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Abstract: The plant “False Lily of the Valley”, Speirantha gardenii is restricted to south-east China and
considered as an endemic plant. Due to its limited availability, this plant was less studied. Hence,
this study is focused on its molecular studies, where we have sequenced the complete chloroplast
genome of S. gardenii and this is the first report on the chloroplast genome sequence of Speirantha.
The complete S. gardenii chloroplast genome is of 156,869 bp in length with 37.6% GC, which included
a pair of inverted repeats (IRs) each of 26,437 bp that separated a large single-copy (LSC) region
of 85,368 bp and a small single-copy (SSC) region of 18,627 bp. The chloroplast genome comprises
81 protein-coding genes, 30 tRNA and four rRNA unique genes. Furthermore, a total of 699 repeats
and 805 simple-sequence repeats (SSRs) markers are identified in the genome. Additionally, KA/KS

nucleotide substitution analysis showed that seven protein-coding genes have highly diverged and
identified nine amino acid sites under potentially positive selection in these genes. Phylogenetic
analyses suggest that S. gardenii species has a closer genetic relationship to the Reineckea, Rohdea and
Convallaria genera. The present study will provide insights into developing a lineage-specific marker
for genetic diversity and gene evolution studies in the Nolinoideae taxa.

Keywords: Speirantha gardenii; chloroplast genome; positive selection; adaptive evolution;
substitution; Nolinoideae

1. Introduction

The plant chloroplast plays a pivotal role in photosynthesis and other biological metabolic processes
that mediate the adaptation of the plant to the surrounding environment [1]. The highly conserved
angiosperm plants encode a circular chloroplast genome with a quadripartite structure, consists of a
large single-copy (LSC) region, and small single-copy (SSC) region which is separated by a duplicate
inverted repeat (IRa and IRb) regions and differences in genome size and composition are taxonomically
informative [1–5]. Although the amount of variation is not very significant across flowering plants,
the chloroplast genome size varies between species that ranges from 107 kb (Cathaya argyrophylla) to
280 kb (Pelargonium) [6,7]. Normally the chloroplast genome encodes 120 to 130 genes, involved in
photosynthesis, transcription and translation process [6]. Though the angiosperm chloroplast genomes
are highly conserved, several mutational events, such as structural rearrangement, insertions and
deletions (InDels), inversions, translocations, and copy number variations (CNVs) occur within the
chloroplast genomes. This polymorphism in the chloroplast genome provides an understanding of
population genetics, phylogenetic and evolutionary studies, species barcoding and endangered species
conservation and enhancement of breeding of the plants.

Flowering plants are the largest clade among the land plants, consisting of more than
250,000 species [8]. Among these, Nolinoideae is a subfamily, with more than 100 species, of the
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Asparagaceae family belonging to the monocot flowering plants. In the past decade, a few species of
Nolinoideae have been characterized at the molecular level and phylogenetic implications with other
species were identified [9–15]. The genus Speirantha belongs to the subfamily Nolinoideae and consists
of only one species, S. gardenii and its common name is “False Lily of the Valley”. The distribution of
this species is restricted to south-east China and is considered an endemic plant [16]. It is a delightful
and intriguing small-scale evergreen perennial plant with panicles of delicate starry white flowers
during early spring and the foliage is glossy, pale green and elliptic or elliptic-oblanceolate in shape.
Due to its rare availability, extensive molecular studies have not been carried out for this species.
So, in the present study, we report the first complete chloroplast genome sequence of S. gardenii and
analyzed repeat regions and simple-sequence repeats (SSRs) markers in the genome. Furthermore,
we compared the S. gardenii chloroplast genome with its closely related species. Additionally, highly
variable regions and seven protein-coding genes that are discovered in their genome to be under
positive selection, could be employed to create potential markers for phylogenetic studies or candidates
for DNA barcoding in future studies.

2. Results

2.1. General Features of the Speirantha Gardenii Chloroplast Genome

The overall length of the S. gardenii chloroplast genome is 156,869 bp, exhibiting the circular
quadripartite structure characteristic of major angiosperm plants. The chloroplast genome consists of a
pair of the inverted repeat (IR) regions (26,437 bp) separated by a large single-copy (LSC) region of
85,368 bp and a small single-copy (SSC) region of 18,627 bp (Figure 1). When calculating duplicated genes
in the IR region only one time, the chloroplast genome contains 115 genes, including 81 protein-coding
genes, 30 tRNA genes and four rRNA genes (Table 1). All four rRNAs, nine protein-coding genes and
eight tRNA genes are duplicated in the IR regions, making the total number of 136 genes. Seventeen
genes contain introns, including five tRNA and ten protein-coding genes with a single intron and clpP
and ycf3 with two introns (Supplementary Materials Table S1). Overall, the order and contents of the
gene of the S. gardenii are identical with other species of Nolinoideae except the length of the infA gene
and pseudogene infA in the C. keiskei, Liriope spicata and Nolina atopocarpa (Supplementary Materials
Table S2). The GC content of the S. gardenii chloroplast genome is 37.6% (Table 1), like R. carnea, whereas
GC content is low in the species of R. chinensis (37.2%) and high in the C. keiskei (37.9%).

Table 1. The characteristic feature of the Speirantha gardenii chloroplast genome.

Sequence Region S. gardenii

Total chloroplast genome size (bp) 156,869
LSC length (bp) 85,368
SSC length (bp) 18,627
IR length (bp) 26,437

Total number of genes 136
Protein-coding genes 90

tRNA genes 38
rRNA genes 8

Genes duplicated by IR 21
Genes with introns 17

GC content Total (%) 37.6
LSC (%) 35.6
SSC (%) 31.5
IR (%) 43.0

CDS (%) 38.1
rRNA (%) 55.3
tRNA (%) 53.2

All genes (%) 39.8
Protein-coding genes (%bp) 50.13

All genes (%bp) 71.42
Non-coding regions (%) 28.58
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Figure 1. Gene map of Speirantha gardenii. Genes lying outside the outer circle are transcribed in
a counter-clockwise direction, and genes inside this circle are transcribed in a clockwise direction.
The colored bars indicate known protein-coding genes, transfer RNA genes, and ribosomal RNA genes.
The dashed, dark grey area in the inner circle denotes GC content, and the light grey area indicates
genome AT content. LSC, large single-copy; SSC, small single-copy; IR, inverted repeat.

2.2. Comparative Analysis of the IR Contraction and Expansion in the Species of Nolinoideae

The LSC-IR and SSC-IR borders of the S. gardenii chloroplast genome are compared with three
other closely related species (R. carnea, R. chinensis and C. keiskei) of the Nolinoideae subfamily (Figure 2).
Two intact copies of the rps19 gene are present in the IR regions of all chloroplast genomes, whereas,
in the IRbSSC border, the pseudogene yfc1 and ndhF gene crosses the IRb/SSC border region and
overlaps with 1–34 bp region in the borders. Similarly, the intact ycf1 gene in all the chloroplast
genomes except R. chinensis crosses SSC/IRa region with an 827–913 bp length fragment of ycf1 located
in the IRA region. In contrast, the functional and pseudogene of ycf1 of the R. chinensis have dispersed
in the SSC region and 308 bp away from the IRb/SSC and SSC/IRa border. Due to this ψycf1 gene shift
in the IRb/SSC border of R. chinensis chloroplast genome, the gene ndhF is present in the SSC region
and the trnN gene is present in the SSC/IRa region. The psbA gene sequences are found in LSC regions
in all the chloroplast genomes. This gene is ~81–82 bp away from the IRa/LSC border of S. gardenii,
R. carnea, and C. keiskei chloroplast genomes but 331 bp away for R. chinensis.

The sequence variation in chloroplast genomes of four Nolinoideae subfamily chloroplast genomes
is plotted using the mVISTA program, where minor divergence is identified between S. gardenii and
R. carnea (Figure 3). When S. gardenii is compared with two other chloroplast genomes namely
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R. chinensis and C. keiskei, it is highly diverged due to the presence of sequence variation in both
protein-coding and intergenic regions of these two species.
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Figure 3. Sequence alignment of four Nolinoideae chloroplast genomes performed using the mVISTA
program with Speirantha gardenii as a reference. The top grey arrow shows genes in order (transcriptional
direction) and the position of each gene. A 70% cut-off was used for the plots. The y-axis indicates a
percent identity of between 50% and 100%, and the red and blue areas indicate intergenic and genic
regions, respectively.
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2.3. Synonymous (KS) and Nonsynonymous (KA) Substitution Rate Analysis

Synonymous and nonsynonymous substitution rates are analyzed for 79 protein-coding genes of
S. gardenii, R. carnea, R. chinensis and C. keiskei chloroplast genomes (Figure 4). The KA/KS ratio of most
of the genes are less than 1, except ccsA (1.13–1.43), infA (1.19), ndhF (1.36–2.15), rpl20 (1.59), rps2 (1.48),
rps3 (1.18–1.76) and ycf1 (1.13–1.23) protein-coding genes.
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2.4. Selective Pressure Events

The positive selection of seven protein-coding genes (ccsA, infA, ndhF, rpl20, rps2, rps3 and ycf1),
genes of four closely related species (S. gardenii, R. carnea, R. chinensis and C. keiskei) and publicly
available Nolinoideae chloroplast genome species were analyzed separately. Theω2 values of seven
genes of four Nolinoideae species are ranging from 1 to 999 in the M2a model. So further, we compared
these seven genes across Nolinoideae species to understand the selective pressure events. Due to the
presence of pseudogenization of the infA and ycf1 gene in some Nolinoideae species, we analyzed
the remaining five genes and identified the ω2 values ranging from 1 to 240.876. Furthermore,
Bayes empirical Bayes (BEB) analysis is used to analyze the location of consistent selective sites in the
seven protein-coding genes of four Nolinoideae species using the M7 vs. M8 model. The analysis
revealed that five sites under potentially positive selection in the three protein-coding genes (infA-3;
ndhF-1 and rps3-1) with posterior probabilities more than 0.95. Furthermore, the two sites (rps2-1 and
ycf1-1) with greater than 0.99 (Supplementary Table S3) and the 2∆LnL value is ranging from 0 to 26.084
(Table 2). Additionally, five genes (ccsA, ndhF, rpl20, rps2 and rps3) of all Nolinoideae species were
analyzed and predicted that seven sites (ccsA-3 and ndhF-4) greater than 0.95 and two sites (ndhF-1
and rps2-1) with >0.99 (Supplementary Table S4) and the 2∆LnL value is ranging from 0 to 108.245
(Table 3). In both analyses revealed that rpl20 does not encode any positively selected sites in their
gene and the 2∆LnL and the p-value of LRT are 0 to 0.40 and 0.895–1.0, respectively.

Table 2. Comparison of likelihood ratio test (LRT) statistics of positive selection models against their
null models (2∆LnL) and positive selective amino acid loci for four Nolinoideae species.

Protein-Coding Genes Comparison between Models 2∆LnL d.f. p-Value Positive Sites (M7 vs. M8)

ccsA

M0 vs. M3 0 4 1

81 N 0.642, 125 S 0.642, 223 S 0.642,
280 S 0.642, 292 I 0.636

M1 vs. M2A 0 2 1

M7 vs. M8 0.000002 2 0.999999

M8a vs. M8 0.001524 1 0.968859739

infA

M0 vs. M3 15.845366 4 0.003233836

32 L 0.759, 56 I 0.881, 57 G 0.966 *, 58 M
0.965 *, 59 Q 0.737, 60 L 0.961 *

M1 vs. M2A 11.350176 2 0.003430367

M7 vs. M8 11.352554 2 0.003426291

M8a vs. M8 11.350166 1 0.000754412
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Table 2. Cont.

Protein-Coding Genes Comparison between Models 2∆LnL d.f. p-Value Positive Sites (M7 vs. M8)

ndhF

M0 vs. M3 12.435874 4 0.014387898 67 F 0.543, 281 F 0.568, 472 Y 0.581,
486 E 0.606, 505 N 0.571, 560 H 0.583,
574 L 0.617, 596 L 0.665, 614 S 0.616,
636 G 0.632, 675 L 0.580, 680 Q 0.628,
728 F 0.568, 732 L 0.963 *, 734 F 0.931

M1 vs. M2A 9.771726 2 0.007552603

M7 vs. M8 8.535662 2 0.014012143

M8a vs. M8 8.529956 1 0.003493481

rpl20

M0 vs. M3 0 4 1

43 L 0.620, 80 R 0.612, 116 M 0.612,
117 K 0.603

M1 vs. M2A 0 2 1

M7 vs. M8 0.00013 2 0.999935002

M8a vs. M8 0.00004 1 0.994953769

rps2

M0 vs. M3 24.069072 4 0.000077368

48 T 0.838, 59 D 0.839, 91 A 0.838, 160 E
0.840, 199 L 0.850, 237—0.998 **

M1 vs. M2A 23.735088 2 0.000007014

M7 vs. M8 15.316822 2 0.000472057

M8a vs. M8 13.715290 1 0.000212716

rps3

M0 vs. M3 17.514528 4 0.001534958

28 N 0.937, 30 S 0.599, 68 Q 0.584, 105 F
0.608, 106 H 0.580, 221—0.988 *

M1 vs. M2A 12.631522 2 0.00180759

M7 vs. M8 14.593672 2 0.00067768

M8a vs. M8 13.505938 1 0.00023781

ycf1

M0 vs. M3 26.084252 4 0.000030431
267 Y 0.939, 271 Y 0.517, 290 D 0.520,

296 Y 0.995 **, 407 L 0.523, 438 R 0.536,
447 S 0.503, 491 T 0.545, 507 Q 0.503,

558 K 0.920, 601 I 0.539, 804 L 0.523, 864
I 0.503, 921 F 0.535, 953 R 0.936, 1068 S
0.558, 1082 Q 0.927, 1096 S 0.516, 1108 R
0.935, 1162 R 0.510, 1255 L 0.559, 1340 L
0.926, 1370 Q 0.524, 1373 Q 0.503, 1375 F
0.515, 1484 Q 0.509, 1499 I 0.523, 1526 F
0.541, 1543 L 0.505, 1639 Q 0.530, 1671 H

0.925, 1672 F 0.515

M1 vs. M2A 19.806836 2 0.000050003

M7 vs. M8 19.228316 2 0.000066777

M8a vs. M8 18.528045 1 0.000016742

Positively selected sites (* p > 95%; ** p > 99%).

Table 3. Comparison of likelihood ratio test (LRT) statistics of positive selection models against their
null models (2∆LnL) and positive selective amino acid loci for across all Nolinoideae species.

Protein-Coding Genes Comparison between Models 2∆LnL d.f. p-Value Positive Sites (M7 vs. M8)

ccsA

M0 vs. M3 25.070924 4 0.000048685

170 D 0.989 *, 175 R 0.969 *, 178 F 0.764,
184 F 0.978 *, 186 D 0.871, 206 R 0.868,

278 S 0.582

M1 vs. M2A 13.324234 2 0.001278437

M7 vs. M8 13.687792 2 0.001065942

M8a vs. M8 13.319022 1 0.000262727

ndhF

M0 vs. M3 74.589864 4 0 77 V 0.814, 463 K 0.804, 486 A 0.610,
513 G 0.702, 514 R 0.638, 523 H 0.828,

531 T 0.942, 546 V 0.979 *, 560 N 0.998 **,
584 P 0.726, 586 F 0.947, 588 G 0.550,

590 P 0.961 *, 596 L 0.698, 636 G 0.975 *,
638 P 0.850, 675 L 0.637, 680 Q 0.871,
728 F 0.830, 729 F 0.720, 732 L 0.973 *,

733 F 0.627

M1 vs. M2A 17.810044 2 0.000135706

M7 vs. M8 18.041236 2 0.000120891

M8a vs. M8 17.827478 1 0.000024187

rpl20

M0 vs. M3 0.407316 4 0.98187355

76 Y 0.698
M1 vs. M2A 0.016874 2 0.991598492

M7 vs. M8 0.067732 2 0.966701034

M8a vs. M8 0.01735 1 0.895206241

rps2

M0 vs. M3 108.22369 4 0

32 A 0.524, 131 N 0.504, 199 L 0.612,
237—1.000 **

M1 vs. M2A 108.22376 2 0

M7 vs. M8 108.237424 2 0

M8a vs. M8 108.245618 1 0

rps3

M0 vs. M3 2.187614 4 0.70129752

30 S 0.571, 86 E 0.568
M1 vs. M2A 0 2 1

M7 vs. M8 0.000004 2 0.999998

M8a vs. M8 0.025852 1 0.87226229

Positively selected sites (* p > 95%; ** p > 99%).
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2.5. Analysis of infA Gene

The translation factor IF-1 (infA) gene of S. gardenii is compared with the other three Nolinoideae
species. The comparative analysis showed that 26 bp deleted at the 3’ end of the infA gene followed
by 79 bp deletion in the intergenic region between infA and rpl36 gene in the chloroplast genome of
S. gardenii. Due to this frameshift mutation, the 3’ end of the infA is extended and 26 bp overlaps with
the rpl36 gene, thus leads to the length of the infA gene increased to 282 bp (Figure 5).
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2.6. Repeat Sequence and Simple Sequence Repeat Analysis

REPuter program is used to determine the presence of repeat sequences in the S. gardenii chloroplast
genome. The analysis showed that a total of 699 repeats, with motif length from 30 to 115 bp are
present in its genome. The repeats sequences included 264 direct, 251 reverse, 228 complementary and
256 palindromic repeats (Figure 6a). Of these repeats, 30–39 bp long repeats predominantly occupy in
the chloroplast genome and account for 98.1% (680 repeats) (data not shown). The remaining 19 repeats
are distributed in the range of 40 to 115 bp length (Figure 6b).
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repeats; C—complement repeats (B). The length and the total number of repeat sequences present in
the chloroplast genome.

A total of 805 simple sequence repeats (SSRs) were identified in the S. gardenii chloroplast
genome. Of these, 268 (33.29%) are mono-nucleotide repeats, 37 (5.6%) di-nucleotide repeats, 63 (7.8%)
tri-nucleotide repeats, 84 (10.4%) tetra-nucleotide repeats, 122 (15.15%) penta-nucleotide repeats,
140 (17.39%) hexa-nucleotide repeats, 37 (4.6%) 7-nucleotide repeats, 16 (1.99%) 8-nucleotide repeats,
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18 (2.24%) 9-nucleotide repeats and 4, 5, 4, 1, 2, 2 and 2 are 10-, 11-, 12-, 14-, 16-, 17- and 22- nucleotide
repeats, respectively (Figure 7a). Of the 805 SSRs, 72.17% (581), 11.55% (93) and 16.28% (131) SSRs are
present in the LSC, IR, and SSC regions, respectively (Figure 7b). Additionally, the distribution of SSR
in the protein-coding, intron and intergenic regions (IGS) were analyzed, and found that 517 (64.22%),
208 (25.84%), and 80 (9.94%) SSRs are located in IGS, protein-coding, and intron regions, respectively
(Figure 7c).
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2.7. Phylogenetic Analysis

To analyze the phylogenetic position of S. gardenii with other Nolinoideae species, 75 protein-coding
genes of 19 Nolinoideae chloroplast genomes are aligned. ML phylogenetic tree analysis revealed
that Nolinoideae species formed a monophyletic group (Figure 8). S. gardenii clustered with R. carnea,
R. chinensis and C. keiskei with strong bootstrap value and showed that S. gardenii is sister to both
R. carnea, R. chinensis and C. keiskei.
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Figure 8. Molecular phylogenetic tree based on 75 protein-coding genes of 19 Asparagaceae chloroplast
genomes. Asparagus set as the outgroup. The tree was constructed by maximum likelihood (ML) analysis
of the conserved regions using the RAxML program and the general time-reversible invariant-sites
(GTRI) nucleotide substitution model. The stability of each tree node was tested by bootstrap analysis
with 1000 replicates. Bootstrap values are indicated on the branches, and the branch length reflects the
estimated number of substitutions per 1000 sites. The Puerto Rico rectangular box indicates that the
infA gene is either a pseudogene or deleted in their respective chloroplast genome.

3. Discussion

The species Speirantha gardenii is a monocot plant of the Nolinoideae subfamily of the family
Asparagaceae. Until recently, only a few complete chloroplast genome sequences for this Nolinoideae
subfamily have been deposited in GenBank, with the very first being that of Polygonatum cyrtonema in
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2015. Owing to the development of high-throughput sequencing technologies, additional Nolinoideae
chloroplast genomes were sequenced [9–15], but the genus Speirantha has to date remained unexplored.
Therefore, in the present study, we sequenced the S. gardenii chloroplast genome and compared it with
its closed related other Nolinoideae members. The length of the complete chloroplast genome sequence
of S. gardenii is 156,869 bp and contains 137 individual genes, which is in the range of other Nolinoideae
and angiosperms. The GC content of S. gardenii is 36.7%, which is similar with R. carnea, but differs
with other closely related species, namely, R. chinensis (37.2%) and C. keiskei (37.9%) suggesting that
the distribution of the GC contents in the Nolinoideae chloroplast genomes are inconsistent and this
difference is due to the presence of high-level GC nucleotide percentages in the four rRNA genes in
IR regions (Table 1). Likewise, similar results have been identified in other angiosperm chloroplast
genomes [17–19].

Though the gene order and gene content are similar to other Nolinoideae species, the length of
the chloroplast genome differs in the Nolinoideae species. LSC region of the species of Nolinoideae
subfamily is generally similar but differs in SSC and IR regions in some species. The SSC region of the
R. chinensis (21,363 bp) is expanded due to the shift of the ycf1 gene from the IR/SSC border to the SSC
region. To support this event, plenty of insertion and deletion process is observed in their chloroplast
genome. Interestingly, the IR region of the C. keiskei is expanded due to the integration of 3.3 kb
mitochondrial region in the chloroplast genome and this event is restricted to the Convallaria genus [12].

Furthermore, the high sequence variation is identified in the chloroplast genomes of Nolinoideae
species. When S. gardenii is compared with other closely related species, the minor divergence is
identified in the intergenic regions of the R. carnea chloroplast genome. Besides, high sequence
variation is identified in the intergenic regions of C. keiskei and intergenic and protein-coding regions of
R. chinensis. This sequence variation is due to the insertion of the mitochondrial region in the chloroplast
genome of C. keiskei and indel observed in the intergenic and protein-coding regions of R. chinensis
genome. Owing to the indel events in the Nolinoideae species, the substitution rate impacts in some
protein-coding genes. The rate of synonymous substitutions (KS) accumulates nearly neutral evolution,
whereas the rate of nonsynonymous substitutions (KA) are subjected to selective pressures of varying
degree and positive or negative direction [20]. The ratio of KA/KS (ω) value below 1 indicates that the
corresponding genes experiencing relaxed or purifying selection whileω = 1 andω > 1 indicate neutral
and positive selection, respectively [20,21]. The KA/KS ratio of the protein-coding genes, such as ccsA,
infA, ndhF, rpl20, rps2, rps3 and ycf1, are more than 1, which indicates that these genes are under positive
selection (Figure 4). This deviation from unity is due to the presence of indel, premature stop codon
and amino-acid substitution events in the protein-coding genes, such as the 6 bp deletion and three
amino-acid change in the ccsA and infA of C. keiskei; 6 and 5 amino acid change by non-synonymous
substitution in the ndhF gene of R. carnea and R. chinensis; 8 bp insertion and 2 amino-acid substitution
in the rpl20 and rps2 of R. chinensis; 3 amino acid change in the rps3 of R. carnea; 18 amino-acid change
and 161 bp insertion in the ycf1 gene of R. carnea and R. chinensis. Though we have identified high
KA/KS nucleotide substitution ratio in these protein-coding genes, the overall nucleotide identity is
>99.2%, except for infA (85%). So, we compared the infA gene in the Nolinoideae subfamily. Usually,
the length of the infA gene is 234 bp. Most of the species of the Nolinoideae subfamily do not contain
an infA gene or contain it as a pseudogene except Maianthemum dilatatum, M. bicolor, R. carnea and
R. chinensis [9,10,13]. Meanwhile, the deletion of two bp at the 180th bp position in the infA gene of
C. keiskei, causes frameshift mutation to a premature stop codon and thus leads to the formation of
infA pseudogene [12]. In contrast, a total of 95 bp deletion occurred at the 3’ end of the infA gene
(26 bp) and the intergenic region between the infA and rpl36 gene (79 bp). Due to the indel process,
a frameshift mutation occurred and the 3’ end of the infA is extended and 26 bp overlaps with the
rpl36 gene, which thus led to the length of the infA gene increased to 282 bp (Figure 5). Furthermore,
a similar type of elongated infA gene is observed in many monocot plants such as Zea mays, Oryza sativa,
Hordeum vulgare etc. [22–24]. Besides, previous studies also revealed that most of the angiosperms
have lost their infA gene independently in their chloroplast genome [25].
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Based onω analysis of 79 protein-coding genes of S. gardenii, R. carnea, R. chinensis and C. keiskei
chloroplast genomes, we identified seven genes that are under positive selection. So, we evaluated a
selective analysis of the exons of each of seven protein-coding genes using site-specific models with
four comparison models (M0 vs. M3, M1 vs. M2a, M7 vs. M8, M8a vs. M8, likelihood ratio test
(LRT) (threshold value p ≤ 0.05) in EasyCodeML software [26]. Among seven models, M2a is the
positive selective model and p (p0, p1 and p2) represents the proportions of negative or purifying,
neutral and positive selection. The ω2 values of seven genes are ranging from 1 to 999 in the M2a
model (Supplementary Table S3). Further, we compared these seven genes across the publicly available
Nolinoideae chloroplast genome species to understand the selective pressure events. Due to the
presence of pseudogenization of the infA and ycf1 gene in some Nolinoideae species, we analyzed the
remaining five genes and identified the ω2 values ranging from 1 to 240.876 (Supplementary Table S4).
The variation inω2 value might be due to the increase in the number of species analyzed in this study.

To determine which sites are subject to positive selection, Bayes empirical Bayes (BEB) analysis is
used to analyze the location of consistent selective sites in the seven protein-coding genes of S. gardenii
chloroplast genome with its three closely related species using the M7 vs. M8 model. These genes
include one NADH-dehydrogenase subunit gene (ndhF), one ribosome large subunit gene (rpl20),
two ribosome small subunit genes (rps2 and rps3) and ccsA, infA and ycf1 genes. The analysis of BEB
revealed that five sites are under potentially positive selection in the four protein-coding genes (infA-3;
ndhF-1 and rps3 -1) with posterior probabilities of more than 0.95 and two sites (rps2-1 and ycf1-1)
with greater than 0.99 (Table 2). Furthermore, it could not identify any positively selected sites in
the ccsA and rpl20 genes. The 2∆LnL value of two genes is zero and the p-value of LRT is more than
0.05. In contrast, when analyzed with five genes (ccsA, ndhF, rpl20, rps2 and rps3) of all Nolinoideae
species, we identified seven sites (ccsA-3 and ndhF-4) greater than 0.95 and two sites (ndhF-1 and rps2-1)
>0.99. Furthermore, we can able to find out positively selected sites in the ccsA gene when analyzed
with all the species of the Nolinoideae subfamily. Nevertheless, we could not find any positively
selected sites in rpl20 and rps3. In both analyses, rpl20 does not encode any positively selected sites in
their gene, even though it has a higherω value than ccsA, infA, rps2 and ycf1 genes. To support this
analysis, the 2∆LnL value of rpl20 is zero and the p-value of LRT is greater than 0.05 (Tables 2 and 3).
All these highly positive selection genes are involved in the functions of the plant genetic system
or photosynthesis process [27–31]. Besides, these seven genes have undergone positive selection,
which might be the result of adaptation to their diverse habitats. In the end, highly variable regions
and seven protein-coding genes that are identified in their genome to be under positive selection could
be used to generate potential markers for phylogenetic studies or candidates for DNA barcoding in
future studies.

Simple sequence repeats (SSRs) are extremely powerful molecular marker and play a major role in
the population genetics, evolutionary studies, chloroplast genome rearrangement and recombination
process [2,18,32–38]. Among the 805 SSRs found in the S. gardenii plastome, most of the SSRs are
mononucleotide, which occupies 33.29% followed by hexa- (17.39%) and penta- (15.15%) nucleotide
SSRs in their genome. We also found many SSRs in IGS regions (64.22%) compared to protein-coding
and intron regions in the S. gardenii plastome. Because most of the protein-coding genes are highly
conserved than intergenic regions of angiosperm chloroplast genomes [3,5,12]. Similarly, the previous
studies also revealed that the non-coding region contains more SSRs than the coding regions [18,39,40].
The presence of SSR markers in the S. Speirantha could be used to understand the genetic relationships
between the closely related species. The complete chloroplast genome sequence-based phylogenetic
studies provide essential information regarding the evolutionary relationship among species, genera
and families [41–46]. The phylogenetic relationship of the Nolinoideae taxa has not been resolved in
earlier studies. The reason for this is that the Nolinoideae subfamily consists of three major tribe clades,
namely, Polygonateae, Aspidistreae and Ophiopogoneae, and is weakly supported in the phylogenetic
tree [47]. Moreover, in the Polygonateae clade, several Polygonatum species were characterized and
their phylogenetic relationships have been resolved recently [9,11,14,15]. In contrast, only a few
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studies have been carried out in the Aspidistreae tribe clade [10,12,13]. So, in the present study,
we constructed a maximum-likelihood phylogenetic tree based on concatenated 75 protein-coding
genes of 19 Nolinoideae species and revealed that all the species formed a monophyletic group and
S. gardenii formed a cluster with R. carnea, R. chinensis and C. keiskei. The previous studies also support
this phylogenetic tree where similar results were obtained that showed weakly supported bootstrap
value in some nodes of the Nolinoideae phylogeny [9–15,48]. The phylogenetic result also showed that
Speirantha, Rohdea, Reineckea and Convallaria genus are constantly clustered in the same clade with a
high-resolution value, even though high sequence divergence is noted in few protein-coding genes of
these chloroplast genomes. These results suggest that Speirantha is a sister clade to Rohdea, Reineckea
and Convallaria genus. However, the genus Liriope made the sister group to the Aspidistreae tribe clade
with very weak bootstrap value (26%). Floden and Schilling [47] revealed that the Maianthemum is not
sister to Disporopsis, Heteropolygonatum and Polygonatum and suggested that Maianthemum does not
belong to the Polygonateae tribe based on petA-psbJ + ITS analyses. In contrast, our results showed
that Maianthemum is a sister to Disporopsis, Heteropolygonatum and Polygonatum and it belongs to
the Polygonateae tribe based on 75 plastid protein-coding genes. To support our results, previous
studies also revealed that Maianthemum was included in the Polygonateae tribe based on four plastid
markers [49,50]. Therefore, more taxa need to be included to understand the phylogenetic position
and their relationships with other Nolinoideae subfamily species in future studies.

4. Materials and Methods

4.1. DNA Extraction and Sequencing

A high-quality Speirantha gardenii DNA sample was obtained from the DNA bank of the
Royal Botanic Gardens, Kew, London, England (http://data.kew.org/dnabank/DnaBankForm.html).
Whole-genome sequencing was performed using Illumina HiSeq2500 (Phyzen Ltd., South Korea)
and a paired-end (PE) library of 2 × 150 bp and an insert size of ~550 bp and obtained
8,363,058,594 raw reads. Read quality was analyzed with FastQC [51] and low-quality reads were
removed with Trimmomatic 0.39 [52]. The clean reads were filtered with GetOrganelle pipe-line
(https://github.com/Kinggerm/GetOrganelle) to get plastid-like reads, then the filtered reads were
assembled by de nova approach using SPAdes version 3.12.0 [53]. The obtained contigs (>500 bp) were
mapped with Nicotiana tabacum plastid genes (NC_001879) and three putative plastid-like contigs were
identified and scaffolded using Geneious Prime (Biomatters, New Zealand). complete chloroplast
genome sequence and gene annotation were submitted to GenBank and assigned the accession
number MT797212.

4.2. The Chloroplast Genome Annotation of the S. gardenii

Dual Organeller GenoMe Annotator (DOGMA) program was employed to annotate the S. gardenii
chloroplast genome [54]. The initial annotation, putative starts, stops, and intron positions were
adjusted by comparing them with closely related Convallaria keiskei homologous genes. Transfer RNA
genes were verified using tRNAscan-SE version1.21 with default settings [55]. The online program
OGDRAW was used to draw a circular map of the S. gardenii chloroplast genome [56].

4.3. Comparative Chloroplast Genome Analysis of the S. gardenii

The mVISTA program in Shuffle-LAGAN mode was used to compare the S. gardenii chloroplast
genome with closely related three other chloroplast genomes namely Reineckea carnea, Rohdea chinensis
and C. keiskei using S. gardenii annotation as a reference [57]. The boundaries between IR and SC
regions of these species were also compared and analyzed.

http://data.kew.org/dnabank/DnaBankForm.html
https://github.com/Kinggerm/GetOrganelle
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4.4. Characterization of Substitution Rates

To evaluate synonymous (KS) and nonsynonymous (KA) substitution rates, the S. gardenii
chloroplast genome was compared with the three other chloroplast genome sequences of R. carnea,
R. chinensis and C. keiskei. The similar individual functional protein-coding gene exons of these
genomes were extracted and aligned separately using Geneious Prime (Biomatters, New Zealand).
The aligned sequences were translated into protein sequences and substitution rates were analyzed
using DnaSP [58].

4.5. Positive Selection Analysis

To detect the nonsynonymous vs. synonymous (ω) ratio of seven protein-coding genes (ccsA,
infA, ndhF, rpl20, rps2, rps3 and ycf1) under selection in four species S. gardenii, R. carnea, R. chinensis
and C. keiskei and all Nolinoideae species separately, the sequences of each gene were aligned using the
MAFFT program [59] and the maximum likelihood phylogenetic tree was constructed using RAxML
v. 7.2.6 [60]. The nested site-specific model was conducted to calculate nonsynonymous (KA) and
synonymous substitution (KS) ratio using EasyCodeML [26]. The seven codon substitution models
described as M0, M1a, M2a, M3, M7, M8 and M8a were examined. Two likelihood ratio tests were
conducted to identify the positively selected sites: M0 (one-ratio) vs. M3 (discrete), M1a (neutral)
vs. M2a (positive selection) and M7 (β) vs. M8 (β and ω > 1) and M8a ((β and ω = 1) vs. M8,
which were compared using a nested site-specific model [26]. The likelihood ratio test (LRT) of the
above comparison was carried out respectively to evaluate the selection strength and the p-values of
Chi-square (x2) lesser than 0.05 were considered as significant. If the LRT p-values were significant
(<0.05), Bayes empirical Bayes (BEB) method was implemented to identify codons under positive
selection. The BEB values higher than 0.95 and 0.99 indicate the sites potentially under positive selection
and highly positive selection, which is indicated by asterisks and double asterisks, respectively.

4.6. Analysis of Repeat Sequences and Single Sequence Repeats (SSR)

REPuter software was applied to detect the presence of repeat sequences, including forward,
reverse, palindromic and complementary repeats in the chloroplast genome of S. gardenii [61].
The following parameters were used to identify repeats in REPuter: (1) Hamming distance 3,
(2) minimum sequence identity of 90%, (3) and a repeat size of more than 30 bp. Phobos software
v1.0.6 was employed to discover SSRs of chloroplast genome; parameters for the match, mismatch, gap
and N positions were set at 1, −5, −5 and 0, respectively [62].

4.7. Phylogenetic Tree Analysis

A phylogenetic tree was constructed using 75 protein-coding genes of 19 Nolinoideae chloroplast
genomes and Asparagus used as the outgroup. The 18 completed chloroplast genome sequences were
downloaded from the National Center for Biotechnology Information (NCBI) Organelle Genome
Resource database (Supplementary Table S5). The aligned protein-coding gene sequences were saved
in PHYLogeny Inference Package (PHYLIP) format using Clustal X v2.1 [63] and phylogenetic analysis
was constructed based on maximum likelihood (ML) analysis using the GTRI model by RAxML v.
7.2.6 with 1000 bootstrap replications [60].

5. Conclusions

The present study describes the complete chloroplast genome sequence of Speirantha gardenii and
is the first such report for a species in Speirantha. The S. gardenii chloroplast genome (156,869 bp) is
fully characterized and compared with its closely related species of Nolinoideae subfamily. Overall,
the gene contents and gene arrangements are similar and highly conserved in the species of Nolinoideae
subfamily. Furthermore, high sequence variation in the protein-coding and intergenic regions, repeat
sequences analysis, nucleotide substitution patterns and amino acid sites under potentially positive
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selection in seven protein-coding genes in the chloroplast genomes of species of the Nolinoideae
subfamily may be useful for developing a lineage-specific marker for genetic diversity and gene
evolution studies. Besides, phylogenomic studies showed that the genera Speirantha, Rohdea, Reineckea
and Convallaria are constantly clustered in the same clade suggest that these taxa are close genetic
relationships to each other and highly conserved in the Nolinoideae subfamily.

Supplementary Materials: Supplementary Materials can be found at http://www.mdpi.com/2073-4395/10/9/
1405/s1. Table S1: List of genes present in the chloroplast genome of Speirantha gardenii. Supplementary, Table
S2: Comparison of general features of Nolinoideae chloroplast genomes, Table S3, Comparison of site models,
positive selective amino acid loci and estimation of parameters for seven protein-coding genes in the four
Nolinoideae species, Table S4: Comparison of site models, positive selective amino acid loci and estimation of
parameters for five protein-coding genes in the Nolinoideae species, Table S5. List of chloroplast genomes used
for phylogenetic analysis.

Author Contributions: S.P. and G.R. conceived and designed the experiments. G.R. performed the experiments,
analyzed the data, and prepared a draft of the manuscript and figures. S.P. and G.R. modified the manuscript.
All authors have read and agreed to the published version of the manuscript.

Funding: The National Research Foundation of Korea (NRF) (2019R1F1A1062102) project, Ministry of Education,
the Republic of Korea, awarded to Gurusamy Raman, Department of Life Sciences, Yeungnam University.

Acknowledgments: This study was supported by the National Research Foundation of Korea (NRF)
(2019R1F1A1062102) project, Ministry of Education, Republic of Korea, awarded to Gurusamy Raman, Department
of Life Sciences, Yeungnam University.

Conflicts of Interest: The authors declare that they have no competing interests.

Abbreviations

LSC Large single-copy
SSC Small single-copy
IRs Inverted repeats
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KS Synonymous substitution
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