceuticals/).

Whether sold for general health purposes or medical applications, claims about health benefits
must be supported by rigorous and convincing methods of investigation prior to market launch, which
may entail review and subsequent approval by governmental agencies in specific jurisdictions [225].
In this regard, nutrition science can face challenges, given the tension between scientific rigor, profitable
business, and conflicting interests in relation to issues such as safety, health benefits, intellectual
property, regulatory formats, marketing strategies, and financial affairs [226]. As for other complex
sources of macro- and micro-nutrients, and secondary metabolites, the assessment of biological
and nutraceutical effects of sprouts on human health is typically based on studies involving cellular
systems representing a given phenotypic trait(s), preclinical studies in relevant animal models and,
ultimately, human clinical trials. Investigational procedures, in particular cell-based studies, can be
greatly facilitated by fast turnaround times to obtain samples, and the ability to enhance the content of
specific metabolites using variable elicitation conditions, either abiotic (e.g., temperature, humidity,
soil salinity, light intensity) or biotic (e.g., plant hormones, amino acids) [81]. On the other hand,
metabolic intensity, biomechanical plasticity, and rapid physiological changes may negatively affect
standardization and robustness of experimental conditions and, in turn, reproducibility and accurate
interpretation of data.

Cell models generally serve as the biological systems for investigating phenotypic effects,
or mechanistically identifying biologically relevant targets and related molecular networks. Within
this context, sprouts provide the opportunity for implementing quick, flexible, and versatile procedures
to concurrently develop metabolic variants for subsequent characterizations, comparisons to controls,
and application of multivariate statistical analyses to discriminate the chemical entities exercising
an active role on observed biological effects. By way of example, this rationale was applied by
Ferruzza et al. [227] to show a protective effect by Brassica oleracea sprouts against a human model of
gut inflammation developed in Caco-2 cells.

Although routinely carried out in many laboratories, tissue culture requires special attention
to ensure a phenotypically relevant model for contextual interpretations of experiments, as well as
robust and reproducible data. In this regard, the following are important considerations: (1) a specific
cell line may exhibit significantly phenotypic variability across different laboratories, and should
therefore be authenticated as a first step prior to experimentation [228,229]; (2) culture conditions
and passage number should adhere to recommended protocols to avoid or at least minimize genomic
and molecular alterations, while recognizing that cell populations are, to some degree, heterogeneous
due to the likely presence of slow-cycling stem or progenitor cell subpopulations [230]; (3) primary
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cells grown on plastic (2D cultures) are rapidly subject to phenotypic changes such that they no
longer reflect the biology of parental tissues [231]; and (4) cancer cell lines generally double at much
higher rates (e.g., 18–24 h) than native tissues and do not represent the phenotypic multiplicity
shown by the corresponding patient cohorts [232]. However, co-cultures can offer valid models to
assess the effects of nutraceuticals and functional foods in that cell-cell contacts as well as paracrine
or juxtacrine interactions are relevant to physiological and pathological environments, and may
markedly influence sensitivity to external challenge [233]. This was clearly illustrated when quercetin
and genistein, two polyphenols with proven anti-inflammatory properties, were used as positive
controls to counteract the inflammatory response provoked by interleukin 1β in human pluripotent
stem cell-derived endothelial cells (hPSC-EC). Notably, both polyphenols were inactive when tested in
these cells, but displayed a powerful anti-inflammatory response when hPSC-EC were co-cultured
with their hepatocytic counterpart hPSC-HEP that, unlike hPSC-EC, retains a metabolic capacity to
breakdown quercetin and genistein into bioactive molecules [234]. Finally, it should be noted that
organoids and 3D cell-based assays, despite technical challenges [235], represent the most recent
advance in tissue culture to recapitulate the cellular and biological complexities of tissues and organs.
Although already used for screening purposes [236], this technology is still in its infancy and, to our
knowledge, not yet employed in nutraceutical screens.

Cruciferous, grain, and legume sprouts have been tested in preclinical and human studies for
their preventive and therapeutic benefits across a variety of health and pathological conditions.
These investigations, extensively described and critically reviewed [27,237,238], illustrate the typical
complexities of food-based trials, particularly with regard to considerations and concerns over
regulatory and scientific matters, and debates about the functional and biological significance of
experimental data [225,239]. In short, the same dilemma exists today as was raised by Clare M.
Hasler almost 20 years ago following a 1999 guidance by the Food and Drug Administration [240];
namely, the distinction between emerging evidence and strong scientific agreement by which a product can
be marketed as a dietary supplement to enhance nutrition and achieve physiological benefits, or a
medical treatment to prevent or attenuate symptoms, or treat a condition. However, scientific rigor
can often be questionable and not sufficiently strong to permit accurate conclusions or comparisons.
For plant-derived food, including sprouts, the lack of standardized protocols for the preparation
and manipulation of the natural matrix is a crucial limitation. Sprouts, in fact, have been used in
animal and human studies as a whole, in the form of extracts, and juices, using different amounts
and inconsistent dietary regimens within the population appraised [241,242]. Variable conditions can
impact bioavailability, while elusive information about liberation, absorption, distribution, metabolism,
and excretion (LADME) phases of pharmacokinetics can complicate decisions as to when and for
how long a treatment should be considered [243]. For example, when ingestion of broccoli sprouts
(100 g/day) was compared to the same daily amount of alfalfa sprouts (used as the placebo) in 40 (1:1
randomized) asthmatic individuals to evaluate anti-inflammatory and physiological improvements,
Sudini et al. [244] used a 3-day intervention protocol that, despite having been purposely developed to
mitigate variability, proved to be essentially inconclusive. Similarly, no protective effect was shown in a
small-case study by Duran et al. [245], where 16 healthy individuals (1:1 randomized) followed a 3-day
diet including 200 g/day of either broccoli or alfalfa sprouts (200 g/day in both cases) prior to exposure
to ozone-induced neutrophilic airway inflammation. Conversely, Brown et al. [246] showed that a
sulforaphane-enriched extract from broccoli sprouts taken for 14 days by 45 moderately asthmatic
patients beneficially impacted the methacholine bronchoconstriction challenge in 60% of cases, with
20% of patients negatively affected and the remaining 20% unresponsive. Notably, while the study
from Duran did not identify any change in the expression of NRF2 (Nuclear factor erythroid 2-related
factor 2)-dependent genes (known to be induced by sulforaphane), Brown et al. [246] found instead
that activation of the NRF2 pathway correlated with bronchoprotective benefits. Overall, these studies
show that divergence of key experimental factors, such as quality and quantity of the material used,
time of intervention, size of population tested, and endpoint measurements, can lead to inconsistent
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conclusions, further exacerbated by population heterogeneities [247], as well as bi-phasic or hormetic
responses commonly raised by bioactive agents including phytochemicals [248]. Landberg et al. [249],
for example, advanced the importance of a methodological approach to stratify clinical trial participants
based on the integration of different parameters such as genetic (polymorphisms), phenotypic (age,
gender, body mass index (BMI), and the gut microbiome) and ADME profiles to define metabolic
representations, namely metabotypes, to ultimately strengthen the association between the effect of
plant-based food or any of its (semi)purified components and a specific group of individuals, thus,
implementing what it could be referred to as personalized or precision nutrition.

6. Antinutrients and Allergens in Sprouts

Antinutrients in plant-based foods have been for years a subject of much interest in human health
and malnutrition. Briefly, antinutritional factors are defined as compounds or substances, which
negatively interfere with the absorption of other nutrients in the diet, causing reduced nutrient intake,
digestion, and utilization, and the occurrence of adverse effects. However, like any other bioactive
compounds, antinutritional factors can be responsible for a variety of effects, mainly depending
on concentrations and the physiology of the subjects exposed [250,251]. For example, tannins are
generally considered to be antinutrients, but Kumari and Jain [252] observed a useful role in diabetes
management. A similar circumstance was shown for phytic acid [253]. Thus, these two cases support
Calder’s [254] statement “nutrition science would be wise to adopt practices more akin to pharma when
evaluating the functional properties and health impacts of foods, nutrients and non-nutrient food components”.
For a more complete list of major antinutrients and their role in human nutrition, which goes beyond
the scope of this review, we recommend the work by Akande et al. [255].

In general, the germination process is known to decrease the concentration of antinutrients in
the resulting sprouts. This has been extensively highlighted in the literature for many different species,
i.e., green gram, cowpea, lentil and chickpea [256,257], buckwheat [258], quinoa [259], millet [260,261]
barley [262], and flaxseeds [263]. In particular, Pal et al. [264] compared the effects of germination,
dehulling, and cooking in horse gram, and showed different patterns of nutrient/antinutrient ratios
in relation to treatments. In particular, cooking outperformed the natural germination process in
lowering the levels of tannins, phytic acid, and trypsin inhibitors in lentils [264]. We must say that
while a rich source of literature has shown antioxidant profiles in sprouts, little information is instead
available about modifications of antinutrients profile during the germination process. For example,
during the germination of common black beans, it was found that while trypsin inhibitors and phytates
decrease, levels of phenols, saponins and tannins trend higher [265]. In the same study, the application
of a Controlled Pressure-Drop demonstrates to further lowers trypsin inhibitors and extra raises saponin
concentration, while it counters the decrease of phytates and the increase of phenols and tannins [265].
Since the biochemical characteristics of sprouted seeds are strictly related to sprouting conditions,
different techniques, alone or in combination, could be performed to easily impact antinutritional
levels. For example, lowest phytic acid contents were observed in 48h-old chickpea sprouts grown
under blue and red lights [266]. Moreover, advances in molecular breeding raise prospects for future
breeding programs aimed to select varieties characterized by low levels of antinutrients or toxins.

The allergenic potential of sprouts and its management is an issue of major concern in food science
as well. Allergic reactions are generally mediated by proteins that act as antibodies. During sprouting,
a deep modification of proteins profile occurs, thus potentially reducing the concentration of allergenic
storage proteins. The peanuts case has been well dug: the results of the in-vitro immunoreactivity
of the protein Ara h 1 showed that it remains stable in cotyledons and decreases in others epigeic
tissues during the germination process [267]. In the meanwhile, whilst the Ara h 2 antigen is
decomposed, resveratrol—a bioactive compound that, in-vitro, interferes with the immune reaction
to both Ara h 1 and 2—is newly synthesized [268]. A similar process appears in lentils and mung
bean, where germination, associated with cotyledon removal reduced immunoreactivity in-vitro by
97% and 99%, respectively [269]. Resveratrol is a secondary metabolite produced in response to biotic
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or abiotic stresses. Ultrasound application on peanut seeds proved to be an effective solution to
increase resveratrol content in related sprouts, as shown by Yu et al. [94], who found amounts that,
compared to controls, ranged 1.7–3.3-fold higher. Moreover, ultrasound applications resulted in an
accelerated degradation of allergenic proteins, leading concentrations to undetectable levels after
3 days of germination [94]. Ultrasounds at different power levels (from 0 W to 300 W) have also been
tested on soybeans seeds, showing that concentrations of allergenic proteins decrease with increasing
power of applications after 5 days of sprouting [95]. Soybeans have been also treated with HHP,
and the concentration of allergenic proteins resulted lower in sprouts in relation to raw seeds [270].

Although in some cases the consumption of germinated seeds does not cause an allergic reaction
as severe as that associated to raw seeds, sprouts can manifest unexpected cross-reactions in sensitive
individuals. In mung bean sprouts Vig r 6 and Vig r 1 proteins can activate basophils high concentrations,
and cause the same allergic reaction caused by a protein responsible for pollen allergy, namely Bet
v 1 [271]. Cross-reactions can also underlie allergic conditions, as shown for peanuts and sprouts
of different Leguminosae species. Jensen et al. [272] compared in-vitro the proteic extract of soybean,
green pea, blue lupine, mung bean, alfalfa, broad bean and adzuki bean sprouts with peanut proteic
extract and showed that the concentration necessary to achieve the same level of histamine release
varied by 3 to 6 orders of magnitude, thereby posing a high risk to sensitive subjects.

7. Sprouts: A Compelling Case for Drug Discovery?

The biological and pharmacological activities of whole sprouts or their extracts have been
extensively investigated at different levels, including preclinical models, and human studies centered
on multiple conditions [27,237,241]. Despite such a wealth of information, sprouts were never
systematically employed to generate natural product collections aimed at selecting bioactive entities
applicable to chemical genetics and medicinal chemistry programs. Instead, it would seem that
this could be a valuable pursuit as explained below.

Firstly, sprouts can grow quickly, under consistent and controlled conditions within relatively
small footprints and confined layouts, and potentially scaled-up for industrial production based
on FDA-recommended guidelines [273]. Notably, the opportunity to obtain natural products from
sprouts produced via local greenhouse arrangements offers environmental and ethical advantages,
by easing concerns around possible insults to sustainable biological diversity arising out of traditional
approaches to drug discovery. In fact, after the 1992 United Nations Convention on Biological Diversity
(integrated a decade later by the Nagoya Protocol) [274], traditional approaches based on collections of
living organisms from different geographical regions and ecosystems have posed challenges in terms
of securing international access to natural products as well as sharing intellectual property rights with
source countries [275].

Secondly; sprouts, such as plants, stand out for chemical diversity, which may arise as a result
of (1) the influence that genetic and environmental factors, and agronomic setups, may have on
metabolic homeostasis [276]; (2) chemical sensitivity to elicitation techniques that may be established
through a wide array of combinations between germination conditions and abiotic and/or biotic
stimuli [4]; and (3) the occurrence of alternative biosynthetic routes in relation to changes in gene
expression profiles [277]. Together with the vast number of structural modifications exhibited by plant
metabolites [278], such metabolic adaptability can potentially contribute to the expansion of natural
product chemistry into the uncharted regions of druggable space, namely, the realm of chemicals that
specifically interact with, and modulate, disease-relevant targets [279–283].

Thus, sprouts appear to be a good candidate for the OSMAC (One Strain MAny Compounds)
concept, which refers to the rational, systematic modification of culture conditions aimed at maximizing
the range of secondary metabolites produced in a given system. Initially described in 2002 [284],
the OSMAC rationale was developed to trigger, or unlock, metabolic gene clusters that consistently
remain unexpressed under common or standard culture conditions, and successfully applied to
fungi, bacteria, and marine microorganisms as primary sources of chemicals for drug research [285].
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This approach can also be relevant to sprouts, given that genetically clustered metabolic pathways exist
in plants, and have been linked to the biosynthesis of bioactive chemicals, such as terpenes, alkaloids,
diketones, cyanogenic glucosides, and hydroxamic acid [286]. The investigation of biosynthetic gene
clusters in plants using sequencing technologies, bioinformatics tools, and predictive computational
solutions [287–291] is a rapidly expanding field leading towards unprecedented possibilities for tapping
into unexplored metabolic pathways, identifying new molecules, and uncovering mechanisms of
metabolic diversification. In this regard, the dynamic rearrangement of neighboring genes was recently
shown in Brassicaceae to rewire triterpene biosynthesis and, consequently, account for triterpene
metabolic diversity [292].

Thirdly, the systematic investigation of sprouts in drug discovery programs can be strongly
facilitated by major advances in the production of natural product collections [293]; these include,
for example, methods of sample extraction, pre-fractionation and drug-like enrichment [294–296];
NMR, MS and related hyphenated techniques for dereplication and unambiguous identification of
novel chemicals [297–299]; effective and versatile solutions in high-throughput technologies [300,301];
design, optimization, and miniaturization of cell-free and cell-based screening assays [293]; and, finally,
progressively easier access to integrated omics platforms applicable, for example, to target identification
programs and mechanistic elucidation of a drug’s biological impact, efficacy, and side or adverse
effects [302] (Figure 1).
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It is emblematic that in-vitro and in-vivo studies have almost exclusively been carried out using
whole sprouts or, at best, fractionated extracts performed by non-standardized protocols [27,241].
This approach, while offering the possibility of uncovering health benefits and nutraceutical properties of
functional foods, gives rise to significant challenges in drawing definitive conclusions due, for example,
to variability in the production and preparation of the food matrix, dietary regimens and, importantly,
the effects caused by interactions between active nutrients, as in the case of polyphenols where a fine
line runs between additive, synergic, and antagonistic effects [303–305].

Fourthly, sprouts contain significant amounts of phytochemicals, which have historically been
studied in human clinical trials. In this regard, phenolics (and, particularly, flavonoids [306])
and the breakdown products of glucosinolates, isothiocyanates, and indoles [27,242], have been
investigated, either singly or combined with other treatments. Although many of these chemicals are
very well known and have been comprehensively reviewed, one must note that phenolics account
for more than 8000 widely and differentially distributed entities [307], and glucosinolates (both fully
and partially characterized) are represented by at least 137 different structures [308] subject as well to
genetic and environmental variability [309]. Such extraordinary diversity, combined with a multi-target
chemistry shown by polyphenols [310], flavonoids [311], and isothiocyanates [312], may represent
novel and significant opportunities to explore, and possibly extend, druggable space [313].

An example of such an opportunity is illustrated by sulforaphane, an isothiocyanate resulting
from the hydrolysis of its glucosinolate precursor, glucoraphanin, which is 10–100 times more
abundant in broccoli sprouts than the mature plant [314]. Sulforaphane was isolated in 1992 as
a cancer chemoprotective inducer of Phase II detoxifying enzymes and used in >2000 studies to
investigate (1) mechanistic function over the NRF2/ARE axis and downstream activation of hundreds
of cytoprotective genes; (2) chemical reactivity and structure-activity relationship (SAR) analyses;
(3) pleiotropic roles; (4) biological significance in disparate cellular and animal models; and (5) disease
prevention and therapeutic effects in humans (reviewed in [241,315]). In the last 15 years, sulforaphane
from broccoli sprouts (introduced in the diet as a whole, or administered in the forms of homogenates,
extracts, beverages or caplets) was investigated in >30 human trials targeting a large variety of
conditions including cancer, inflammation, diabetes, obesity, cardiovascular disease, bacterial and viral
infections, respiratory diseases, and neurological disorders [241]. Currently (as of August 24, 2020),
14 such trials are in the recruiting or not-yet-recruiting stage (https://clinicaltrials.gov).

Such keen interest in the molecule’s potential can most likely be attributed to its excellent
bioavailability [316,317] and an overt plurality of biological effects evidenced by over 200
high-confidence targets observed in breast cancer cells [318] and the potential for hermetic behaviors,
as shown in several cell models [319]. While other isothiocyanates have not been studied as extensively
as sulforaphane, its polypharmacological behavior may reflect a general signature of these chemicals,
based on their chemical structure, lipophilicity, and reactivity [312]. The same can be said for indoles,
such as indole-3-carbinol, a glucobrassicin derivative that displays differential effects depending on
timing of administration, and its condensation product, 3,3 diindolylmethane, which impacts multiple
pathways associated with cancer and inflammation. Notably, both indoles have been tested in human
clinical trials, either alone or in combination with other treatments [242].

Polypharmacology is an intriguing point that merits special attention, given a growing consensus
in recent years towards a drug discovery shift from the traditional “magic bullet” concept of one
drug/one target, to a preference for chemicals that act on multiple molecular targets and effect various
downstream functions. This approach, while potentially risky in terms of drug promiscuity and side
effects, may nonetheless provide solutions for optimizing drug safety/efficacy and/or conceiving
target/therapeutic reposition strategies by omics technologies in system biology (e.g., functional
genomics) and cheminformatics [320,321].

https://clinicaltrials.gov
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In summary, sprouts can be pivotal in drug discovery research, well beyond nutritional
and nutraceutical prerogatives. Their chemical content is a rich and versatile source of functional
ingredients that, when mixed in extracts, display biological activities which, however, may not
necessarily reflect the biological potential of purified or semi-purified entities. With the latter, selection
of lead candidates can be pursued using either classical or reverse pharmacology (i.e., phenotypic-
or target-based, respectively), whereas sample extracts are generally limited to phenotypic bioassays
where technical difficulties often arise due to the occurrence of false negatives.

As a preliminary step, we carried out a high-throughput screening campaign, using
HPLC-prefractionated extracts, to assess whether and to what extent different species of sprouts
had an impact on the effects shown by approximately 1000 marketed drugs and 640 kinase inhibitors
in a variety of cancer cells lines. Using cytotoxicity as the primary measurement, we found in several
instances that phenolics-enriched fractions displayed either synergic or antagonistic effects in presence
of several drugs and that, notably, these effects were frequently associated with specific cell types.
For example, a markedly cytotoxic effect by Tofacitinib observed in HeLa cells (but not LNCaP
cells) was virtually abolished in the presence of specific fractions of maize sprout extract, similar to
what known antioxidants (i.e., resveratrol and quercetin), included for comparison purposes, had
shown. On the other hand, synergic effects were observed when the same extract was combined
with Dovitinib in HeLa cells, and Tivozanib in LNCaP cells (Datti, unpublished results). No effects,
instead, were observed when whole extracts were used as a reference, thereby suggesting, in this case,
new unexplored avenues to assess the integration of nutritional supplements and dietary habits with
anticancer chemotherapeutic treatments.

8. Sprouts in Animal Feeding

The use of sprouts to supplement animal feeding can be aimed at maintaining or enhancing
animal health as well as transferring phytochemicals to livestock products (milk, meat, eggs), which are
subsequently ingested by humans. Through this approach, it is possible to bypass the risks to human
health posed by microbiological contamination of raw sprouts. Moreover, sprouts can be integrated
into feed rations in seasons when fodder production is limited [322].

Despite a mutual relevance to zootechnics and human nutrition, literature on this field is
scant (Table 6).
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Table 6. Livestock species fed with micro-scale vegetables to improve quality and nutritional features of derived products.

Livestock Sprout Species Sprout Family Days after Sowing (DAS) Effects on Livestock Health
and Products

Phytochemicals Transferred
to Livestock Products References

Poultry

Betagro laying hens Brassica oleracea var.
Alboglabra–Chinese kale Brassicaceae 15 ↑Se content in eggs and tissues N/A [323]

Japanese quails Hordeum vulgare–barley Poaceae 7

↑egg laying rate;
↑relative weights of gizzard and testis;
↑ fertility;
↑ number of hatched chicks/female;
no effect on egg quality indices

N/A [324]

Brassica oleracea var.
alboglabra–Chinese kale Brassicaceae 7

No effects on performances and carcass
characteristics;
↑Se content in tissues

N/A [325]

15
Se from sprout does not affect
performances and egg quality;
↑Se content in eggs

N/A [326]

Leghorn hens Medicago sativa–alfalfa Leguminosae 3 ↓cholesterol content in eggs ↑ isoflavones, antioxidants
and vitamin content in eggs [327]

Linum usitatissimum–flax Linaceae 3 ↓cholesterol content in eggs ↑ isoflavones, antioxidants
and vitamin content in eggs [327]

Lohmann Brown hens Brassica oleracea var.
alboglabra–Chinese kale Brassicaceae 7 ↑ Se bioavailability and Se content in

eggs, tissues and plasma N/A [328]

Rabbits

New Zealand white rabbits Medicago sativa–alfalfa Leguminosae 3 ↑ n-3 fatty
acid contents of meat ↑phytoestrogens in muscles [329]

Linum usitatissimum–flax Linaceae 3 ↑ n-3 fatty
acid contents of meat ↑phytoestrogens in muscles [329]

Hordeum vulgare–barley Poaceae 12 No adverse effects on performances
and meat characteristics N/A [330]

Ruminants

Awassi male lambs Hordeum vulgare – barley Poaceae 7
↑some rumen characters;
↑most nutrient digestibility;
↑ feeding efficiency

N/A [331]

Barky ewes Hordeum vulgare–barley Poaceae 15 ↑NDF and ADF digestibility;
↑fat, total solid, ash and energy of milk N/A [332]

Rams Hordeum vulgare–barley Poaceae 8 ↓DM intake;
↑enzyme activity and digestive function N/A [332]

ADF = acid detergent fiber; N/A = not assessed; NDF = neutral detergent fiber.
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Studies about sprouts for livestock feeding initially dealt with Se-enriched species aimed at
transferring Se to poultry meats and eggs [323,325,326,328]. Early research aimed at studying
nutritional properties of rabbit meat was carried out by Dal Bosco et al. [329], who used alfalfa
and flax sprouts, and by Mohsen et al. [330], who used barley sprouts. Both studies demonstrated
an increase in rabbit meat quality. Barley sprouts were also used by Helal et al. [332] to feed ewes.
Mattioli et al. [327] employed alfalfa and flax sprouts to supplement hen diet, with positive outcomes
on hen plasma and egg nutritional quality (lower cholesterol and higher phytochemical content). These
first results encourage further studies on (1) combinations between various sprout species and livestock
species; (2) the effect of different levels of supplementation; (3) the effect on animal health indicators;
and (4) the effect on livestock product quality (meat, milk, eggs).

No studies have been performed relating to sprout supplementation in pigs; however, the positive
effects of a flavonoid-enriched diet on pig growth and health give reason to encourage investigations
in this species [333].

As regards supplementation levels, since high amounts of fresh sprouts might reduce feed
consumption and energy intake, studies are needed to evaluate their use in the form of dried powder or
pellet. Mattioli et al. [173] demonstrated that drying, in particular freeze-drying, did not compromise
the bioactive compound contents of alfalfa and flax sprouts, and considered this evidence as promising
for future research on the effect of different levels of supplementation.

An intriguing research prospect is the potential use of sprouts and microgreens to supplement
the diet of pets. Pets tend to be considered family members, thereby inducing owners to search
for healthy and nutraceutical foods, both for disease prevention and improving quality of life [334].
As an example, the grass (i.e., 10–15 Days After Sowing, DAS) obtained from barley, wheat, oat,
or rye, improperly called “catnip”, is said to facilitate cat digestion and regurgitation of hairballs.
True catnip (Nepeta cataria), instead, decreases the stress of homebound cats, by stimulating their
olfactory system and causing an apparently euphoric reaction [335]. Further research is needed in all
pet species using multiple varieties of sprouts. Another possible avenue of study is the use of sprouts
to feed insects. The sector of edible insects is rapidly expanding and shows wide research possibilities,
including in relation to rearing [336]. All of the foregoing subjects deserve to be investigated using a
multidisciplinary approach involving sprout scientists, food technologists, animal dieticians, animal
growers, and veterinarians.

9. Conclusions

Sprouts and microgreens have been extensively studied in recent years, however several aspects
remain under-investigated or unexplored. New research prospects may be focused on the production
stage (e.g. genotypic analyses, seed treatments, elicitation techniques, biofortification), post-harvest
processing (e.g. seed sanitation, shelf-life extension), the impact on human nutrition and animal feeding
and, most intriguingly, drug discovery. Since these areas of investigation may overlap, successful
research will be contingent on multi- and inter-disciplinary collaborative efforts.
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11. Waśkiewicz, A.; Muzolf-Panek, M.; Goliński, P. Phenolic Content Changes in Plants Under Salt Stress
BT–Ecophysiology and Responses of Plants under Salt Stress; Ahmad, P., Azooz, M.M., Prasad, M.N.V., Eds.;
Springer New York: New York, NY, USA, 2013; pp. 283–314. ISBN 978-1-4614-4747-4.

12. Piasecka, A.; Jedrzejczak-Rey, N.; Bednarek, P. Secondary metabolites in plant innate immunity: Conserved
function of divergent chemicals. New Phytol. 2015, 206, 948–964. [CrossRef]

13. Bartwal, A.; Mall, R.; Lohani, P.; Guru, S.K.; Arora, S. Role of Secondary Metabolites and Brassinosteroids in
Plant Defense Against Environmental Stresses. J. Plant Growth Regul. 2013, 32, 216–232. [CrossRef]

14. Taiz, L.; Zeiger, E. Secondary metabolites and plant defense. Plant Physiol. 2006, 4, 315–344.
15. Deng, Y.; Lu, S. Biosynthesis and Regulation of Phenylpropanoids in Plants. CRC Crit. Rev. Plant Sci. 2017,

36, 257–290. [CrossRef]
16. El Khawand, T.; Courtois, A.; Valls, J.; Richard, T.; Krisa, S. A review of dietary stilbenes: Sources

and bioavailability. Phytochem. Rev. 2018, 17, 1007–1029. [CrossRef]
17. Peterson, J.; Dwyer, J.; Adlercreutz, H.; Scalbert, A.; Jacques, P.; McCullough, M.L. Dietary lignans: Physiology

and potential for cardiovascular disease risk reduction. Nutr. Rev. 2010, 68, 571–603. [CrossRef] [PubMed]
18. Beran, F.; Köllner, T.G.; Gershenzon, J.; Tholl, D. Chemical convergence between plants and insects:

Biosynthetic origins and functions of common secondary metabolites. New Phytol. 2019, 223, 52–67.
[CrossRef] [PubMed]

19. Saini, R.K.; Keum, Y.-S. Tocopherols and tocotrienols in plants and their products: A review on methods of
extraction, chromatographic separation, and detection. Food Res. Int. 2016, 82, 59–70. [CrossRef]

20. Rattan, R.S. Mechanism of action of insecticidal secondary metabolites of plant origin. Crop Prot. 2010, 29,
913–920. [CrossRef]

21. Shahidi, F.; Ambigaipalan, P. Phenolics and polyphenolics in foods, beverages and spices: Antioxidant
activity and health effects–A review. J. Funct. Foods 2015, 18, 820–897. [CrossRef]

22. Sirotkin, A.V.; Harrath, A.H. Phytoestrogens and their effects. Eur. J. Pharmacol. 2014, 741, 230–236. [CrossRef]
23. Fiedor, J.; Burda, K. Potential Role of Carotenoids as Antioxidants in Human Health and Disease. Nutrients

2014, 6, 466–488. [CrossRef]

http://dx.doi.org/10.1016/j.tifs.2016.09.005
http://dx.doi.org/10.3390/nu11020421
http://www.ncbi.nlm.nih.gov/pubmed/30781547
http://dx.doi.org/10.1080/15428052.2016.1225534
http://dx.doi.org/10.1080/10408398.2016.1144557
http://www.ncbi.nlm.nih.gov/pubmed/26857557
http://dx.doi.org/10.3390/nu10060675
http://dx.doi.org/10.3390/foods9091226
http://dx.doi.org/10.1016/j.jfca.2020.103495
http://dx.doi.org/10.1111/nph.13325
http://dx.doi.org/10.1007/s00344-012-9272-x
http://dx.doi.org/10.1080/07352689.2017.1402852
http://dx.doi.org/10.1007/s11101-018-9578-9
http://dx.doi.org/10.1111/j.1753-4887.2010.00319.x
http://www.ncbi.nlm.nih.gov/pubmed/20883417
http://dx.doi.org/10.1111/nph.15718
http://www.ncbi.nlm.nih.gov/pubmed/30707438
http://dx.doi.org/10.1016/j.foodres.2016.01.025
http://dx.doi.org/10.1016/j.cropro.2010.05.008
http://dx.doi.org/10.1016/j.jff.2015.06.018
http://dx.doi.org/10.1016/j.ejphar.2014.07.057
http://dx.doi.org/10.3390/nu6020466


Agronomy 2020, 10, 1424 30 of 45

24. Ogbe, R.J.; Ochalefu, D.O.; Mafulul, S.G.; Olaniru, O.B. A review on dietary phytosterols: Their occurrence,
metabolism and health benefits. Asian J. Plant Sci. Res. 2015, 5, 10–21.

25. Dinkova-Kostova, A.T.; Kostov, R.V. Glucosinolates and isothiocyanates in health and disease. Trends Mol.
Med. 2012, 18, 337–347. [CrossRef] [PubMed]

26. Renna, M.; Paradiso, V.M. Ongoing Research on Microgreens: Nutritional Properties, Shelf-Life, Sustainable
Production, Innovative Growing and Processing Approaches. Foods 2020, 9, 826. [CrossRef] [PubMed]

27. Abellán, Á.; Domínguez-Perles, R.; Moreno, D.A.; García-Viguera, C. Sorting out the Value of Cruciferous
Sprouts as Sources of Bioactive Compounds for Nutrition and Health. Nutrients 2019, 11, 429. [CrossRef]
[PubMed]

28. Bianchi, G.; Falcinelli, B.; Tosti, G.; Bocci, L.; Benincasa, P. Taste quality traits and volatile profiles of sprouts
and wheatgrass from hulled and non-hulled Triticum species. J. Food Biochem. 2019, 43, e12869. [CrossRef]

29. Caracciolo, F.; El-Nakhel, C.; Raimondo, M.; Kyriacou, M.C.; Cembalo, L.; De Pascale, S.; Rouphael, Y. Sensory
Attributes and Consumer Acceptability of 12 Microgreens Species. Agronomy 2020, 10, 1043. [CrossRef]

30. Cooper, R. Re-discovering ancient wheat varieties as functional foods. J. Tradit. Complement. Med. 2015, 5,
138–143. [CrossRef]

31. Frassinetti, S.; Moccia, E.; Caltavuturo, L.; Gabriele, M.; Longo, V.; Bellani, L.; Giorgi, G.; Giorgetti, L.
Nutraceutical potential of hemp (Cannabis sativa L.) seeds and sprouts. Food Chem. 2018, 262, 56–66.
[CrossRef]

32. Kumar, J.; Kaur, A.; Narang, P. Phytochemical screening and metal binding studies on floral extract of
Solanum nigrum. Mater. Today Proc. 2020, 26, 3332–3336. [CrossRef]

33. Nemzer, B.; Al-Taher, F.; Abshiru, N. Phytochemical composition and nutritional value of different plant
parts in two cultivated and wild purslane (Portulaca oleracea L.) genotypes. Food Chem. 2020, 320, 126621.
[CrossRef]

34. Petropoulos, S.A.; Fernandes, Â.; Dias, M.I.; Pereira, C.; Calhelha, R.; Di Gioia, F.; Tzortzakis, N.; Ivanov, M.;
Sokovic, M.; Barros, L.; et al. Wild and Cultivated Centaurea raphanina subsp. mixta: A Valuable Source of
Bioactive Compounds. Antioxidants 2020, 9, 314. [CrossRef]

35. Harouna, D.V.; Venkataramana, P.B.; Ndakidemi, P.A.; Matemu, A.O. Under-exploited wild Vigna species
potentials in human and animal nutrition: A review. Glob. Food Sec. 2018, 18, 1–11. [CrossRef]

36. Montevecchi, G.; Setti, L.; Olmi, L.; Buti, M.; Laviano, L.; Antonelli, A.; Sgarbi, E. Determination of
Free Soluble Phenolic Compounds in Grains of Ancient Wheat Varieties (Triticum sp. pl.) by Liquid
Chromatography–Tandem Mass Spectrometry. J. Agric. Food Chem. 2019, 67, 201–212. [CrossRef] [PubMed]

37. Gaba, S.; Perronne, R.; Fried, G.; Gardarin, A.; Bretagnolle, F.; Biju-Duval, L.; Colbach, N.; Cordeau, S.;
Fernández-Aparicio, M.; Gauvrit, C.; et al. Response and effect traits of arable weeds in agro-ecosystems:
A review of current knowledge. Weed Res. 2017, 57, 123–147. [CrossRef]

38. Butnariu, M.; Samfira, I. Vegetal Metabolomics to Seeds of Galium Aparine. J. Bioequiv. Availab. 2013, 5, e45.
[CrossRef]

39. Abbas, M.N.; Rana, S.A.; Shahid, M.; Rana, N.; Mahmood-ul-Hassan, M.; Hussain, M. Chemical evaluation
of weed seeds mixed with wheat grains at harvest. J. Anim. Plant Sci. 2012, 22, 283–288.

40. Bano, Y.; Ahmad, S.; Alam, S.P. Study of seed germination behaviour of Solanum nigrum L. J. Indian Bot. Soc.
2019, 98, 85–88. [CrossRef]

41. Senila, L.; Neag, E.; Cadar, O.; Kovacs, M.H.; Becze, A.; Senila, M. Chemical, Nutritional and Antioxidant
Characteristics of Different Food Seeds. Appl. Sci. 2020, 10, 1589. [CrossRef]

42. Benincasa, P.; Galieni, A.; Manetta, A.C.; Pace, R.; Guiducci, M.; Pisante, M.; Stagnari, F. Phenolic compounds
in grains, sprouts and wheatgrass of hulled and non-hulled wheat species. J. Sci. Food Agric. 2015, 95,
1795–1803. [CrossRef]

43. Li, H.; Deng, Z.; Liu, R.; Zhu, H.; Draves, J.; Marcone, M.; Sun, Y.; Tsao, R. Characterization of phenolics,
betacyanins and antioxidant activities of the seed, leaf, sprout, flower and stalk extracts of three Amaranthus
species. J. Food Compos. Anal. 2015, 37, 75–81. [CrossRef]
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