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Abstract: In recent years, an increasing interest has been observed in the reduction in environmental
threats posed by the food production chain beginning with agricultural production. The impact of
agriculture on the environment varies depending on farming practices. The aim of the study was to
assess and compare the environmental effects of the life cycle of winter wheat cultivation in three soil
tillage systems: conventional tillage, reduced tillage, and no-tillage. The study was conducted in
2015–2017 on 15 agricultural farms located in the Wielkopolska region, Poland. The “cradle-to-farm
gate” life cycle of wheat production was analysed using life cycle assessment methodology. The values
of impact category indicators, especially in the case of global warming potential, acidification potential,
and eutrophication potential, depended mainly on mineral fertilization. Wheat production generated
more adverse emissions with increased nitrogen fertilization both in reduced tillage and no-tillage
systems on the studied farms, and consequently resulted in a more negative impact on the
environment compared to wheat cultivated in the conventional tillage system. After nitrogen
fertilization, use of fossil fuel, and phosphorus and potassium fertilization were the top contributors
to environmental impacts of winter wheat production in different tillage systems. The pre-production
phase associated with the agricultural means of production was dominant in determining the
analysed environmental impacts, except for global warming potential and photochemical ozone
creation potential, which depended mainly on the production phase on the farm. The other key
environmental impacts that should be considered when it comes to improvements in the life cycle of
wheat production were depletion of mineral resources and acidification.

Keywords: cereal crop; tillage systems; environmental impact; life cycle assessment

1. Introduction

Crop production is an important link in the food production chain. It plays a crucial role because
it provides raw materials for human food and animal feed. One of the basic staple food crops is wheat
(Triticum spp.) [1]. This crop is cultivated worldwide. Globally, it occupies the third place in cereal
production, right after maize and rice, and the first place in terms of cereal crop area [2]. Wheat also
dominates Polish cereal production. It makes up about 32 percent of the total cereal area in Poland,
of which 81 percent is winter wheat and 19 percent spring wheat. In 2019, the acreage of winter
wheat in the country was over 2 million hectares with an average grain yield of 4.6 Mg per hectare [3].
The volume of wheat production gives Poland the fourth place in the European Union (EU) [4].

In Poland and many European countries, conventional tillage is the most widely applied soil
tillage system for crop production [5]. Even though ploughing requires high labour and energy use,
many farmers consider it the best way to prepare the soil in order to create good conditions for seed
germination and plants’ development [6]. In recent years, due to increasing costs of agricultural
production and the need to protect the environment, much attention of researchers and farmers has
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been focused on non-inversion tillage systems, including reduced tillage and no-tillage (also referred
to as direct sowing). The issue of effects of intensity and depth of tillage on the physical, chemical,
and biological properties of soil has already been the subject of many studies [7–10]. In the conventional
tillage system, the soil inversion by a mouldboard plough incorporates the previous crop residues and
fertilizers into the soil, covers them thoroughly, leads to nutrient distribution in the surface soil layers,
allows the control of root weeds and fungal diseases, and loosens and aerates the soil. On the other
hand, increasing soil aeration contributes to intensifying the mineralization process and a consequent
loss of soil organic matter (SOM), which is important for soil structure, fertility, and water capacity [11].
Meanwhile, improving soil water capacity is of particular importance due to the fact that in recent
years, extreme climate events such as drought have led to adverse changes in soil–water relationships.
Therefore, one of the directions of adaptation activities in agriculture is increasing the stock of organic
matter to increase soil resistance against drying [12]. It can be achieved with reduced tillage and
no-tillage [13,14]. Long-term use of these tillage systems is favourable for increasing soil moisture and
bulk density as well as decreasing capillary water capacity. Moreover, they can stimulate the activity
of enzymes in the soil [15]. Particular benefits are attributed to non-inversion tillage systems that leave
at least 30 percent of the field surface covered by crop residue, defined as conservation tillage [16].
This is an effective practice for preventing soil degradation and erosion caused by wind and water [17].
Many authors report on differences in the cereal yields, depending on the soil tillage intensity [18–20].
However, the effect of the adopted tillage system on crop yield depends very much on local conditions
and technology [21]. The use of fertilizers, plant protection products, modern specialized agricultural
machinery, and more precise application technology may contribute to enhancing the efficiency and
productivity of crop production in each tillage system [22].

The need for a comprehensive assessment of the impact of agricultural activities on the environment
has been highlighted in the world literature [21]. In such an approach, it is important to include
not only direct processes on the farm but also those that are associated with the acquisition of raw
materials, manufacturing means of production, and product disposal. These processes, being the
parts of the so-called “life cycle of product”, may also be the sources of environmental threats, such as
resource depletion, acidification, eutrophication, and global warming [23,24]. Environmental burdens
are generated at various stages of the life cycle of agricultural products. The most appropriate method
for assessing the environmental impacts of all processes throughout the crop life cycle is life cycle
assessment (LCA) [25,26].

Most previous studies on the life cycle assessment of wheat production concerned the conventional
tillage system and mainly focused on the emissions of greenhouse gases [27–29]. There is limited data
available on comprehensive environmental life cycle assessment of winter wheat production related to
different tillage systems in Polish agriculture. Research on environmental burdens of wheat production
depending on tillage practices is important for developing more sustainable food production systems.
The aim of the study was to assess and compare the environmental impacts of the life cycle of winter
wheat (Triticum aestivum L.) production in different soil tillage systems.

2. Materials and Methods

2.1. Study Site

The study was conducted in 2015–2017 on 15 agricultural farms. The studied farms are located in the
north-western part of Poland, at 51◦–52◦ north latitude and 15◦–19◦ west longitude in the Wielkopolska
region (Figure 1, Table 1), which is known as one of the most productive areas in the country in terms
of agricultural production [30]. The farms were selected from a farm group that collaborates with
Wielkopolski Agricultural Advisory Centre in Poznań. Their selection was determined by the cultivation
of winter wheat under one of the following tillage systems: conventional tillage (CT), reduced tillage
(RT), and no-tillage (NT). The characteristics of tillage systems are presented in Table 2. Five farms
for each tillage system were studied. Face-to-face interviews with the farmers provided detailed data
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for the analysis. The interview covered questions about farm characteristics and wheat production
including tillage practices, consumption of energy and material inputs, agricultural machinery (type
of a machine, lifetime of a machine, total machine weight), and duration of technological operations.
Data sets collected from the farms were entered into a computer database using Microsoft Excel®.
Table 3 shows the production characteristics of winter wheat cultivation in three tillage systems of the
studied farms.

Agronomy 2020, 10, x FOR PEER REVIEW 3 of 13 

 

country in terms of agricultural production [30]. The farms were selected from a farm group that 

collaborates with Wielkopolski Agricultural Advisory Centre in Poznań. Their selection was 

determined by the cultivation of winter wheat under one of the following tillage systems: 

conventional tillage (CT), reduced tillage (RT), and no-tillage (NT). The characteristics of tillage 

systems are presented in Table 2. Five farms for each tillage system were studied. Face-to-face 

interviews with the farmers provided detailed data for the analysis. The interview covered questions 

about farm characteristics and wheat production including tillage practices, consumption of energy 

and material inputs, agricultural machinery (type of a machine, lifetime of a machine, total machine 

weight), and duration of technological operations. Data sets collected from the farms were entered 

into a computer database using Microsoft Excel® . Table 3 shows the production characteristics of 

winter wheat cultivation in three tillage systems of the studied farms. 

 

Figure 1. Location of the study region in Poland. 

Table 1. Utilized agricultural area (UAA) and location of the studied farms with wheat production in 

conventional tillage (CT), reduced tillage (RT), and no-tillage (NT) systems. 

Farm 

Number 

Tillage 

System 

UAA 

(ha) 
Voivodeship District Commune 

1 CT 7.84 Wielkopolska Kalisz Ceków 

2 CT 73.06 Wielkopolska Kościan Krzywiń 

3 CT 30.21 Wielkopolska Krotoszyn 
Koźmin 

Wielkopolski 

4 CT 38.44 Wielkopolska Leszno Rydzyna 

5 CT 26.84 Wielkopolska Wolsztyn Siedlec 

6 RT 105.55 Wielkopolska Konin Kleczew 

7 RT 98.69 Wielkopolska Międzychód Międzychód 

8 RT 101.52 Wielkopolska Międzychód Sieraków 

9 RT 18.53 Wielkopolska Ostrów 
Nowe 

Skalmierzyce 

10 RT 156.33 Wielkopolska Września Kołaczkowo 

11 NT 372.00 Wielkopolska Gostyń Borek Wielkopolski 

Figure 1. Location of the study region in Poland.

Table 1. Utilized agricultural area (UAA) and location of the studied farms with wheat production in
conventional tillage (CT), reduced tillage (RT), and no-tillage (NT) systems.

Farm Number Tillage System UAA (ha) Voivodeship District Commune

1 CT 7.84 Wielkopolska Kalisz Ceków
2 CT 73.06 Wielkopolska Kościan Krzywiń

3 CT 30.21 Wielkopolska Krotoszyn Koźmin
Wielkopolski

4 CT 38.44 Wielkopolska Leszno Rydzyna
5 CT 26.84 Wielkopolska Wolsztyn Siedlec
6 RT 105.55 Wielkopolska Konin Kleczew
7 RT 98.69 Wielkopolska Międzychód Międzychód
8 RT 101.52 Wielkopolska Międzychód Sieraków

9 RT 18.53 Wielkopolska Ostrów Nowe
Skalmierzyce

10 RT 156.33 Wielkopolska Września Kołaczkowo

11 NT 372.00 Wielkopolska Gostyń Borek
Wielkopolski

12 NT 165.63 Wielkopolska Koło Chodów
13 NT 44.50 Wielkopolska Ostrów Raszków
14 NT 975.00 Wielkopolska Szamotuły Szamotuły
15 NT 51.00 Wielkopolska Wągrowiec Wągrowiec
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Table 2. Characteristics of tillage practices for winter wheat production under conventional tillage (CT),
reduced tillage (RT), and no-tillage (NT) systems of the studied farms.

Tillage System Tillage Practices

CT Skimming, harrowing, ploughing to a depth of 25–30 cm, seedbed preparation with
a cultivating aggregate, followed by the use of a sowing machine.

RT Post-harvest tillage using implements such as a stubble cultivator or disc harrow to
a depth of 10–20 cm, and the use of cultivating and sowing aggregate.

NT Sowing directly into the untilled soil, which has retained the previous crop residues,
using a direct seed drill.

Table 3. Production characteristics of winter wheat cultivation under conventional tillage (CT),
reduced tillage (RT), and no-tillage (NT) systems of the studied farms (averages from the study years
with min–max range in parentheses).

Specification
Tillage System

CT RT NT

Winter wheat sowing area, ha 8.3 (2.3–21.0) 21.6 (1.3–44.9) 75.0 (2.0–260.0)
Grain wheat yield, Mg ha−1 7.6 (5.8–9.4) 6.9 (5.4–9.4) 6.6 (5.3–9.0)

N fertilization, kg N ha−1 117.6 (78.8–160.8) 130.1 (66.0–214.4) 147.2 (82.0–269.4)
P fertilization kg P2O5 ha−1 26.6 (0–46.0) 48.0 (0–80.0) 33.4 (0–60.0)
K fertilization, kg K2O ha−1 35.6 (0–60.0) 99.3 (56.0–129.0) 104.5 (0–287.0)

Herbicides, kg a.s. ha−1 1.32 (0.05–2.91) 0.88 (0.03–2.52) 0.52 (0.06–1.50)
Fungicides, kg a.s. ha−1 0.60 (0.01–1.23) 0.63 (0.40–0.93) 0.57 (0.22–0.95)
Insecticides, kg a.s. ha−1 0.06 (0–0.20) 0.10 (0–0.20) 0.04 (0–0.20)

Growth regulators, kg a.s. ha−1 0.05 (0–0.29) 0.55 (0–1.45) 0.30 (0–1.13)

N, nitrogen; P, phosphorus, K, potassium; a.s., active substance.

2.2. Life Cycle Assessment (LCA) Methodology

LCA methodology was used to assess the potential impact of the production of winter wheat on the
environment. According to the ISO 14,040 and 14,044 standards [31,32], LCA consists of the following
four phases: (1) goal and scope, which involve the definition of the goal of the study, functional unit,
system boundaries, assumptions and limitations; (2) inventory analysis in order to collect the required
input and output data for the system; (3) impact assessment, including mandatory steps: selection of
the impact categories, category indicators and characterisation models, assignment of inventory results
to the impact category (classification), evaluation of impact category indicators (characterisation),
and optional steps such as normalisation, grouping, weighting; (4) interpretation of the results for
drawing conclusions.

2.2.1. Goal and Scope Definition

The goal of this study was to assess and compare the environmental impact of the life cycle of
wheat production in different soil tillage systems. The system boundary was from “cradle-to-farm
gate” (Figure 2). Thus, the analysis covered the background processes including extraction of resources,
production of agricultural machinery and inputs (seeds, fertilizers, plant protection products, fuel),
described in the study as the pre-production phase of the life cycle, and the foreground processes of
wheat cultivation. The on-farm phase concerned the following processes: soil cultivation, sowing,
fertilization, plant protection, and harvesting. The functional unit chosen was 1 kg of wheat grain.
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Figure 2. Boundary system for the life cycle assessment (LCA) of the winter wheat production.

2.2.2. Inventory Analysis

The life cycle inventory (LCI) phase involved the collection of input and output data for the
analysed production system. An overview of the data sources for quantification of LCI data is presented
in Table 4. Inventory data from the foreground processes were related to the functional unit of 1 kg
of grain based on the consumption of means of agricultural production on the farms and emission
factors derived from literature sources. Major data sources for inputs and outputs associated with the
background processes were provided by the Ecoinvent database [33].

Table 4. Data sources for the life cycle inventory of the background processes and quantification of
emissions from the foreground processes.

Process References

Production of seeds [33]
Production of agrochemicals [33]

Production and use of agricultural machinery [33]
Use of mineral fertilizers [34–36]

Use of plant protection products [37]
Fuel combustion [38]

Crop residue management [39]

2.2.3. Life Cycle Impact Assessment (LCIA)

According to the predetermined goal of the study, the following environmental impact categories
were selected for evaluation: abiotic resource depletion, acidification, climate change, eutrophication,
and photochemical oxidation. The indicators for the relevant impact categories are listed in Table 5.

Table 5. Selected impact category indicators for the Life Cycle Impact Assessment (LCIA).

Impact Category Indicator Abbreviation Unit Methodology References

Abiotic depletion potential for fossil fuel ADP fossil MJ CML 2001 [40]
Abiotic depletion potential for minerals ADP min kg Sb eq. CML 2001 [40]

Acidification potential AP kg SO2 eq. CML 2001 [41]
Eutrophication potential EP kg PO4 eq. CML 2001 [41]

Global warming potential for time
horizon of 100 years GWP 100 kg CO2 eq. CML 2001 [39]

Photochemical ozone creation potential POCP kg C2H4 eq. CML 2001 [42,43]
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To calculate the indicators for environmental impacts, the CML method based on the midpoint
approach was applied in LCIA. Inventory data were analyzed using the software Team 5.3®

(PricewaterhouseCoopers—Ecobilan), which allows the conducting of the LCIA using its own inventory
data and data provided by the Ecoinvent database [33]. Outputs were multiplied with appropriate
characterisation factors and subsequently summed to obtain the indicator value, according to the
following equation [44]:

Icat =
∑

i
mi ×CFcati, (1)

where:

Icat—an impact category indicator;
mi—the amount of the i-th substance used or emitted;
CFcati—an impact category characterisation factor for the substance.

Additionally, the normalisation procedure was carried out [45]. In order to obtain a single score
index, the normalisation procedure was preceded by a weighting step in which all impact assessment
results were multiplied by the equal weighting factor of 0.167.

2.2.4. Interpretation

During the interpretation phase, a sensitivity analysis was performed by varying each key input
parameter one-at-a-time by 5 percent of its original value and conclusions were drawn.

3. Results

The results of the assessment of the environmental impacts of wheat production in three
tillage systems in relation to 1 kg of grain are presented in Table 6. Higher impacts were noted
in wheat cultivated under tillage systems without ploughing. The highest values of abiotic
depletion potential for fossil fuel (ADP fossil), abiotic depletion potential for minerals (ADP min),
and photochemical ozone creation potential (POCP) were found in RT. The greatest acidification
potential (AP), eutrophication potential (EP), and global warming potential (GWP 100) occurred in NT.
However, differences in impacts between the tillage systems were minor.

Table 6. Values of impact category indicators of the winter wheat production under conventional
tillage (CT), reduced tillage (RT), and no-tillage (NT) systems per functional unit of 1 kg of grain.

Impact Category Indicator
Tillage System

CT RT NT

ADP fossil, MJ kg−1 2.17 2.73 2.48
ADP min, kg Sb eq. kg−1 1.58 × 10−6 1.87 × 10−6 1.77 × 10−6

AP, kg SO2 eq. kg−1 2.72 × 10−3 3.47 × 10−3 5.14 × 10−3

EP, kg PO4 eq. kg−1 1.16 × 10−3 1.47 × 10−3 1.89 × 10−3

GWP 100, kg CO2 eq. kg−1 0.31 0.39 0.40
POCP, kg C2H4 eq. kg−1 5.19 × 10−5 6.73 × 10−5 6.19 × 10−5

ADP fossil, abiotic resources depletion potential for fossil fuels; ADP min, abiotic resources depletion potential
for minerals; AP, acidification potential; EP, eutrophication potential; GWP 100, global warming potential; POCP,
photochemical ozone creation potential.

Synthetic N fertilizers had the greatest impact on the formation of potential environmental impacts
of wheat production among all inputs, independent of analysed soil tillage system (Figure 3). The AP,
EP, and GWP 100 indicators were especially shaped by N fertilizers. For ADP fossil, GWP 100, and AP,
the important contributor was also fuel. In the case of the EP indicator, the second biggest contributors
after N fertilizers were P and K fertilizers. In turn, for POCP, besides mineral fertilizers, machinery and
fuel also had a great impact.
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As shown in Figure 4, the pre-production phase associated with the agricultural means of
production contributed most to the total value of ADP fossil, ADP min, AP, and EP. The production
phase on the farm was more dominant in shaping the GWP 100 and POCP indicators.
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Figure 4. Contribution of the life cycle phases to the environmental impacts of winter wheat production
in conventional tillage (CT), reduced tillage (RT), and no-tillage (NT). Abbreviations as in Figure 3.

The aggregated environmental index for wheat production was higher in NT (1.47 × 10−13 and RT
(1.31 × 10−13) in comparison with CT (1.06 × 10−13) (Figure 5). The environmental index was primarily
influenced by ADP min and AP.
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Figure 5. Aggregated environmental indicator values: abiotic resources depletion potential for fossil
fuels (ADP fossil), abiotic resources depletion potential for minerals (ADP min), acidification potential
(AP), eutrophication potential (EP), global warming potential (GWP 100), photochemical ozone creation
potential (POCP) per 1 kg of grain in winter wheat production for different tillage systems.

The sensitivity analysis of key input parameters showed that the ADP min of wheat in three tillage
systems was the most sensitive to the change in the total amount of nitrogen (N) fertilizers applied
(Figure 6). Varying the N fertilizer application rate by 5% resulted in a change of ADP min value
by 2.4%, 1.9%, and 1.8% for NT, RT, and CT, respectively. Following the application of N fertilizers,
consumption of plant protection products, application of phosphorus (P) and potassium (K) fertilizers,
and the use of agricultural machinery were the most influential factors for ADP min. This indicator for
wheat production in CT and RT was more sensitive to the use of plant protection products, as well
as the use of machinery compared to NT. A change in P and K fertilizers’ application rate was more
notable for the ADP min of wheat in RT and NT than in CT.
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and no-tillage (NT).

The application of N fertilizers ranked as the most influential factor for the AP of wheat production
(Figure 7). An increase in N application rate by 5% led to a change of this indicator by 4.3% for NT and
by 3.7% for both CT and RT. The second important factor for AP was the fuel, followed by phosphorus
(P) and potassium (K) fertilizers. When fuel consumption varied by 5%, the value of the AP of wheat
for both CT and RT changed by 0.5%, while it changed by 0.2% for NT. The AP indicator for wheat in
RT was more sensitive to P and K fertilizer application rates compared to wheat in CT and NT.
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4. Discussion

The results revealed that the environmental impacts of wheat production slightly differed
depending on the tillage systems. The level of consumption of input materials and the crop output can
help to explain differences in the environmental impacts between the tillage systems. According to
Achten and Van Acker [46], one kg of wheat grain produced in Europe on average demands 3.25 MJ
of nonrenewable, fossil energy, emits 0.61 to 0.65 kg CO2 eq., and triggers terrestrial acidification of
4.94 × 10−3 to 6.51 × 10−3 kg SO2 eq. In comparison with the presented results, the eutrophication
potential for wheat cultivated in Swiss conditions was lower (equaled 5.42 × 10−4 kg PO4 eq. kg−1),
whereas the photo-oxidant formation was higher (1.25 × 10−3 kg C2H4 eq. kg−1) [47]. In the recent
study by Pishgar-Komleh et al. [29] in Poland, the sum of greenhouse gas (GHG) emissions per kg of
wheat grain was higher (0.45 kg CO2 eq.) compared to our own results. In our study, the GWP 100
indicators of winter wheat production in RT and NT were found to be higher compared to wheat in CT.
This difference could be explained mainly by higher nitrogen fertilization of wheat under RT and NT.
In Denmark, the total GHG emissions for wheat production with uniform mineral fertilizer application
rates in conventional tillage, reduced tillage, and no-tillage system scenarios amounted to 0.655 kg
CO2 eq. kg−1, 0.589 kg CO2 eq. kg−1, and 0.628 kg CO2 eq. kg−1, respectively [48]. The change of
the GHG emission between tillage systems was mainly caused by the reduced CO2 emission from
carbon mineralization.

Besides the tillage system, another important aspect of the assessment of GHG emissions from
crop production is crop residue management. The availability of crop residues on the field can lead
to an increased level of soil organic carbon (SOC) sequestration. It should be noted that the SOC
sequestration potential was not considered in this study. The inclusion of SOC sequestration in the
assessment of GWP makes it possible to obtain a considerable reduction in the net impact of GWP
associated with crop production [49]. The benefits of increased SOC sequestration in reduced tillage
and no-tillage with crop residue returning, so-called conservation tillage, have been highlighted by
many authors [50–52].

It was shown that N fertilization was the major contributor to the environmental impacts of the
life cycle of wheat production independent of the tillage system. This is consistent with the findings
of other authors [53–55]. As many studies show, the dominant part of the environmental impact of
N fertilization could be associated with the application of N fertilizers resulting in the possible high
values of N2O direct emissions on the field [56–58].

This study demonstrated that the pre-production phase contributed most to the analysed impacts,
excluding GWP 100 and POCP, which depended mainly on the farm production. According to Charles
et al. [47], production and delivery of mineral fertilizers are responsible for over 40% of the impact on
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energy consumption. Brock et al. [59] concluded that about 37% of the GWP came from the pre-farm
production and transport of fertilizers.

The analysed wheat production systems showed a large impact on ADP min and AP. Similar results
were also obtained by Baum and Bieńkowski [49]. Exclusive reliance of P and K fertilizers on mined
raw material is regarded as a decisive factor in creating high ADP impacts of crop production. The role
of these minerals in global natural resource utilization is especially emphasized in the CML method by
ascribing to them relatively high values of characterisation factors [60]. Data on the type of N fertilizers
collected during the study (data not presented) showed high frequency in the use of ammonium nitrate,
urea ammonium nitrate solutions, and urea, which, via the emission–deposition–nitrification NH3

route, may indirectly contribute to a higher potential for subsequent terrestrial acidification [61,62].

5. Conclusions

The main opportunities for improving the life cycle of wheat production include more efficient
resource use in fertilizer production, choice of N type, and optimization of fertilizer application in
the farm production phase. Shifting from conventional tillage to a tillage system without ploughing
in wheat production can result in widely recognized benefits for soil properties, as well as reduced
environmental burdens, but not to the level at which fertilizer application rates and consumption
of other inputs are not higher than in the conventional tillage system. In the future, trying to
accommodate the environmental assessment of wheat production into a wider concept of “integrated
sustainability assessment” requires further studies that would take into account the impact of the
economic performance of the life cycle of wheat production with different tillage systems.
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