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Abstract: Crambe (Crambe abyssinica Hochst) is an oilseed crop in the Brassicaceae family. Crambe’s
ability to survive in diverse environmental conditions, its unique oil composition, the high oil content,
suitability for the production of slip agents for plasticizers, the capacity to be easily included in
common crop rotations, and its adaptability to equipment used for small grain cultivation has renewed
the interest in this emerging crop. Crambe is considered one of the main sources of erucic acid, which
can be up to 60% of its seed oil content. Erucic acid (C22:1) is a fatty acid with industrial importance
since it is used to produce erucamide, key ingredient in the plastic industry. Inclusion of crambe into
crop rotations can be beneficial because of its short life cycle, low fertility requirements, resistance
to pest and diseases, and relative drought tolerance. Currently high erucic acid rapeseed (Brassica
napus L.) (HEAR) is the principal source for erucic acid. However, the risk of contaminating food
quality rapeseed (i.e., canola) by cross-pollination and the negative impact on climate, due to high
inputs, are potential limitations to expand HEAR cultivation. Crambe has thus great potential to, at
least, partially replace HEAR as a source of erucic acid, if the current knowledge-gap in agronomic
management and crop improvement (seed yield and quality) can be addressed. Seed yield needs to be
increased to be able to compete with HEAR. In addition, reducing glucosinolates and fiber in crambe
meal may increase its inclusion in monogastrics rations. The objective of this review was to compile
and summarize new and existing information on agricultural practices in crambe production and
management to identify gaps in knowledge and areas for future research to increase the cultivation
of crambe.
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1. Erucic Acid Market: An Overview

Because of the importance placed on biodegradability, and renewability, there is an upward trend
in producing chemical compounds for various industries utilizing plant-based feedstock. Erucic acid
(cis-13-docosenoic acid) (C22:1) is a chemical ingredient used in industries to produce plastics, printing
inks, food, personal care products, pharmaceuticals, and other products [1]. Erucic acid is found only
in seed oil from plants belonging to Brassicaceae and Tropaeolaceae families [2]. Commercially, the global
erucic acid market is categorized based on its source, end-use industry, produced region, application,
and grade [1]. Based on the grade, erucic acid sources are segmented in two categories: erucic acid
content of 43–50% and erucic acid content >50% [1]. Currently, erucic acid is mainly derived from high
erucic acid rapeseed (HEAR) [1–3].

According to United States Department of Agriculture-Foreign Agriculture Service (USDA-FAS)
statistics [4], global HEAR production increased from 37.4 to 75.0 million Mg, between 2010 and 2019.
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Main HEAR producers are Canada, China, EU, and India. Canada HEAR seed production accounted
for 22.3% of the global production in 2019 [4]. Canada is also the largest exporter of HEAR with 8.9
million Mg in 2020, while the EU is considered the largest importer, followed by China [4]. The price of
HEAR oil has decreased from $647 in 2010 to $428 Mg−1 in 2019 [4]. Plastic manufacturing accounted
for 49.5% of HEAR oil consumption in 2017 [5]. The market for HEAR oil (mainly for erucic acid) is
predicted to grow at a rate of over 7% within the next five years, mainly because of the increasing
demand from East Asian countries [5].

2. Alternatives to High Erucic Acid Rapeseed

High erucic acid rapeseed plants and seeds are identical to that of food quality rapeseed (canola),
thus there is a high risk of cross-pollination, and accidental mixing of seeds at the processing plants [2,6].
Food contaminated with erucic acid can increase cardiovascular disease in humans [6]. According
to EU food standards, erucic acid content should be less than 5% in food grade oils [7], and in infant
formulas it should be less than 1% of total fatty acids [8]. As a result, USA, Canada, and EU cultivate
HEAR as an identity-preserved crop under contract, to avoid erucic acid from entering the food
chain [6]. Because of these strict restrictions, cultivation, transportation, processing and storage, and
traceability can be time consuming and costly.

Therefore, there is a need to find alternatives, and possibly cheaper, sources of erucic acid.
Alternative erucic acid sources, such as crambe, can help solving the current risks of growing HEAR.
According to Qi et al. [2], the main advantages of crambe over HEAR include: (1) Crambe plant and
seed morphology are both distinctively different from that of rapeseed, thus the risk of contamination
by erucic acid is minimum; (2) crambe does not outcross with HEAR or canola; (3) crambe has a higher
erucic acid content than HEAR; and (4) polyunsaturated fatty acids (PUFAs) content is lower in
crambe oil compared with HEAR oil. In addition, cultivation of HEAR involves higher amounts of
agronomic inputs (i.e., fertilizers and crop protection chemicals), resulting in negative environmental
impacts compared with lower input crops, such as crambe [9]. Life cycle assessment (LCA) comparing
crambe with HEAR resulted in the latter having the worst environmental impact in nine out of ten
impact categories tested, including global warming potential, abiotic depletion, acidification, and
eutrophication [9].

3. Industrial Uses

Crambe is considered a dedicated industrial crop since its high erucic acid content in the oil
and the large amount of glucosinolates in the meal limit any possible food/feed use. Erucic acid is
the main fatty acid found in crambe oil, which ranges between 50% and 65% [10,11]. Erucic acid is
a monounsatured, long-chain fatty acid, non-edible, and with specific industrial uses.

Erucic acid has attracted wide interests as raw material for hydraulic fluids, oleochemicals,
lubricants, additives, and as a starting material for new fibers, resins, plastics, lacquers, and other
products [12,13]. Wazilewski et al. [14] reported that the oxidative stability of crambe oil-derived
biodiesel is higher than soybean [Glycine max (L.) Merr.] oil-derived biodiesel, opening another
potential use for crambe. Crambe meal has high protein and fiber content. But the presence of
high levels of glucosinolates, which are toxic for monogastric animals, needs additional steps in
removing/inactivating the glucosinolates before using crambe meal as animal feed [10]. Otherwise,
the crambe by-products (i.e., seed meal including hulls (= siliques)), would only have industrial uses,
such as an adsorbent material to remove toxic compounds from contaminated water [15,16]. The most
recent uses of crambe oil and seed meal are summarized in Table 1.
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Table 1. Crambe oil and meal uses and research reported between 2010 and 2018.

Product References

Crambe oil
Biodiesel, jet fuel [9,13,14,17]

Crambe meal
Biosorbent [13,16,18]
Nematicide [19]
Cow/steer-feed [20,21]
Sheep/lamb feed [22–26]
Fish feed [27,28]
Other [29]

4. Crambe Origin and Distribution

Crambe is believed to be native to the eastern region of Africa from Ethiopia and Tanzania [10,17,
30–32]. It can be found as spontaneous species in Mediterranean areas of Europe and in the Middle
East [33]. Crambe was first utilized as a crop in former USSR during 1933 before it was introduced
into the United States in the 1940s [31,32]. Thereafter, it has been cultivated in several US States,
particularly in the Midwest. By 1992, there were about 10,000 ha grown in the United States. In
North Dakota, in 1996, it was estimated 16,000 ha of crambe was in production [34]. The number of
cultivars currently available for commercial production is limited, with Meyer, BelAnn, BelEnzian,
Indy, Westhope, Galactica, Mario, and Prophet as the prominent cultivars (Table 2).

Table 2. Crambe seed yield and seed oil content as reported in the reviewed literature under different
environmental conditions.

Country Seed Yield
(kg ha−1)

Oil
Content

(%)
Genotype Tested Main Factor

Studied References

Austria 972–3328 22–38 Gross Enzersdorj,
Gleisdorj Breeding lines [35]

Brazil
290–1225 32–41 FMS Brilahnte Phosphorus

fertilization [36]

317–524 27–30 FMS Brilahnte Sowing dates &
fungicides [37]

China 612–1558 34–44 Meyer Sowing dates [38]

England 3000–3500 n.a. Carmen, Galactica,
Nebula Cultivars [39]

Italy

2500–2840
† 32–37

BelEnzian, BelAnn,
Meyer, 47112, C-29,

Mario
Breeding lines [40]

1650–2110 42–47 Galactica, Nebula, Mario Years [11]

751–1940 28–38 MG 300605, MG 300621 Sowing dates [41]

Netherlands 2490–2970 36–57 BelEnzian Sowing dates [42]

Poland 1360–3190 n.a. Galactica N fertilization [43]

Portugal 95–742 26–34 FMS Brilhante Years [44]

USA/North
Dakota 1321–1430 n.a. BelAnn, Meyer,

Westhope Breeding lines [45]

USA/Arizona 1440–3200 33–36 Meyer Sowing dates [46]
† Autumn sowing in southern Italy; n.a. = data not available.
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However, the production declined thereafter in the leading states (North Dakota and Montana)
to less than 8500 ha by 2002 [34]. Recently, the 2019 North Dakota crop report indicated 314 ha of
crambe was grown that year [47]. Hebard [6] reported that the global cultivation of crambe declined to
less than 810 ha by 2016. Premature commercialization, higher prices for other crops, establishment
difficulties, decreasing government support for research were the main reasons that contributed to
the decline [48].

Crambe is a cool-season crop and can tolerate low temperatures down to −5 ◦C [32,46,49]. Crambe
is considered both as a spring crop and as a winter crop in Europe [17]. Crambe is reported to be
cultivated from sea level to 2000 m and in some parts of Africa it has adapted up to 2500 m [49].
Crambe can grow in areas with cumulative annual rainfall ranging from 350 to 1200 mm [17]. Even
though crambe is a relatively drought-tolerant crop, as with most annual oilseed crops, seed yield
increases as rainfall increases.

5. Morphological Description

Crambe has a short growth cycle and harvesting occurs usually at 90–110 days after sowing [17,50].
Growth cycle accumulates between 1300 and 1500 growth degree-days (GDD), with a base temperature
of 5 ◦C [51]. In the Mediterranean region, cycle length might be longer if seeded in autumn as a winter
annual crop, reaching up to 180 days [11]. Crambe is an annual herbaceous species, which normally
grows to a height between 1 and 1.20 m [50], but Falasca et al. [17] reported maximum heights of 2 m.
Plant height depends on the growing conditions such as season, plant density, and soil fertility [17].
The plant is characterized by an erect habit and the presence of numerous branches.

This species has a tap-root that can reach soil depths exceeding 1 m [11,52]. The robust root
system confers to crambe a wide adaptability to drought and soil salinity. The cotyledons of crambe
are heart-shaped (Figure 1A), while it has oval-shaped leaves (Figure 1D) with a smooth surface of
a light-green color [49,50]. Crambe is a self-pollinated plant; however, natural crossing can occur [35,53].
Flowering is indeterminate (Figure 1B), and it can last over two months [10]. The flowers are small;
they can be either white or light-yellow in color and arranged in a raceme (Figure 1E) [17,50].

Crambe seeds are produced in small sphere-shaped siliques (Figure 1C) that are initially green but
they become yellow-brown as they mature (Figure 1F, [54]) with a single seed per silique, also known as
pod. Mature seeds are greenish-brown in color with 0.8 to 2.6 mm in diameter [17] (Figure 1G). Siliques
are indehiscent, preventing shattering and seed losses during harvest [11]. The pericarp accounts for
25% to 30% of the silique volume [17], and 11% to 40% of silique weight [50]. Hulled crambe 1000-seed
weight ranges between 6 and 10 g [17].
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Figure 1. Details of crambe plants: (A) cotyledons at emergence stage; (B) crambe plants at bolting 
stage; (C) crambe siliques (hulls) during seed filling stage; (D) crambe at rosette stage; (E) crambe 
flowers; (F) crambe stand at harvest; (G) crambe seeds. (Photos by F. Zanetti). 
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[10,55]. Different studies reporting crambe seed yield and seed oil content across different 
environments and cultivation practices are summarized in Table 2. Among different climates, seed 
yield was higher with spring sowing than autumn sowing [44,56], but Zanetti et al. [11] reported 
similar seed yield in Mediterranean climate with autumn sowing. New studies on crambe testing 
different cultivars in new locations are necessary to better assess the environment by genotype 
interaction on seed yield potential.  

7. Agronomic Management  

7.1. Establishment 

A firm, well-packed seedbed is critical for crambe establishment because of its small seed size. 
Crambe prefers a moderately coarse to fine-textured soil, and well-drained soil with a pH between 5 
and 7.8. It is less tolerant to heavy soils, prone to waterlogging [10,32,57,58]. In tropical regions, soil 
compaction caused by lack of crop rotation and machine traffic needs to be considered in crambe 
establishment [12]. Bassegio et al. [59], have proposed a cover crop rotation system using sunnhemp 
(Crotalaria juncea L.) to reduce soil compaction before crambe cultivation. In addition, using a cover 
crop can improve soil fertility resulting in higher crambe grain yield [60]. Crambe shows moderate 
tolerance to saline soils [61]; however, seed oil content decreased with increasing salinity in irrigation 
water [55]. 

Figure 1. Details of crambe plants: (A) cotyledons at emergence stage; (B) crambe plants at bolting
stage; (C) crambe siliques (hulls) during seed filling stage; (D) crambe at rosette stage; (E) crambe
flowers; (F) crambe stand at harvest; (G) crambe seeds. (Photos by F. Zanetti).

6. Seed Yield Potential

Crambe seed yield varies with cultivar, climate, soil characteristics, and management practices [10,
55]. Different studies reporting crambe seed yield and seed oil content across different environments
and cultivation practices are summarized in Table 2. Among different climates, seed yield was higher
with spring sowing than autumn sowing [44,56], but Zanetti et al. [11] reported similar seed yield in
Mediterranean climate with autumn sowing. New studies on crambe testing different cultivars in new
locations are necessary to better assess the environment by genotype interaction on seed yield potential.

7. Agronomic Management

7.1. Establishment

A firm, well-packed seedbed is critical for crambe establishment because of its small seed size.
Crambe prefers a moderately coarse to fine-textured soil, and well-drained soil with a pH between
5 and 7.8. It is less tolerant to heavy soils, prone to waterlogging [10,32,57,58]. In tropical regions,
soil compaction caused by lack of crop rotation and machine traffic needs to be considered in crambe
establishment [12]. Bassegio et al. [59], have proposed a cover crop rotation system using sunnhemp
(Crotalaria juncea L.) to reduce soil compaction before crambe cultivation. In addition, using a cover
crop can improve soil fertility resulting in higher crambe grain yield [60]. Crambe shows moderate
tolerance to saline soils [61]; however, seed oil content decreased with increasing salinity in irrigation
water [55].
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Crambe requires a cool environment during germination and establishment. Early sowing typically
results in higher seed yield, decreased days from sowing to flowering and physiological maturity,
and in reduction in weed pressure [58,62]. Sowing is usually done in the spring, past the time when
frost can damage emerging seedlings in northern climates [31,32,62]. In environments characterized
by a mild winter (i.e., southern Mediterranean basin), the establishment in late autumn/early winter
permits to achieve seed yields higher than spring-sown crambe by avoiding summer heat and drought
during the seed filling phase [11]. In midwestern USA, sowing dates vary from late March to early
May depending on location and year. Early March to the first week of April is preferred in Nebraska,
mid- to late-April in Wisconsin and southern Minnesota, and early-May is recommended in North
Dakota [32,58,62]. Planting later than these dates reduces seed yield, seed oil content, and increases
weed pressure [62]. In North Dakota, Johnson et al. [58] reported that sowing crambe after 15 May
resulted in reduced seed yield, and oil content, and recommended sowing crambe before 1 May if
field conditions allow it. Seed yield reduction in later sowing dates can be attributed to hot and dry
conditions, where water stress conditions can reduce seed germination and vigor [63].

Crambe can be solid-seeded or in rows. Crambe solid seeding can be done in a field with
low weed pressure, using equipment such as a small grain drill or a cultipacker seeder [32]. Row
planting can improve uniform maturity, reduce losses due to soil crusting, and reduce seed cost.
Row spacing in crambe ranges between 0.12 and 0.90 m in width. Narrow row spacing of less than
0.30 m improved seed yield by enhancing weed competition, decreasing branching, and promoting
uniform maturity [32,41]. Wider row spacing increased lodging [10], but it might be of interest in drier
environments [64]. Maize (Zea mays L.) seeder fitted with maize or soybean plates can be used to
plant crambe in rows of 50 and 76 cm. In Brazil, row spacing varies between 17 and 50 cm, mainly
depending on the availability of seeding equipment [12].

Seeding rates vary with row spacing. Carlson et al. [65] recommended a seeding rate between
11 and 22 kg ha−1 for crambe. A seeding rate of about 20 kg ha−1 is recommended if row spacing
is below 0.3 m [11,66]. For row spacing above 0.3 m, a seeding rate between 8 and 15 kg ha−1 is
adequate [40,62,67].

Planting depth is another critical factor in achieving a good stand. In a well-prepared seedbed with
adequate soil moisture, planting depth recommended for crambe ranged between 0.6 and 1.9 cm [57,62].
However, in soils with less moisture, crambe can be sown at 2.5 cm depth [32].

The use of high-quality seed for sowing can be one of the best practices to reduce production
costs. For crambe, it is recommended to sow seeds with no less than 80% germination rate [62].
The pericarp of the silique remains attached to the seed after harvest, which protects the seed from
pathogens and insects but at the same time hinders seed germination. To analyze crambe seed viability
Rezende et al. [68] recommended performing a tetrazolium test, by soaking the seeds in a 0.075%
tetrazolium solution for 18 or 24 h. Lima et al. [69], identified that accelerated aging test using water
for 72 h, and conducting an electrical conductivity test on pre-soaked crambe seeds were effective
in evaluating crambe seed quality. A recent study by Kwiatkowski et al. [70], reporting a thorough
evaluation of crambe seed vigor and viability in response to genotype and growing conditions, showed
how the latter became important in determining crambe seed quality, even if all tested genotypes were
characterized by germination rate above 95%.

7.2. Fertilization

There is limited amount of information available with regard to specific fertilizer recommendations
for crambe [71,72], even if this oilseed crop is usually considered as low input. Knights [48]
indicated crambe nutrient requirements are similar to that of rapeseed. Phosphorus and potassium
recommendations for small grain crops with approximately 50 and 89 kg ha−1 of P2O5, and K2O,
respectively should be adequate for crambe production [32].

Rogerio et al. [36], determined the effect of phosphorus (0, 15, 30, 50, and 90 kg ha−1 P2O5) on
crambe seed yield reporting higher seed yield with increased phosphorus rates; however, seed oil
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content was not affected. In contrast, Alves et al. [71] reported that increased phosphorus rates up to
80 kg ha−1 P2O5, favored root and shoot development in crambe resulting in increased seed yield, but
also in oil content. Da Silva et al. [73] reported that applying phosphorus at seedling stage increased
seed oil content and 1000-seed weight.

Crambe also responded positively to N fertilizer from approximately 89 to 150 kg ha−1 of N [10].
Similarly to rapeseed, it is expected that crambe may respond to sulfur fertilizer, especially on sandy
soils [32]. Increasing the soil base saturation level to 47–48% can increase seed yield, oil content, and
biomass yield of crambe [71].

Summarizing, the fertilization usually reported for crambe is in the range of 30–160, 40–120, and
60–120 kg ha−1 of N, P, and K respectively [11,43,74,75]. It is important to keep in mind that even higher
N rates increase seed yield, an increase in N fertilization significantly reduces the seed oil content and
causes an overall worsening of the environmental impact of the crop [43].

7.3. Pests, Diseases, and Weed Management

One of the key advantages of crambe over other potential biofuel feedstock is its ability to tolerate
pests and diseases. Flea beetles [Phyllotreta cruciferae (Goeze)] are the main pest of rapeseed and
canola in the United States and Canada, while crambe is more resistant to flea beetles, compared
with rapeseed [76]. Several studies on crambe have not identified any major insect that causes
significant seed yield losses [77–79]. The resistance to pest may be due to the presence of high levels of
glucosinolates [62,76]. However, some insects are attracted by glucosinolates, such as diamondback
moth (Plutella xylostella L.), which might cause damage in occasions [80], but needing only seldom
insecticide application to control them.

Crambe is highly susceptible to turnip yellow mosaic virus (TYMV). Symptoms include mosaic
and yellowing of outer leaf edges. Flea beetles and grasshoppers are the known vectors of TYMV.
Crop rotation along with eradicating crambe volunteers is considered the most effective methods of
managing TYMV [62]. Black spot caused by Alternaria brassicae is another devastating disease that
crambe is susceptible to [32,62]. Plants are infected by spores, which overwinter in infected plants
or debris. Control measures include utilizing a long-term rotation, using disease-free seeds, and
controlling volunteers and weeds in the Brassicaceae family [62]. Seeds can be treated with a fungicide
or soaked in warm water (60 ◦C) for about 20 min [32]. White mold or stem rot caused by Sclerotinia
sclerotiorum Lib de Bary affects crambe, especially in the US Midwest. A sclerotium is a dormant
overwintering stage of the fungus. Sclerotinia can survive in the soil for long periods of time. High
plant densities, increased humidity, higher inoculum levels, and excessive N fertilizer rates can create
conducive conditions for an infection. Rotation with non-host crops and use of certified seed are
considered the most effective control methods of this disease [62]. Fungicide treatments are not
recommended for any of the fungal disease of crambe [81]. However, biological control agents such as
Trichoderma asperellum and Bacillus subtilis are promising to control fungal diseases in crambe [82].

Crambe seedlings are not very competitive against weeds. This is the result of slow initial growth
up to four weeks after emergence [32]. Negative effects of weed competition generally show 60 to 70 days
after emergence [12]. Therefore, it is critical to maintain a weed-free environment by canopy closure.
Uniform thick stand is effective in controlling weeds. Use of high-quality seed, optimal row spacing,
early sowing, and adequate sowing rates are some of the methods that can be used to reduce weed
competition [32,62]. Common lambsquarters (Chenopodium album L.), redroot pigweed (Amaranthus sp.),
kochia (Kochia scoparia), wild mustard (Brassica kaber L.), and foxtail (Setaria spp.) have been reported
to hinder crambe production [10,62]. Weeds can emerge through the canopy when crambe reaches
maturity and can cause problems during harvest. Tall, green weeds at harvest increase seed moisture
and can disrupt seed drying post-harvest, if a desiccant is not used [32]. Common ragweed (Ambrosia
artemisifolia L.), and redroot pigweed are reported to cause problems during combining [62]. Trifluralin
and metazachlor have shown to be selective when used as a soil-applied pre-emergence [41,62,83].
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Souza et al. [83] reported about the potential use of clethodim + fenoxaprop-p-ethyl, fluazifop-p-butyl,
quinclorac, sethoxydim, and clethodim as post-emergence herbicides.

Crambe is considered more tolerant to salinity, cold temperature, heat, and moisture stress
compared with other oilseed crops [58,84]. Artus [85] reported crambe being less susceptible to heavy
metals such as arsenic, when compared with Indian mustard [Brassica juncea (L.) Czern].

7.4. Harvest, Post-Harvest, and Storage

Crambe seeds mature rapidly after flowering, usually within two to five weeks, depending on
sowing date and environmental conditions. Harvesting at correct maturity is important to minimize
high shattering losses [31]. Physiological maturity in crambe is attained when 50% of seeds have
turned brown [31]. Harvesting should be done as soon as last of the seed-bearing branches reach
maturity, evident by seed pods turning to light tan in color [32]. By that time seed moisture level will
be around 10% [62].

Combine-harvester with available equipment for cereals [31,86] can easily harvest crambe.
According to Jasper et al. [87], crambe harvest cost is the most significant among all other oilseeds,
because of non-uniform stand and difficulties in collecting and cleaning the seed. This can be avoided
by using a desiccant before harvesting. Cangussu et al. [88] reported the use of the herbicide glyphosate
[N-(phosphonomethyl) glycine] as a desiccant at 2.0 L a.i. ha−1 when 90% of the seeds turned brown,
without negatively affecting seed germination or vigor.

Crambe has a low bulk density, which is about 340 kg m−3 [12]. Since crambe seeds are small and
light weight, transport and storage facilities need to be tight to avoid seed losses. Storage facilities
need to be in close proximity to the fields to reduce transportation costs. Before drying and storage,
seed should be cleaned to avoid foreign material, which can cause heating problems, and increase
in drying costs [62]. Clean, insect-free bins with perforated floors with fans are preferred for seed
storage. Drying and storage conditions directly affect seed quality and seed oil properties of crambe.
Prolonged storage can negatively affect the physiological quality of the seed [89]. Crambe seed should
be stored with less than 10% seed moisture content, and maximum drying temperature should be less
than 43.3 ◦C [31]. Crambe seeds that dried in the plant before harvest had the best seed oil quality
compared with artificial drying using heated air, interestingly, the drying method did not influence
the quality of biodiesel made from crambe oil [90].

7.5. Environmental Impact of Crambe Cultivation

In recent years, crambe cultivation has attracted the interest of many researchers and industries
all over the world because of its lower input requirement compared with other oilseed crops, such as
rapeseed [36]. As it already has been mentioned, crambe seed oil can be used for producing biodiesel,
jet fuels, hydraulic fluids, and biolubricants [17,38,43]. But before promoting crambe as an alternative to
HEAR, it is important to estimate the environmental impacts associated with crambe cultivation, since
agricultural activities and inputs are responsible for 70% to 80% of the greenhouse gases emissions in
most crops [91]. Life cycle assessment and energy efficiency indices in crambe cultivation revealed that
the negative environmental impacts are mainly related to diesel and electricity consumption used for
sowing, growing, and harvesting the crop, in a scenario of low nitrogen fertilization [44]. Substituting
mineral diesel with biodiesel might be a solution to improve the environmental performance of
the system allowing the reduction of impacts on climate change and eutrophication. Overall, crambe
cultivation presents lower environmental impacts than other crops such as canola or maize [44].

8. Research Advances and Future Prospects

Even though in the past crambe was cultivated in some countries, it is not yet widely produced.
Currently, crambe can be considered a specialty niche-crop. Crambe oil has a market as ingredient
in specific personal care products. The cosmetic industry pays a higher price for crambe oil, about
$6.0 kg−1, compared with the price of HEAR oil which it is less than $1.5 kg−1 [6].
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From an economic perspective, higher production cost per kg of oil and lower seed yield are
the main drawbacks of crambe when compared with HEAR [9,92]. In addition, crambe has about 10%
lower oil content, up to four times higher sulfur content in the oil, higher meal to seed proportion, and
higher levels of fiber and glucosinolates in the meal (which can be high as seven-fold) compared with
HEAR [6].

Because of the above-mentioned drawbacks, there is great need for innovation and improvement
in crambe production and utilization, to be considered a viable alternative to HEAR. There are several
areas that would benefit from further research in crambe production and processing, such as adding
value to crambe meal, improving seed yield, erucic acid content, and lowering sulfur content in the oil
and glucosinolates in the meal.

8.1. Crambe Meal Uses

Crambe meal, which is the remaining product after oil extraction, is an important resource, which
needs to be utilized effectively. Dehulled crambe meal can contain up to 50% crude protein (compared
with 27% with hull), with a digestibility level similar to soybean meal, but at a third the cost of
the latter [93,94]. Fiber content depends on the proportion of hulls that are in the meal. Fiber content
can vary between 6.5% (totally dehulled) and 22% (with-hull) [95]. However, the high glucosinolate
content in the meal can cause detrimental effects to livestock [96]. Glucosinolates cause toxicity issues
in monogastric animals such as swine and poultry [93]. Increased use of crambe meal in lamb (Ovis aries
L.) diet has resulted in poor performance, increased hepatic injuries to animals, poor meat quality, and
meat containing higher erucic acid content than the limit allowed as safe for human consumption [97].
Oppositely, Itavo et al. [25] and Syperreck et al. [26] reported no negative effects on lamb carcass quality
and animal performance when crambe meal was less than 20% of the ration.

New technologies for glucosinolate detoxification, such as chemical and physical treatments,
reducing the amount to 450 mg kg−1 DM on crambe meal, could allow the full substitution of soybean
meal in ruminant diets [98]. Recent studies reported that crambe meal can be valuably included in fish
diets (i.e., silver catfish, Rhamdia quelen) as sustainable replacement of fish meal [27,28].

Crambe meal odor and flavor reduces palatability and some animals tend to select out crambe
meal when possible. Nevertheless, the potentially cheaper price and high protein content in crambe
meal, compared with alternative oilseed meals, have led to increased research to studies on optimum
levels of crambe meal that can be mixed with other components [95,99]. There is still opportunity for
further developments and research, to find effective and cheaper methods to remove hulls from seed,
as meal quality improves with dehulling [95].

Crambe seed meal has been reported to have insecticidal activity. Peterson et al. [100], identified
two compounds from crambe seed meal [phenylethyl cyanide and 2-(S)-1-cyano-2-hydroxy-3-butane]
which can act against house flies (Musca domestica). Vaughn and Berhow [101] evaluated crambe
seed meal as an effective soil amendment to minimize soil pathogens and weed seedbank. They
identified a phytotoxic chemical compound (1-cyano-2-hydroxy-3-butane) seemly responsible for
the reported activity. Walker [102] reported a nematicidal effect of crambe meal in 1997. Recent
studies reported crambe meal extract have nematicidal effect. In fact, Coltro-Roncato et al. [19]
reported satisfactory results against Meloydogine incognita in tomato (Lycopersicon esculentum L.), while
Tavares-Silva et al. [103] tested it against Pratylenchus brachyurus in soybean.

Another possible way of valorization of crambe seed meal is the extraction of proteins, which can
be used to develop bio-based products such as plasticizers and adhesives [104]. Unfortunately, first
attempts using crambe meal resulted in products of poor performance. This indicates that conversion
technologies applied on crambe protein concentrates in the near future need to improve to increase
protein performance for the production of molded plastic films [105].
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8.2. Crambe Breeding and Genetic Modification of Oil Quality

Increasing genetic variability and discovering genotypes more suitable for different environmental
conditions can be beneficial, as future agriculture needs to adapt to climate change [106,107]. Low
seed yield, poor seed germination, disease resistance, high sulfur content in seed oil, and high
glucosinolates and fiber content in the meal are some of the critical areas that need to be addressed
through breeding and improvement. A recent study in Brazil reported 10% to 49% genetic gain in seed
yield in tested crambe lines after selection and evaluating 82 progenies of cultivar FMS Brilhante [108].
A screening study, conducted in Poland by Kwiatkowski et al. [70] with 10 crambe genotypes, was
able to identify three breeding lines, from the University of Wageningen Research program (The
Netherlands), characterized by larger fruits (siliques) and increased seed vigor, which resulted in
higher seed viability and rapid germination.

Genetic modification might complement conventional breeding for improving crambe plant traits,
but the success of these approaches depends, among other factors, on the regeneration efficiency
of explants and transgene integration [109]. Unfortunately thus far, there is a lack of regeneration
protocols for crambe. Using different plant growth regulator combinations on crambe cv. Galactica
hypocotyl explants, Li et al. [110] were able to achieve high regeneration frequency of 60%. In a separate
study using crambe cv. BelAnn hypocotyl explants, Chhikara et al. [111] obtained transformation
frequencies between 6.7% and 8.3% with a regeneration frequency of up to 70%.

Li et al. [3] successfully achieved the goal to increase erucic acid level in the seed oil by using
Agrobacterium tumefaciens-mediated transformations. Transgenic lines able to produce wax esters
(WE) and higher oleic acid contents in the seed oil have been selected by Li et al. [112]. Wax esters,
are esters of fatty acids and fatty alcohols, with relevant properties in lubricants production [10].
Li et al. [113] were able to develop new crambe lines producing high WE content, through genetic
engineering. The new lines had seed oil containing more than 25% of WE and this trait was stable over
several generations.

Erucamide is the primary product derived from erucic acid, and a key ingredient in plastic
manufacturing. It is estimated that production cost of erucamide decreases by 50% with every 10%
increase in erucic acid content in the seed oil [3]. In order to increase the erucic acid content in crambe
seed oil, gene-stacking methods have been used to develop transgenic crambe lines which resulted in
13% increase (total erucic acid content of 73% in seed oil) in erucic acid content compared with the wild
type [3]. When the erucic acid content in the oil is greater than 90%, crambe seed oil can be used directly
without going through erucamide production, thus greatly reducing production costs [3]. Increasing
the erucic acid content along with decreasing the PUFAs levels in the oil can improve the fractionation
efficiency of erucic acid, thus reducing the production cost. Qi et al. [2] reported promising results
developing transgenic crambe lines that contain lower amount of PUFAs in its seed oil.

8.3. Agronomic Management

A lack of recent studies on agronomic management of crambe, compared with other emerging
oilseed crops, such as camelina [Camelina sativa (L.) Crantz], field pennycress (Thlaspi arvense L.), and
carinata (Brassica carinata L.) can be easily observed from the literature (Table 3). Studies to identify
fertilization rates, weed management strategies, pest and disease management to optimize seed yield
are some of the critical areas that need to be addressed in crambe production.
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Table 3. Research publications in crambe compared with other emerging oilseed crops from
the Brassicaceae family.

Crop Scientific
Name

Total
References †

Year of
the Oldest

Publication

Percent of
Published

References between
2015 and 2019 (%)

Number of
Published

Papers from
2015 to 2019

Crambe Crambe
abyssinica 488 1957 26.3 131

Camelina Camelina
sativa 761 1959 51.4 422

Pennycress Thlaspi
arvense 331 1930 27.0 93

Carinata Brassica
carinata 830 1942 26.5 224

† Database search was done in the Scopus database including all article types between 2015 and 2019. Total references
were calculated from the oldest publication to the newest in 2019.

The main limitation for crambe to achieve higher productivity has been attributed to its inefficient
use of solar radiation during seed development [42]. Siliques undergoing active seed filling were
only able to intercept lower amount of radiation, compared with stems and senescing leaves, which
intercepted higher proportion of the radiation [42], thus partially explaining the yield gap between
crambe and HEAR.

Crambe seeds can undergo post-harvest dormancy thus resulting in low germination rates,
sometimes as low as 42% [114]. Seed dormancy could be also the result of abiotic stresses or nutrient
deficiencies during seed development, which is controlled by hormones [115,116]. Foliar application of
indole butyric acid and gibberellic acid during late vegetative-early flowering stages of crambe resulted
in increasing seed germination percentage [117]. Even if the seeds are not dehulled before sowing,
the presence of the hulls can create problems, particularly when using precision pneumatic seeders.
Seed hulls can break exposing the seed to pathogens in the soil reducing the final stand density.

Finally, the possibility to set up a low-input organic agronomic management for crambe will
increase the value of the seed oil, especially for personal care products and cosmetics, but to date this
has not been reported.

8.4. Ecosystem Services Provided by Crambe Cultivation

Although not extensively studied, crambe can be used as an annual cover crop. It can provide
benefits to cropping systems such as nutrient cycling, improving soil structure, reducing soil erosion,
and weed control, similar to other annual crops in the Brassicaceae family [118,119].

Recent studies have reported on the use of crambe for soybean cyst nematode (SCN) (Heterodera
glycines Ichinohe) management. When crambe was cultivated in SCN infested soil, a significant
reduction in the number of adult SCN female and cysts was observed during the 90-day period of
the experiment [120]. After the incorporation of crambe residues, nematicidal activity continued to
the subsequent season. Acharya et al. [121], reported crambe as a poor host to SCN, and the evaluated
crambe cultivar could in fact support SCN reproduction, but in a very low level. This emphasizes
the need for further research to identify crambe cultivars with nematicidal activity towards different
SCN populations.

9. Conclusions

The high erucic content in crambe oil makes it an ideal candidate to replace, at least in part, high
erucic acid rapeseed. However, crambe low seed yield, the need for dehulling, the high glucosinolates
and fiber in the meal, and the lower seed oil content than HEAR limit its development as a competitive
cash crop. Efforts in plant breeding to increase seed yield, increase erucic acid content in the oil, and



Agronomy 2020, 10, 1380 12 of 18

reduce glucosinolates in the meal will be key for crambe to compete in the market of high erucic acid
producing crops.

In addition, research in agronomic management (conventional and organic) is needed to
optimize seed yield to make crambe competitive for end-uses such as personal care products and
the cosmetic industry.
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