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Abstract: Electrical conductivity of the growing media or drainage indicates the nutritional conditions
in the cultivation system. However, the nutrient uptake phenomenon has not been related well to
the soilless culture system. Herein, we report on the design, theoretical analyses, and verification
of a method for an online indicator related to plant nutritional aspects. Models for simulating
nutrient and water transport in a porous medium were constructed for analyses of the nutrient
uptake estimation method. In simulation analyses, we summarized the theoretical relationships
between flow rates of total nutrients in a substrate and nutrient uptake. For concept validation,
we conducted a greenhouse experiment for correlation analysis with the growth of tomato plants,
conventional nutrient, and water management indicators, and developed online indicators related
to plant nutritional aspects. Onsite application of the indicator showed a higher correlation with
tomato yield than conventional management indicators, such as transpiration, irrigation, drainage
ratio, leaching fraction, and electrical conductivity of drainage. In addition, to assess the usability of a
nutrient uptake indicator as an onsite decision-making technique, data normalization was conducted.
Through this, the time series responsiveness of a nutrient uptake indicator to the yield change
was confirmed.
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1. Introduction

Recently, agricultural production systems are undergoing a process of technological transition [1].
Furthermore, plant production platforms are also expanding to more advanced systems such as
smart and vertical farms. One of the most observable changes is the rapidly increasing data flow [2].
Ultimately, this change could lead to the automation of decision-making. The derivation of useful
information in the agricultural data chain is primarily based on the collection of data that reflects
interactions between plants and the environment. Thus, appropriate interpretation of the sensor
information under an automated data acquisition system of various plant production platforms is
crucial for systematic linkage between plants and the cultivation system.

Technologies related to the capture, transfer, and storage of data are already being deployed in
agricultural production systems [2,3]. In soilless culture, water management sensor-based research
and development related to transpiration are actively being conducted. The data chain for plant
water management with sensors is well established, such as those for measuring root zone moisture
content [4–6], substrate weight [7,8], solar radiation [9], and humidity [10]. However, the translation of
sensor data into knowledge of plants is still challenging [11]. Decision-making by farmers in commercial
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farms is now being advanced to the level of a comprehensive analysis of water management with plant
physiological statuses, such as vegetative and generative growth and root distribution [12].

Recent research is being extended to systemic linkages between cultivation and crops, which involves
translating data from deployable sensors into plant state information, such as fresh weight and
physiological condition of a plant [13–15]. However, transpiration is a phenomenon described primarily
as a physical environmental condition in the plant–atmosphere continuum, although it reflects plant
information, such as leaf area and stomatal conductivity [16–18]. On the other hand, the nutrient uptake
phenomenon of plants is highly related to plant physiological statuses, such as relative growth rate,
vegetative growth, generative growth, and plant stoichiometry [19–21]. Thus, expanding the data
channels for plant physiological information, in addition to the transpiration data stream, could lead to
the deployment of a more advanced decision support system. However, there are limited technological
developments and research on an indicator related to plant nutritional aspects in data acquisition schemes
within the soilless culture system.

A sensor associated with nutrient characteristics of the soilless culture system is the electrical
conductivity (EC) sensor. However, to date, soilless culture systems have used EC data mainly
for the management of the appropriate control status of nutrient concentrations in supplying the
nutrient solution, substrates, and drainage. The drainage EC is a function of transpiration, nutrient
absorption, and remaining available mineral nutrients [22,23]. Therefore, the EC of drainage can expect
more information than just indicating nutrient concentration. In steady-state conditions of a system,
the inputs and outputs of a component become the same as the internal process that produces or removes
that component [24]. In practice, however, cultivation sites continue to experience nonhomogeneous
distribution of nutrients in the root zone [23], intermittent water supply [25], and fluctuations in root
zone water content and EC [9]. Some studies have provided estimates of individual nutrient absorption
under soilless conditions [26,27], but no analysis has been conducted on the systems interpretation
of the results, such as the effects of error factors or their utility. Thus, the systemic linkages between
soilless culture system data such as irrigation, drainage, and EC to plant can have the potential to
expand decision-making technologies in agricultural systems. However, little attempt has been made
for direct corollary research to date to link EC data to the nutrient uptake characteristics and translates
them into plant physiological information in the data acquisition system of soilless culture.

In this study, a nutrient uptake-related indicator of an arbitrary unit was extracted based on the
supply and drainage volume of nutrient solution, and corresponding EC under simulated conditions
of plant nutrient absorption, intermittent irrigation, and consequent EC variation and uneven nutrient
distribution in a substrate. The sensitivity of the nutrient uptake-related index in an arbitrary unit
was confirmed with comparisons of the change in nutrient uptake tendency under the simulated
conditions affected by error triggering factors. Greenhouse experiments were conducted to investigate
the correlations of the index calculated from the supply and drainage volume of the nutrient solution,
and EC with the plant growth indicators to translate them into plant physiological information in
the physical soilless culture system. In addition, a nutrient uptake-related indicator and the yield
change data collected in this experiment were normalized to assess the potential usability as an
onsite decision-support technique for yield-promoting nutrient and water management. Through the
normalization, time-series responses of a nutrient uptake-related indicator were confirmed according
to the relative change in yield between each treatment.

2. Materials and Methods

2.1. Simulation Analysis on Nutrient Uptake Estimation

Under ideal conditions such as a steady state, the inputs and outputs of a component in a system
become the same as the internal process that produces or removes that component [24]. Thus, in theory,
the steady-state condition of a media could provide an accurate response to the nutrient absorption
by plants as the difference between the nutrients supplied to the media and discharged nutrients
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from the media. However, in most soilless culture systems, nutrients and water are intermittently
supplied by an automatic irrigation system, and in the case of a substrate, such as rockwool, conditions
of nonuniform distribution of nutrients are formed in the root zone. In the present study, a soilless
culture system model was constructed to analyze how the difference between nutrient supply and
discharge follows changes in plant nutrient absorption under conditions that reflect these constraints.

The soilless culture system simulation roughly consisted of irrigation control based on the
integrated solar radiation, changes in the water content of the substrate by irrigation and transpiration,
and nutrient uptake (Figure 1a). The dynamic changes in incoming solar radiation were modeled by
the total cloud cover model based on solar elevation [28,29]:

K+ = K+
0

(
1 + b1Nb2

)
(1)

where K+ is the reduced solar radiation by the total cloud cover; K+
0 is the incoming solar radiation at

ground level under clear skies, which is determined by solar elevation over seasonal time changes; b1 and
b2 are the empirical coefficients; and N is the total cloud cover. N is a value between 0 and 1; closer to 0
corresponds to a clear day, and closer to 1 corresponds to a cloudy day. In simulation analysis, dynamic
weather changes were simulated by moving N between 0 to 1 in a random walk process. The irrigation
of the soilless culture system was controlled based on the integrated value of solar radiation K+ for
simulating the general greenhouse irrigation automation method [9]. The transport of nutrients and
water in a soilless culture system was simulated by the soilless culture system model of Ahn and Son [30]
based on the nutrient transport model in a substrate condition [31,32]. For the absorption of nutrients,
according to the concentration of nutrients in the substrate, the Michaelis–Menten equation was used.
A nutrient absorption rate model incorporating the root surface area reflecting the absorption capacity
of plants was used:

JI = PRSA
JI
max

(
CI
−CI

min

)
KI

m + (CI −CI
min)

(2)

where PRSA is the root surface area (m2), JI
max (mmol m−2 min−1) is the maximum absorption rate of

nutrient I, KI
m (mM) is the Michaelis–Menten constant, and CI

min (mM) is the minimal concentration
at which JI = 0. The types of plant nutrients included in the simulation were K, Ca, Mg, NO3, and P.
In this simulation, a stochastic coefficient was applied to the nutrient absorption capacity of plants to
detect changes in the rate of nutrient absorption under various conditions:

JI = Sco f PRSA
JI
max

(
CI
−CI

min

)
KI

m + (CI −CI
min)

(3)

where Sco f acts as a nutrient absorption factor and corresponds to a random walk process that increases
or stops with a probability of λ from the initial value of an absorption factor and decreases with a
probability of 1 − λ. For the transpiration model, the empirical version of the Penman–Monteith
equation was used [33,34]:

Qtrs = a
(
1− e−kPLAIPVPD

)
K+ + bPLAIPVPD (4)

where Qtrs is the transpiration rate (L min−1), a and b are empirical coefficients, k is the extinction
coefficient in the plant canopy, PLAI is the leaf area index (LAI), and PVPD is the vapor pressure deficit
(VPD). For the LAI used in the simulation, a fixed measured value was used. The leaf area of the
tomato (Solanum lycopersicum) used in the LAI calculation was estimated by measuring the leaf area of
the tomato in the cultivation experiment (measured at 2 January 2020). A non-destructive method
was used for the leaf area estimation by measuring leaf width and length [35]. VPD was simulated
to move in a random walk process between 0.5 and 2.0 kPa during simulation analysis to apply the
stochastic fluctuation of transpiration in the simulation analysis. For simulation of the EC-based
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nutrient solution supply method, the EC of the nutrient solution was calculated by converting the
molar concentration of the nutrients into an equivalent concentration, and then the total equivalent
concentration was converted to EC by the empirical conversion equation [36]. Calculation of the index
related to nutrient absorption was conducted by summation of the difference between the nutrient
inflow into the substrate and the nutrient outflow from the substrate:

DNAI, Day Nutrient Absorption Index =
∑n

i=1
(ECSup

i VSup
i − ECDrg

i VDrg
i ) (5)

where ECSup
i and VSup

i are daily EC and volume of irrigated nutrient solution, respectively, and ECDrg
i

and VDrg
i are daily EC and volume of drained nutrient solution, respectively. Through simulation,

various changes were made to the rate of nutrient absorption and drainage ratio of the soilless culture
system, and the effect on the correlation between Day Nutrient Absorption Index (DNAI) and nutrient
absorption was analyzed. Additionally, we compared the correlation between nutrient absorption and
major indicators in nutrient and water management, such as irrigation amount, drainage ratio, leaching
fraction, drainage EC, and transpiration. These indicators are available for direct data collection in the
soilless culture system online and affect the growth of plants.
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For the estimation and verification of the empirical coefficient of the transpiration model, water and
solute transport in the substrate, the environmental data measured between 1 and 6 January 2020,
at the experimental farm (37.8◦ N, 128.8◦ E) were used (data not shown). The change in the moisture
content in the substrate because of the transpiration and supply of nutrient solution was verified by
using the data from the substrate weight sensor (IReIS, RMFarm, Gangneung, Korea) at the same time
as the environmental data were collected. In this simulation, the fresh weight of the plant and the dry
weight of the rockwool substrate were not included. Therefore, the initial value of the substrate weight
was corrected such that the initial value of the substrate weight and the initial weight of the substrate
in the simulation were the same. RSA, which was used to reflect the total nutrient absorption rate,
and the empirical coefficient of the transpiration model were estimated by a progress curve analysis
that estimated the value that minimized the root mean square error (RMSE) between the measured
and simulated values of the substrate weight change and drainage EC. Table 1 summarizes the main
parameters used in this simulation.

Table 1. Parameters used for the simulations of the soilless culture system.

Symbol Description Value Reference

PLAI Leaf area index 7.4 Measured in this study

a Transpiration empirical
parameter 1.52 × 10−7 Calibrated in this study

b Transpiration empirical
parameter 1.71 × 10−4 Calibrated in this study

k Extinction coefficient 0.84 [34]

JK
max

Maximum absorption
rate 0.009

[37]

JCa
max

Maximum absorption
rate 0.003

JNO3
max

Maximum absorption
rate 0.012

JP
max

Maximum absorption
rate 0.002

KK
m

Michaelis-Menten
constant 3.185

KCa
m

Michaelis-Menten
constant 0.617

KMg
m

Michaelis-Menten
constant 0.252

KNO3
m

Michaelis-Menten
constant 4.432

KP
m

Michaelis-Menten
constant 0.358

CK
min

Minimal concentration
for uptake 0.002

CCa
min

Minimal concentration
for uptake 0.002

CMg
min

Minimal concentration
for uptake 0.002

CNO3
min

Minimal concentration
for uptake 0.002

CP
min

Minimal concentration
for uptake 0.002

PRSA Root surface area 0.8 Calibrated in this study

2.2. Experimental Demonstration of DNAI

Cultivation experiments were performed to confirm whether the predicted relationship between
the DNAI and the absorption of nutrients by plants in the simulation was related to the growth index
of plants under actual cultivation conditions. Cultivation experiments were conducted in a plastic
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experimental greenhouse at the KIST Gangneung Institute of Natural Products (37.8◦ N, 128.8◦ E).
Tomatoes (Solanum lycopersicum “Dafnis”) were used as experimental plants and were cultivated
on rockwool slabs (Grodan GT Master, Grodan, The Netherlands) placed in a hanging gutter of
approximately 9.6 m in length with a planting density of 2.67 plants m−2. An automatic drip irrigation
system using an integrated solar radiation method was used for irrigation control. The cultivation
area in the greenhouse was 384 m2, consisting of a total of 18 hanging gutters, of which seven hanging
gutters were used for DNAI measurement experiments (Figure 1b). DNAI was measured as described
in Equation (5). The unit for measuring the input and output of nutrients was a hanging gutter.
The volume of the daily supplied nutrient solution was measured by installing a digital flow meter
(Water Smart Flow Meter, Gardena, Germany) in the pipe connected to each hanging gutter. The EC of
the daily irrigated nutrient solution was measured after the completion of irrigation by placing one drop
pin in a 2 L beaker. Daily EC of the drainage was measured after the daily irrigation was completed by
placing a daily drainage collection tank (30 × 30 × 50 cm) equipped with an automatic discharge valve
at the end of the hanging gutter. The volume of the drainage was measured by reading the water level
in the daily drainage collection tank after completion of irrigation. Tomatoes used in the experiment
were planted on 8 October 2019, and DNAI measurements were performed from 22 November 2019,
45 d after transplanting (DAT), to 9 April 2020, DAT 184. To compare the growth of plants with DNAI,
the total yield of tomatoes planted in each hanging gutter was measured, and for the increase in stem
length after the DNAI measurement, three plants per gutter were periodically measured.

2.3. Treatments for Disturbance Application on Nutrient Uptake and Transpiration

The relationship between DNAI and nutrient and water management indicators and plant
growth is related to nutrient and transpiration. Therefore, in the cultivation experiment of this study,
factors that could affect transpiration or absorption of nutrients were treated on the hanging gutter unit.
By application of these disturbance factors, the performance of DNAI and its relationship with plant
growth were analyzed. In this study, defoliation and inter-lighting were applied as disturbance factors
that could affect transpiration or absorption of nutrients. In tomato cultivation, the effects of defoliation
may increase or decrease the yield depending on the level of defoliation of leaves [38]. Additionally,
an increase or decrease in leaf area also affects transpiration [39]. In the case of inter-lighting, it can
affect the production of photosynthetic assimilation products of plants, which can increase yield [40].
Additionally, light is also linked to transpiration and acts as a stressor [17,41]. Therefore, inter-lighting
or defoliation can act as a disturbance factor that can increase or decrease nutrient absorption or
transpiration of plants. In this study, DNAI, drainage ratio, transpiration, drainage EC, irrigation
amount, and leaching fraction were measured from DAT 45 without treatment application to each
cultivation line.

Each treatment consisted of three lines of inter-lighting (Inter1–3), two lines of defoliation treatment
(Defol1, 2), and two lines of control (Cont1, 2) for a total of seven hanging gutter lines. Inter-lighting
treatment started on DAT 87. PPFD 168 µmol m−2 s−1 inter-lighting (LT080, Luco corp., Seoul, Korea)
was used at a distance of 10 cm from the module and was placed in the central part of the plant canopy.
Inter-lighting time was adjusted three times. The first inter-lighting operation time was based on the
results of Tewolde et al. [40] in their tomato inter-lighting study, and a total of 12 h of operation time was
applied from 22:00 to 10:00 the next day. However, after the initial inter-lighting treatment, apparent
stress symptoms, such as leaf chlorosis and necrosis, were observed. Accordingly, the operation time
was adjusted on the DAT 106, and the operating time of 5 h was applied from 17:30 to 22:30 per day.
However, because the symptoms observed in the primary complement were neutralized, a total of 2 h
of operation time was applied from DAT 115 from 17:30 to 19:30. Subsequent apparent growth was
normally maintained, and no further time adjustments were performed. Defoliation treatment began
on day DAT 132. In this study, all treatments, including the control, were subjected to conventional
defoliation levels before treatment. In the conventional defoliation, 10–13 leaves counted from the top
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5 cm and below were left. In the defoliation treatment, 3–4 more leaves were removed from the lower
part than in the conventional defoliation.

To relatively compare the yield change between each treatment and the DNAI index, normalization
of the measured values was performed, and the following equation was used,

xnor =
x− xmin

xmax − xmin
(6)

where xnor is the normalized value, x is the DNAI to be normalized or the yield of each treatment, xmin is
the smallest DNAI of x or yield per treatment, and xmax is the largest DNAI of x or yield per treatment.

3. Results

3.1. Simulation Analysis of DNAI

The results of the transpiration and irrigation simulations using the measured environment
data in the experimental greenhouse as input data were compared with the change in substrate
weight according to the transpiration, irrigation, and drainage in the substrate during the same period
(Figure 2a). The change in weight measured by the substrate weight sensor tended to continuously
decrease by VPD during the night when it was not irrigated, and the tendency was an increase in the
rate of moisture reduction at sunrise before the first irrigation. Thereafter, as the transpiration by daily
irrigation and solar radiation began, diurnal increase and decrease in water content in the substrate
were observed, including a rapid decrease in moisture because of the end of irrigation before sunset
and a change in weight of a constant slope after sunset were repeatedly observed. The simulation
model was shown to follow the trend of variation in transpiration according to the change in light
intensity and VPD in the daytime and change in VPD at night. Changes in the water content in the
substrate were simulated by changing the moisture content in the substrate at the measurement of
data and the RMSE 0.29 kg level. The EC of drainage, which changed according to the functional
relationship of irrigation, nutrient absorption, and transpiration, was also simulated at the RMSE
0.66 dS m−1 level (Figure 2b).
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Figure 2. Comparison of simulated and measured substrate weight (a) and electrical conductivity (EC)
of drainage (b) for verification of the soilless culture system model. No drainage occurred in simulation
and experiment after 5600 min, and thus data of drainage EC for that period are also not presented.

To analyze the correlation between DNAI and nutrient absorption under conditions where
stochastic changes in nutrient absorption and transpiration occurred, different solar irradiation
conditions were confirmed for each simulation by applying a random walk process to the total cloud
cover (Figure 3a). The solar radiation model showed the change in solar elevation with time and
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location, and the solar radiation change accordingly, and an increase in the average solar radiation
was observed over the month. Additionally, similar changes were observed in transpiration, and as
VPD applied differently in each simulation, a certain range of variation was observed (Figure 3b).
In the case of nutrient absorption, the absorption rate increased with the progress of the growth period
of the plant but may decrease depending on the growth condition. Therefore, the stochastic change
was applied to this, and different paths of the nutrient absorption factor change were determined for
each simulation (Figure 3c,d). Two levels of the average nutrient absorption factor of 0.85 and 0.46
were applied to simulate changes in the nutrient absorption factor of various distributions between
approximately 0.2 and 1.2.
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Figure 3. Random walk cloud cover and vapor pressure deficit (VPD) applied solar irradiance (a) and
transpiration model (b), and stochastic changes in nutrient uptake factor (c) and its normal distribution (d).

Correlation analysis was performed between accumulated or average values of the transpiration
amount, drainage ratio, irrigation amount, drainage EC, and leaching fraction, which were used
as main indicators for the management of nutrients and water, DNAI, and absorption of nutrients
(Figure 4). The coefficients of determination between the major indicators, excluding DNAI and
cumulative nutrient uptake, were significant but extremely low negative correlations or positive
relationships were observed. On the other hand, DNAI showed an extremely high correlation with
cumulative nutrient absorption. However, in the distribution of the low nutrient absorption factor,
a decrease in the coefficient of determination was observed compared to the high nutrient absorption
factor (Figure 4f). Additionally, the changes in DNAI and R2 values according to the drainage ratio
were found to have a low correlation with the absorption of nutrients in the section with a low drainage
ratio, and it was confirmed that the correlation increased with an increasing drainage ratio (Figure 4g).
Additionally, the tendency for the R2 value to decrease with a decrease in drainage ratio was greater in
the low absorption magnification distribution.
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Figure 4. Comparison of correlation between simulated indicators in water and nutrient management,
Day Nutrient Absorption Index (DNAI), and accumulated nutrient uptake under the different
distributions of nutrient uptake factor (a–f); number of simulations: 1000. Changes in R2 of DNAI
according to average drainage ratio (g).

3.2. Correlation between DNAI and Plant Growth in the Cultivation Experiment

Through the measurement of daily nutrient irrigation amount, irrigation nutrient EC,
daily drainage amount, and drainage EC during the DNAI measurement period, nutrient and
water management indicators were collected for each hanging gutter (Figure 5). The accumulated
transpiration increased relatively gradually but accelerated after DAT 100 (Figure 5a). The average
drainage amount, the average drainage EC, and average leaching fraction were observed to be similar
to each other (Figure 5b,c,f). These indicators were observed to increase rapidly after the initial
decrease, and then decreased to 100 DAT, and then increased again. Depending on the condition
of the nutrient solution pipe to each hanging gutter, a deviation in the water flow rate may have
occurred. The difference between the most irrigated treatment and the least irrigated treatment in the
final irrigation amount for each treatment was approximately 460 L. DNAI increased at the start of the
measurements, but tended to decrease in all treatments around DAT 110 and increased until the end
of the experiment (Figure 5e). The cumulative yield for each treatment increased with time, and no
specific trend was observed on the graph (Figure 5g). However, a difference of approximately 11 kg
was observed between the maximum yield and minimum yield. It was observed that the increase in
shoot length increased at the start of the measurements, and then gradually became distinguished
from each other among treatments after 80 DAT (Figure 5h).



Agronomy 2020, 10, 1306 10 of 19

The correlation between DNAI, nutrient management indicators, and cumulative yield was
analyzed. During the entire period, a significant negative correlation was observed between the values
for DNAI and the cumulative yield compared to other indicators (Figure 6b). Additionally, in the
section where the daily drainage rate was low, DNAI was observed to have an extremely low R2 value,
and as the drainage amount increased to a normal level, a higher correlation was observed compared
to that of other indicators (Figure 6a). Under conditions of low drainage, a positive correlation was
observed, unlike other DNAI values, but did not appear as a significant correlation (Figure 6). Indices
other than DNAI showed an extremely low correlation during most of the measurement period and
were non-significant.

The correlation between the DNAI value, nutrient and water management indicators, and shoot
length increase was analyzed. The correlation between DNAI and shoot length increase was mostly
non-significant, except for the initial period of measurement and around DAT 115 (Figure 7). In these
two cases, unlike the yield and its relationship, there was a positive correlation. Among the indicators
for the management of nutrients other than DNAI, the average drainage EC showed the highest
negative correlation with other indicators (Figure 7).
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Figure 6. Changes in R2 values between accumulated fruit yield and indicators in water and nutrient
management, and DNAI during the period of the DNAI estimation experiment (a). Comparison of
representative correlation between measured indicators in water and nutrient management, DNAI,
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Figure 7. Changes in R2 values between shoot length increase (mean ± SD) and indicators in water and
nutrient management, and DNAI during the period of the DNAI estimation experiment (a). Comparison
of representative correlation between measured indicators in water and nutrient management, DNAI,
and shoot length increase (b).
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3.3. Normalized Tomato Yield and DNAI in the Cultivation Experiment

The relative change in the yield and DNAI index between each treatment was observed using
normalized values (Figure 8). In the case of inter-lighting treatment, a tendency of increase in DNAI
was observed after the first 10 h inter-lighting treatment in Inter1 and 2 treatments. In the Inter3
treatment, the normalization value of DNAI was already close to 1, and no significant change in the
normalization value was observed until the 3rd adjustment of the inter-lighting operation time. For the
normalized value of the cumulative yield, a relative tendency of decrease in the cumulative yield was
observed in the Inter1 and 3 treatments but not the Inter2 treatment, which was already close to 0
before treatment. In the secondary inter-lighting treatment, which was applied as stress symptoms,
necrosis or chlorosis of leaves was observed, and an increase in DNAI was observed in the Inter1 and
2 treatments. After adjustment of the 3rd inter-lighting operation time, the tendency of decreasing
DNAI was observed in the Inter2 and 3 treatments, and then the tendency of an increase in each yield
normalization value was observed. However, the relative increase in yield was not observed in the
Inter1 treatment even after the last adjustment.
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Figure 8. Changes in the normalized value of DNAI and accumulated fruit yield during the period of
DNAI estimation experiment; blue arrows in defoliation treatment indicate the initial day of defoliation;
red arrows in inter-lighting treatment indicate the initial day of inter-lighting and the subsequent
adjustment of inter-lighting operation time.
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Among the defoliation treatments, it was confirmed that the normalized value of the Defol1 yield
led to a decreasing trend but changed to a slight increase after the defoliation treatment at 132 DAT.
DNAI of the Defol1 treatment continued to decrease after the defoliation treatment. Defol2 treatment
maintained the highest yield before treatment, and no change in the normalized value of the yield was
observed even after the defoliation treatment. The DNAI of the Defol2 treatment was relatively high
compared to that of other treatments, but then decreased rapidly and remained at the lowest level.

In Defol1, it was confirmed that the normalized value of the yield was changed to a slightly
increasing trend after the defoliation treatment. The DNAI of Defol1 treatment showed a decreasing
trend after the defoliation treatment. Defol2 treatment maintained the highest yield before treatment,
and no change in the normalized value of the yield was observed even after the defoliation. The DNAI
of the Defol2 treatment was relatively high compared to other treatments, but then decreased rapidly
and remained at the lowest level.

In the control treatment, a tendency of increasing normalized values for yield was observed, and
the tendency of DNAI to remain low or decrease was confirmed. However, from around DAT 130,
the increasing trend for the yield shifted to a decreasing trend, and an increasing trend was observed
for DNAI.

4. Discussion

In the study of the analysis of the simulation, the correlation between the cumulative nutrient
absorption and the major indicators of nutrient and water management was significant; however,
the coefficient of determination was extremely low (Figure 4a–e). These major indicators have not been
modeled to have a direct functional relationship with nutrient absorption by plants. Thus, the low
coefficient of determination can be seen originated from that the transpiration, irrigation, and drainage
affected the change in the nutrient concentration of the root zone only. However, the models of plant
transpiration based on the Penman–Monteith model included LAI as a representative parameter
reflecting plant growth [33,42].

Additionally, the nutrient absorption model reflected the change in the absorption capacity of the
plant because of the increase in the surface area of the roots [43]. In the more extended model, root growth
was also interconnected with dry matter production of the shoot [37,44]. Therefore, a different trend
could be predicted in an extended model in which all variables of the plant are interconnected.

However, the results from the simulation showed that DNAI could reflect, with a high probability,
the change in the nutrient absorption trends in the root zone, even under conditions with disturbance
factors, such as changes in plant transpiration and intermittent irrigation in the general cultivation
system. The simulation analysis also showed that the higher the absorption rate of nutrients in the
root zone, the higher the correlation observed (Figure 4f). The correlation was reduced under an
extremely low drainage ratio, and the drainage ratio affected the correlation more under a lower
nutrient absorption rate (Figure 4g). This appeared to be the result of a reduction in the corrective
effect from the discharged nutrient amount in the DNAI calculations.

Regarding monitoring DNAI in the cultivation experiment, an increasing tendency was observed
until DAT 110; however, a decreasing tendency occurred until 120 DAT (Figure 5e). In the case
of the average leaching fraction corresponding to the ratio of cumulative discharge nutrients to
cumulative supply nutrients, a decreasing tendency was observed until approximately DAT 110
(Figure 5f). This indicated that the discharged nutrients were low compared to the supplied nutrients.
During this period, the daily drainage ratio was maintained at a low rate of less than approximately
10% (Figure 6a). However, DNAI decreased with an increasing drainage ratio after DAT 110, and
a tendency in the correlation to increase between DNAI and cumulative yield after DAT 110 was
observed. This result showed that DNAI was overestimated in the range with a low drainage
ratio. As the drainage ratio increased, the trends in nutrient absorption by plants were reflected
by the drainage, and this was applied as a correction effect. The effect of the drainage ratio on the
correlation of DNAI in the experiment was consistent with the simulation’s theoretical prediction.
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After DAT 110, the R2 value of DNAI showed a distinct change from the R2 values of other indicators of
nutrients and water management. To date, parameters such as transpiration, drainage ratio, leaching
fraction, and irrigation amount had been widely used to improve nutrient and water management
technologies. Regarding transpiration, it has been widely used in comparative studies of plant water
stress and abnormal growth conditions [13,45,46]. However, transpiration under normal growth
conditions is more dependent on the physical changes in the environment of the soil–plant–atmosphere
continuum [16,17,42]. The drainage ratio is an indicator that can affect the growth of plants by adjusting
the level of the drainage ratio [47,48]. However, the effect of the drainage ratio was fundamentally
caused by an increase in heterogeneity of nutrient distribution and specific nutrient accumulation or
deficiency in the root zone [23]. Leaching fraction—the rate of supply and discharge—played a role
similar to that of the drainage ratio. Irrigation amount affects the changes in nutrient concentration
and water content in a substrate, ultimately affecting plant growth [9].

In this study, the difference in the final irrigation amount was shown because of the deviations
in the flow rate of each pipe line (Figure 5d). This can affect the drainage ratio and drainage EC in
each treatment. However, the irrigation amount and yields were not highly correlated (Figure 6a).
The effect of irrigation on the plants may vary depending on the difference between the defoliation
status, light condition of each planting location, and microclimate conditions. In particular, the effect
of the difference caused by a slight deviation in the flow rate of each pipeline can be too moderate to be
detected as significant in the plant response.

In the case of absorption of nutrients from plants, nutrients are also stored in vacuoles in addition
to the structure of the plants to maintain the ionic homeostasis of the plants [49]. However, nutrient
accumulation is dominated by the stoichiometric growth of plants [19,50]. Therefore, the correlations
between the yield and DNAI in the experiment, and nutrient absorption and DNAI in the simulation
are considered to be the results reflecting the absorption of nutrients from plants.

In contrast to the relationship between yield and DNAI, there was no clear correlation with the
tendency for shoot length growth (Figure 7a). However, when a significant correlation between DNAI
and shoot length growth was found, a positive correlation was observed as opposed to a relationship
with yield. An inverse relationship between shoot length and yield has already been reported [51],
which can be considered to be in a trade-off relationship as the balance between nutritional and
reproductive growth changes. The lower correlation with an increase in plant height compared to the
yield vs. DNAI could be because the detection limit of the height increase effect was low. However,
for the average EC of drainage, a significant negative correlation was observed with the increase in
plant height (Figure 7b). The relationship between the increase in the root zone EC or the increase in the
drainage EC has been reported in previous studies [52,53]. Although DNAI and plant height showed
relatively low correlations, the correlation between drainage EC and plant height observed in this
study seemed to have the potential to be utilized in further research on the technological sophistication
of DNAI.

In this study, the effect of defoliation and inter-lighting treatment on DNAI and yield, which were
applied to generate disturbance factors for transpiration and nutrient absorption, was qualitatively
confirmed through normalized values (Figure 8). After the first inter-lighting of DAT 87, the normalized
DNAI of Inter1 and −2 began to increase after a short period of decrease. At DAT 87, the normalized
yield of Inter1 and −3 began to decrease. Prolonged light irradiation can act as a stressor on plants,
and leaf chlorosis and necrosis can be observed as the symptoms [41,54]. In the case of the inter-lighting
treatment, the first and second treatments acted on the apparent stress of the plant, as explained in the
Materials and Method. Thus, the operation time of the inter-lighting was adjusted to 2 h after sunset in
the third inter-lighting treatment. As a result, after the third adjustment of the inter-lighting operation
time, decreases in normalized DNAI of the Inter2 and −3 treatments were observed. In addition,
increases in the normalized yield of Inter2 and −3 were observed. However, in the Inter1 treatment,
a decrease in normalized DNAI was not observed even after the third adjustment of the inter-lighting
period, and the normalized yield did not respond.
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In the case of the defoliation treatment, the relative decrease in the yield in Defol1 progressed
from the beginning. However, after the defoliation treatment, a tendency of increase in the normalized
yield and decrease in the normalized DNAI was observed. In the control treatment, an increase in
normalized yield was observed before DAT 130. However, after approximately DAT 130, there was a
tendency to decrease the yield again. Depending on the appropriate level of defoliation of tomatoes,
it may lead to an increase in yield, and the appropriate level of defoliation may vary according to
seasonal changes [38]. In the present study, the tendency of increase in normalized yield observed
after defoliation in Defol1 and the decrease in normalized yield in Cont1 and 2 after a similar period
may be related to the change in the appropriate leaf level.

This study may be limited in that it was not widely applied to other crops and other cropping
seasons. The sensitivity of DNAI may be varied depending on the physicochemical property of the
growing medium. Moreover, according to the crop’s ability to absorb nutrients and water from the
media, DNAI usability may vary. However, analyses of DNAI in this study suggested the possibility
of integration of complex interactions between the conventional indicators in nutrient and water
management on DNAI in the decision making of plant cultivation. In other words, adjustment of
DNAI by manipulating cultivation management factors, such as nutrients and water input, defoliation,
and supplemental lighting is expected to be applied to equalize the performance of agronomic
manipulation, identify cultivation problems, optimize cultivation systems, and ultimately sustainable
resource use. Furthermore, it is expected that DNAI approach can be expanded to other plant
production systems such as vertical farms through further research for adjusting the time scale of data
measurement and the sensor location.

5. Conclusions

The relationship between DNAI and the yield observed in this study indicated that DNAI can
detect the effects of cultivation conditions, even with a relatively moderate difference in the conditions.
The relative deviation in the flow rate of each pipeline in this experiment finally resulted in a difference
in irrigation amount corresponding to a maximum of 410 L. Additionally, the difference corresponding
to the cumulative yield of each gutter line up to approximately 11 kg was observed; however, a high
correlation between irrigation and yield was not observed. This has implications for the complex
influence of indicators (i.e., irrigation, transpiration, drainage ratio, and electrical conductivity) and
DNAI has the potential to be used as an index that can be interpreted in a comprehensive method. As a
result, this study confirmed that the DNAI could be associated with a high correlation to plant growth
compared to conventional indicators in nutrient and water management by utilizing the data obtainable
online in the cultivation system. Thus, DNAI showed potential usability as an onsite decision support
technique for yield-promoting nutrient and water management. To develop DNAI as a decision-making
technology, further studies to systematically link DNAI to nutrient and irrigation control are required.
At the same time, verification in other crops also needs to be performed. We believe that further
technological sophistication of DNAI will contribute to the efficient utilization of agricultural resources
and automation of optimal water and nutrient management.
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