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Abstract: Wheat was one of the first grain crops domesticated by humans and remains among the
major contributors to the global calorie and protein budget. The rapidly expanding world population
demands further enhancement of yield and performance of wheat. Phenotypic information has
historically been instrumental in wheat breeding for improved traits. In the last two decades, a steadily
growing collection of tools and imaging software have given us the ability to quantify shoot, root,
and seed traits with progressively increasing accuracy and throughput. This review discusses
challenges and advancements in image analysis platforms for wheat phenotyping at the organ level.
Perspectives on how these collective phenotypes can inform basic research on understanding wheat
physiology and breeding for wheat improvement are also provided.
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1. Introduction

The rapid growth in world population calls for increased food production to meet the growing
demand for calories. To this end, yields of wheat, a major staple food crop, will need to rise by 50%
by 2050 as projected by CIMMYT [1]. The gains in yield will be brought on by basic research that
explores wheat physiology and genetics, intensive breeding efforts, and innovative agronomic practices.
Observing and quantifying plant phenotypes (i.e., phenotyping) is critical and integral to each of these
efforts [2]. A phenotype is comprised of a collection of smaller measurable traits known as phenes [3].
The observed phenes and phenotypes of wheat at least partially dictate its agronomic performance
while being indicative of its underlying physiology and genetics as well as its interaction with the
environment. In spite of its relevance, phenotypic information is acquired at a rate that has been
outpaced by that of genetic information by virtue of recent breakthroughs in genomics, sequencing,
and genetic marker development. This has led to what is dubbed the “phenotyping bottleneck”:
a constraint on the scale of plant breeding and research caused by current limitations to high-throughput
and high-resolution phenotyping [2]. At the core of this phenotyping bottleneck is how phenotyping is
conducted. Quantitatively phenotyping wheat plants commonly involves time-consuming, manual
measurements that are constrained in their throughput. This is further complicated by the environmental
effects on phenotypes, which necessitate replicated, multi-location trials and studies.

Many tools have been crafted to alleviate this phenotyping bottleneck. Such tools rely heavily
on image analysis and often serve to either expedite manual measurements or to automate the
measurements altogether [4]. For above-ground organs, the scale and the detail that one can assess
phenotypic information have both expanded vastly due to the advancements of different classes of
tools. For the expansion of scale, imaging from ground vehicles, drones, aircraft, and even satellites
have proven immensely useful for quantitatively studying groups or populations of plants. Readers are
directed to several excellent review articles on high-throughput phenotyping (phenomics) using sensor
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technologies [4–6]. The present review focuses on the imaging tools that have enabled greater resolution
of phenotypes of individual wheat plants at the organ level. This is highly relevant to fundamental
research that tackles questions pertinent to wheat physiology and stress response as well as field
research that can provide invaluable data for wheat breeding. Special attention is given to cost-effective
tools that do not possess a steep learning curve as to focus on tools that could be implemented in
projects at a broad range of sizes. We aim to provide a point of reference for researchers that are new to
phenotyping of wheat plants or are interested in exploring alternative phenotyping platforms. Use of
these image-based tools has been and can be applied to other cereal grain crops or to crops in general.

2. Phenotyping of Shoot Traits

2.1. Shoot Phenotyping in Wheat: An Overview

Shoot traits such as leaf size, shoot height, spikelets per spike, tiller number, and maturity are
amenable to non-destructive sampling and have been available to farmers, breeders, and researchers for
centuries. However, quantification of shoot phenotypes of individual wheat plants is not limited to
these “traditional” measures. Rather, shoot morphological analysis in wheat has been expanded to a
greater collection of traits by virtue of image analysis software. At the simplest level, ImageJ [7] has
enabled manual measurements of leaf shape, color, and extent of disease development [8,9]. Beyond the
capabilities and throughput of ImageJ, additional tools have emerged that quantify familiar phenotypes
from images with higher throughput or that compute relevant, novel phenotypes otherwise unavailable
to researchers. Phenotypes assayed by these software tools vary greatly in their scope—with some tools
analyzing leaves specifically and others zooming out to analyze individual shoots or to canopies formed
by groups of plants (Table 1). While proprietary tools come at an added expense, publicly available tools
enable researchers and breeders to quantitatively phenotype their plants while minimizing cost [10].
Such tools are often validated against their proprietary counterparts or against measurements in ImageJ
to ensure phenotyping accuracy. Publicly available tools are often open source as well, with their source
code being freely available for technically advanced users to tailor to their specific needs [10] (Table 1).

Table 1. Commonly used image-based tools for shoot phenotyping in wheat.

Software Software/
Hardware Cost

Open
Source Operating System Example Output Trait

Easy Leaf Area No Yes Windows, Mac OS, Android Total leaf area, leaf area index

Lamina2Shape No Yes N/A (MatLab Program) Leaf shape parameters, leaf length:width
ratio, leaf area

LeafScan Yes No iOS 9.2+ Leaf area

Plant Screen
Mobile No Yes Android OS 4+

Leaf area, perimeter, dimensions,
and color profiles

LeafByte No Yes iOS 9+ Leaf area, herbivory extent

Leaf Doctor No No iOS 8+ Proportion of diseased leaf area

BioLeaf No No Android Leaf area, herbivory extent

HTPheno No Yes N/A (ImageJ Plugin) Shoot projected area, width, and height

CoverageTool No Yes Windows XP +
Leaf area, color profiles, whole shoot

area/color, leaf area index

Canopeo No No Windows 7+, Android, iOS,
Linux, Mac OS Fractional green canopy cover

CI-202 Yes No Windows 95, XP Leaf area, length, width, perimeter,
and aspect ratio

LI-3000C Yes No Windows 2000+ Leaf dimensions, leaf area

WinDIAS Yes No Windows 7+
Leaf area, length, width, perimeter,

proportion of diseased area

WinFOLIA Yes No Windows 8+
Leaf area, leaf dimensions, herbivory
extent, disease extent, color profiles
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2.2. Phenotyping of Individual Leaves

Multiple programs have been created that expedite quantification of leaf traits relative to manual
quantification in ImageJ (Table 1). At the most basic level, there are easily implemented options for
assaying leaf area phenotypes. Easy Leaf Area [11] enables batch processing of camera or scanner
images by quantifying the green area for each plant in each image while using a square red scale marker
to calibrate its area measurements. The mobile app LeafScan [12], while coming at only a nominal cost
to users, also simplifies leaf area measurements by calibrating area measurements to a square of fixed
area in the image background. Another mobile app, Plant Screen Mobile [13], leverages a calibration
object in smartphone images to rapidly measure leaf size and dimensions while also providing more
options for color thresholding of leaves against more heterogeneous backgrounds. More complex leaf
phenotypes, such as lamina shape (shape of leaf blade), can be assayed from scanned images using the
MatLab program Lamina2Shape [14]. These leaf shape phenotypes are indicative of wheat’s response to
changes in agronomic practices such as sowing date, sowing density, and nitrogen fertilizer application,
as leaf growth patterns are modulated to accommodate nutrient and space limitations [15,16]. Finally,
the proprietary CI-202 Leaf Area Meter (CID Bio-Science, Camas, WA, USA) has a built-in scanner that
flattens leaves and measures leaf perimeter, area, width, and length. This device is joined by other
proprietary scanners that include the LI-3000C (LI-COR, Lincoln, NE, USA), and the WinDIAS system
(Delta-T Devices, Cambridge, UK), which are advantaged for portability and throughout, respectively
(Table 1).

Morphological traits such as shape are not the only relevant parameters in leaf phenotyping.
Plants exist in environments where biotic stressors such as pests and diseases are present.
Quantitatively assaying disease resistance and pest deterrence in leaves is important to research
and breeding in wheat, as it provides valuable data for studies that elucidate key genes or linked
molecular markers for biotic stress resistance. WinFOLIA (Regent Instruments, Quebec City, QC,
Canada) is a proprietary software that quantifies herbivory and disease extent in addition to leaf
morphological parameters. WinFOLIA has been implemented in research on monocot crops, such as
studies of agronomic practices in maize [17] and disease response in barley [18]. In contrast to WinFOLIA,
several leaf phenotyping freeware tools have the added benefit of being mobile applications, enabling
enhanced portability relative to flatbed scanner systems. BioLeaf [19] and LeafByte [20] are freely
available smartphone applications that can rapidly quantify the proportion of damage to leaves from
pests. These apps considerably lower the equipment requirement for imaging leaf tissue and lower the
technical learning curve for researchers and breeders that wish to approach pest damage and deterrence
quantitatively. Another mobile application, Leaf Doctor [21], measures the proportion of diseased area
on a leaf. This allows researchers to have quantitative measures of disease susceptibility rather than
relying on coarse scales for disease grading [22]. This suite of leaf-level tools collectively gives research
groups several options for leaf quantitative phenotyping based on the traits in consideration as well as
the size and budget of the research project.

2.3. Phenotyping of Individual Shoots

Compared to individual leaves, phenotyping of whole shoots is technologically challenged by the
inability for common imaging devices to capture information on three-dimensional (3D) structures. As a
result, many phenotypes commonly assayed on whole shoots rely on the measurement of 2D projections
of shoots taken with monocular (single camera) imaging systems [23,24]. Some of the leaf phenotyping
programs survey the green area in images, making them suited to measure projected areas of whole
shoots as well. For example, Easy Leaf Area can be used to batch process images of shoots to generate
projected area measurements from a collection of images [11]. Likewise, ImageJ is still suited for fully
manual measurements of area, height, and diameter of the shoot in the image [23,25]. CoverageTool [25]
and HTPheno [23] are more specialized tools for whole shoot phenotyping. CoverageTool allows users
to partition shoot images into regions by color and quickly quantify the projected area occupied by
each color [25]. This enables rapid measurements of not only projected area, but also of senescence
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or tip dieback. HTPheno can batch process multiple images quickly that are taken with the same
specifications, enabling the user to rapidly measure shoot width, height, and projected area without
the need for manual measurements [23]. The usage of CoverageTool, HTPheno, and other shoot
phenotyping software (such as Canopy Reconstruction [26]) is naturally constrained by the user′s ability
to quickly image shoots with consistent lighting, scales, and camera angles. Conveyor-assisted imaging
systems that can generate images suitable for analysis with high throughput phenotyping software are
constructed by companies such as Phenospex (Heerlen, Netherlands), Lemnatech (Aachen, Germany),
and Qubit Phenomics (Kingston, ON, Canada). Such systems have been implemented at various
centers worldwide [27] and have been used in the validation of software tools including HTPheno.

2.4. Phenotyping of Canopy Cover

Wheat shoots invariably come into contact with each other in the field setting. Communities of
individual plants form canopies in which the spatial distribution of leaves collectively determines
the productivity of the entire plot [28]. A common metric used to quantitatively analyze these plant
canopies is the fractional green canopy cover (FGCC): the proportion of a given two-dimensional,
vertically viewed area that is taken up by green shoot tissue. As with shoot phenotyping, programs that
quantify green area in images such as ImageJ, CoverageTool, Easy Leaf Area, and Canopy Cover Free
(a mobile app version of Easy Leaf Area) are appropriate for assaying the proportion of a plot image
that is occupied by a plant canopy—effectively measuring FGCC. The mobile application Canopeo [29]
is specialized for FGCC measurements and has been leveraged more extensively in wheat research in
comparison. The Canopeo app semi-automatically processes images of wheat canopies taken by users
with a smartphone while allowing users to append additional metadata or notes to each image [29].
As FGCC is computed as a unitless proportion of green area to non-green area, scale markers are not
needed for imaging, which increases throughput and lowers equipment need. This app is compatible
with a wide range of computer operating systems and is continually maintained, ensuring its longevity
as new tools emerge [30]. The relatively shorter canopies of wheat benefit from being more accessible
throughout the plant′s life cycle than those of taller monocot crops such as sugarcane or maize, making
the use of cost-effective, handheld imagery feasible for time-series measurements of wheat in the field
or greenhouse. Each of the freeware tools mentioned here are able to robustly quantify FGCC from
images taken in these settings irrespective of the imaging device used.

2.5. Phenotyping of Shoot Chemical Content

Image-based shoot phenotyping in the visible wavelengths can be complemented by information
acquired using infrared (IR) spectroscopy. This approach uses reflectance of wavelengths in the near
infrared (NIR) or short-wave infrared (SWIR) spectrum (700 nm–2500 nm) relative to that of visible
wavelengths to make inferences about the chemistry and overall health of the plant. The use of
hyperspectral cameras capable of scanning large regions of the IR spectrum has given IR imagery its
well-documented role in aerial remote sensing [31] but has also given it versatile uses in organ-level
phenotyping. Commercially available hyperspectral cameras have enabled shoot chemical phenotyping
through the analysis of false-color images. Many field-portable spectroradiometers circumvent the
need for image analysis altogether by reporting spectral data for a targeted imaging field, though this
is at the expense of measurement area. At the simplest level, some handheld devices feature a “point
and shoot” measurement method that quickly and easily measures spectral reflectance at a target
location, though the collection of traits measured is more limited. The broad spectral range and the
high spectral resolution of many currently available tools have enabled the usage of numerical spectral
vegetation indices (SVIs) that can have modelled relationships with plant chemical and physiological
status [32]. A commonly reported SVI is the Normalized Difference Vegetation Index (NDVI), which is
computed using measured reflectance of the red and NIR bands [33]. NDVI measures are indicative of
vigor and phenology in wheat [34], and each of the aforementioned tools can readily compute NDVI
measures at varying scales. As NDVI serves as a suitable proxy for plant health, it has been used in
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exploration of nematode resistance [35], the effects of no-till practices [36], and the genetics of heat and
drought resistance [37] in wheat.

Other SVIs have been developed beyond the NDVI that are applicable to shoot chemical
phenotyping in wheat. One such index is the Normalized Water Index (NWI), which leverages
water absorption of certain NIR wavelengths to estimate shoot water content [38]. Beyond shoot
water content, concentration of pigments, such as anthocyanins, can be measured in NIR imagery
using the anthocyanin reflectance index. This has proven useful in the detection of stress symptoms
in wheat, particularly in response to yellow rust [39]. Finally, the Pigment Specific Simple Ratio for
Chlorophyll a has proven to be an effective way to measure Chlorophyll a in field-grown wheat [40].
Other indices are being developed and explored as well that correlate with shoot nitrogen uptake,
leaf nitrogen content, and yield components in wheat [41]. Further work on modelling relationships
between SVIs and mineral macronutrient (N, P, K, S) and micronutrient (such as Zn, Fe, and B)
concentrations is underway [42]. Currently available hyperspectral devices are capable of assaying
spectral regions that enable users to carry out research and breeding in wheat using these SVIs and
others. These proximal sensing tools have no barrier to their implementation outside of the hardware
cost, making them amenable to incorporation into experimental designs or breeding regimes without
the need to substantially overhaul the experimental design or breeding pipeline.

2.6. Research Trajectories in Shoot Phenotyping

Aside from profound advances in aerial and satellite imagery for remote sensing [43], affordable,
smaller-scale image-based phenotyping of shoot traits is becoming increasingly user-friendly and
higher throughput. Field phenotyping at the scale of individual plants or small groups of plants is
benefited by field-portable or handheld imaging devices. Increased availability of software capable
of analyzing images taken by these devices in the field enables the exploration of research questions
without the introduction of controlled environment as a confounding factor. The rapid expansion of
mobile applications in this space that can generate valuable phenotypic information stands to benefit
both research and breeding efforts in wheat. Indeed, breeding efforts are benefited by the rapid growth
of low-cost shoot phenotyping systems through the enablement of participatory breeding in which
growers can provide quantitative inputs to breeders without changing their growing operations [44].
Continued development is occurring in this space as deep learning approaches continue to be
implemented in the development of wheat phenotyping software [45]. For example, faster and easier
acquisition of shoot traits that have been thus far excluded from image-based shoot phenotyping,
such as spike number and tiller count, is steadily becoming possible using deep learning facilitated
image analysis [46].

3. Phenotyping of Root Architectural Traits

3.1. Barriers and Strategies for Root Phenotyping

Plants allocate a large percentage of their photosynthate produced in shoots to sink tissues, such as
roots [47]. Roots are the interface with the soil that plants use for anchorage, water and nutrient uptake,
and microbial symbiosis [48]. Compared to shoot phenotyping, quantifying the phenotypes and
constituent phenes of roots poses additional challenges. Retrieving roots from the soil for visualization
is destructive to the plant and is also likely to perturb the phenotypes that are being measured [48].
In addition, the complexity of root systems presents another issue for automated phenotyping efforts.
Root intersections, branching, and the presence of fine roots beyond the researcher’s imaging capacity
pose barriers to root phenotyping that are not present when phenotyping aboveground tissues [49].

Simple excavation remains a relevant method for phenotyping roots of plants growing in the field
(“shovelomics” [50]). However, researchers should take great care to maintain the integrity of the root
system during excavation and subsequent washing. Although washed roots extracted from soil cores
can be suspended in water and imaged with high contrast, soil coring fails to capture the whole root
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system in all but the younger plants. As such, root crowns, rather than the whole root system, are
phenotyped for mature plants in shovelomics [50]. Hydroponic systems provide an alternative liquid
medium for plant growth and non-destructive imaging. However, plants grown hydroponically will
invariably differ in their root morphology relative to soil-grown plants [51]. Physical tools have also
been devised that ameliorate the visualization constraint for root phenotyping. Glass-sided boxes
of soil called rhizotrons (or rhizoboxes) enable a relatively coarse visualization of the root system by
allowing the roots touching the glass wall to be observed and imaged [52]. Roots in the field have
been approached with “minirhizotrons”, which are long, periscope-equipped glass tubes inserted
into the soil of agronomic plots. Like rhizotrons, minirhizotrons enable imaging of roots growing
along the glass tube wall. Minirhizotrons are valuable for their ability to image roots continuously and
non-destructively in situ, though they have limited ability to image entire root systems [53]. In recent
years, X-ray computed tomography has seen improved image resolution and quality and has been
applied to generating 3D images of roots in situ [54].

Following image acquisition, the task of quantification of root architectural traits remains.
Manual quantification through tracing of root images, despite providing relatively accurate
measurements, is laborious and limited to simple root systems. On the other hand, recent advances
in computer vision have produced several software tools for root phenotyping that collectively
accommodate a large collection of imaging methods, plant species, and phenotypes [10]. Many such
tools are applicable to wheat phenotyping (Table 2) and have been employed to address a wide range
of research questions as discussed below.

Table 2. Commonly used image-based tools for root phenotyping in wheat.

Software Software/
Hardware Cost

Open
Source Operating System Automation Example Output Trait

RootNav No Yes Windows XP+ Semi-automated

Primary and lateral
root count, lengths,
angles. Convex hull

area. Network shape.

SmartRoot No Yes
Platform

independent
(ImageJ plugin)

Semi-automated

Primary and lateral
root length, lateral root
density, root diameter,

insertion angles.

GiA Roots No No Windows 7+, Mac
OS, Linux

Fully
automated

Total root length, area,
and volume. Convex

hull area.
Network shape.

DIRT No Yes
Platform

independent (Web
interface)

Fully
automated

Soil tissue angle. Root
density and

distribution. Network
depth, width, shape.

saRIA No No N/A (MatLab
Program) Semi-automated

Total root length, area,
and volume. Number
of branching points.

Network depth, width,
and width distribution.

SegRoot No Yes Windows 7+, Mac
OS, Linux

Fully
automated Root length.

WinRHIZO Yes No Windows 7, 8, 10 Fully
automated

Root length, area,
volume and diameter.
Number of tips. Root

color profile.
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3.2. Software Applicable to Root Phenotyping in Wheat

The freeware ROOTEDGE [55] and the proprietary phenotyping platform WinRHIZO (Regent
Instruments, Quebec City, Canada) were the early imaging tools that emerged alongside of ImageJ.
ROOTEDGE, an early alternative to hand measurements of root systems, received some proof-of-concept
work on wheat roots [56], but was written for early versions of MS-DOS and has since been
overshadowed by more recently released tools that can better distinguish roots from image backgrounds
and that are compatible with more operating systems and image specifications. WinRHIZO is a
closed-source, hardware-associated tool that gained traction early on because of its ability to robustly
image and quantify roots. The scanners associated with WinRHIZO are calibrated and illuminated
in a manner that minimizes shadows, though generic flatbed scanner images can also be analyzed
with the WinRHIZO software. Early applications of WinRHIZO in wheat enabled evaluation of many
traits and processes, such as the modelling of root length density [57] and the investigation of crop
rotation [58]. This proprietary platform has sustained maintenance, which is a limitation of many
publicly available freeware tools [30]. As a result, continued applications of WinRHIZO have been
seen widely in wheat research. For example, this platform has been applied in genetic mapping of root
traits [59–61], exploration of nutrient response [62–64], gauging response to water limitation [60,65,66],
and evaluation of germplasm [67], among a plethora of other studies. However, the cost associated
with the WinRHIZO image analysis system (scanner and software) may be considered prohibitory
to new users in spite of its utility. To that end, several freely available tools have emerged that have
overcome many of the limitations of ROOTEDGE while providing a workaround for the cost limitation
of WinRHIZO [10] (Table 2).

Among the freely available root phenotyping tools, there are varying levels of automation for root
trait quantification. Semi-automation has the advantage of enabling the user to improve phenotyping
accuracy by manually correcting errors made in root identification, though this comes at the expense
of throughput [10]. SmartRoot [68] and RootNav [69] are semi-automated tools that have been applied
in wheat research. SmartRoot is an open source, operating system-independent plugin for ImageJ.
Primary or lateral roots in whole root systems can be automatically identified by SmartRoot. The user
has the option to review the automatic identification for each root segment to ensure an accurate
measurement of the imaged root system [68]. SmartRoot has been used in wheat research to characterize
germplasm [70,71], analyze plant–plant interactions [72], and study potential breeding targets for root
architectural traits [73].

RootNav is another open source, semi-automated phenotyping tool that distinguishes primary and
lateral roots [69]. RootNav users specify root tips and the source of the roots in the image. The program
will generate a system of primary and lateral roots using this information and using the pixel intensities
in the image. The user can proofread this root system after it has been generated to ensure robust
identification of the root network. The user also has the ability to change thresholding parameters in
different regions of the image to enable detection of roots in backgrounds with inconsistent lighting [69].
The ability to analyze lateral roots in complex root systems has given many uses for RootNav in wheat
research, such as studies linking seedling traits to yield components [74] and nitrogen uptake [75],
as well as to studies delving into the genetic components of root architecture [76–78]. RootNav is
continually maintained, and a second version of the tool has been released as a command-line operated
Python program that leverages deep learning to more effectively identify roots [79].

Fully automated programs differ from their semi-automated counterparts in that the specifications
for image processing and analysis are set at the start of individual runs, and these specifications
are applied to all images in the batch. This considerably increases throughput, as the user is not
tasked with proofreading each image in the dataset. However, accuracy may be compromised if the
specifications are not set carefully or if the images are of inconsistent quality [4]. The now discontinued
GiA Roots [80] was a fully automated program that had been leveraged in wheat research. GiA Roots
identified root pixels from the background of batches of images using thresholding parameters that
were set by the user prior to the analysis. The roots identified in this scheme were measured for traits
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such as length, length distribution, surface area, and convex area [80]. GiA Roots has been adopted to
study components of seedling water deficit response [81–83] and linkage drag of genes underpinning
seeding root system traits [84] in wheat. However, GiA Roots has slowly been rendered outdated by
new software tools such as Digital Imaging of Root Traits (DIRT) [85] and the neural network driven
programs SegRoot [86] and saRIA [87], described below.

DIRT is a unique web platform backed by a computing cluster for the processing of image
data [85,88,89]. Furthermore, this platform is unique in that it hosts a growing collection of public
image sets shared by researchers around the globe [85]. The DIRT platform quantifies root system
architectural traits such as width accumulation, spatial distribution, and rooting angles in batches of
images uploaded to the online interface. DIRT was designed to process images of excised roots taken
with low-cost imaging systems (such as tripod-mounted smartphones) in a field setting. The use of
scale markers in the images enables DIRT to correct for camera tilting and to set the scale for each
image without user intervention [85,88,89]. DIRT offers promise to wheat research due to its unique
ability to quantify excised root systems without the need for added technical training required for
installing and running standalone software. The DIRT platform has already been used to explore
wheat’s response to phosphorous deficiency [90]. To date, many wheat image collections exist on the
DIRT platform, raising promise for its future usage in wheat research.

3.3. Recent Advances in Root Phenotyping Using Deep Learning

The semi-automated saRIA [87] and the fully automated SegRoot [86] are recently published
tools that can quantify useful traits in wheat root systems. Each of these tools was trained using a
convolutional neural network (CNN) to identify roots in visually noisy images [45]. The semi-automated
saRIA was developed in MatLab (MathWorks, Natick, MA, USA) and computes a suite of traits from
roots grown in agar, fine soil, or other media with shapes that differ sufficiently from the roots being
studied [87]. Some room for machine error is given when using saRIA, as the user has the option to
remove objects that have been mis-identified as roots in the image. SegRoot is fully automated and has
its output traits limited only to length. However, SegRoot has a very low image quality requirement in
that it is amenable to analyzing roots from complex, visually heterogeneous soil backgrounds [86].
Both SegRoot and saRIA were tested for accuracy against other published tools, and both outperformed
GiA Roots in the identification of roots in heterogeneous growth media, demonstrating clear benefits
of machine learning-informed approaches in root phenotyping. These tools have promise for rapidly
identifying wheat roots imaged in soil-bound systems, such as minirhizotrons and rhizotrons, without
the need for manual image pre-processing with image manipulation software. This is especially
important, as it opens the door to the analysis of more mature root systems, expanding the scope of
wheat root phenotyping away from the limited architectures of seedlings to those of mature plants.

3.4. Research Trajectories in Root Phenotyping

Phenotyping under controlled conditions has brought a notable number of studies that assay
wheat seedling traits prior to transplantation [73,74,91], which has produced datasets of traits that are
correlative of yield components in wheat. Outdoor rhizotrons enable measurements of soil-bound roots
in an environment that simulates field soil [52,92]. Minirhizotrons can be used to assay root turnover
of plants in field soil, which can generate informative phenotypes of individual plants or of several
individuals of the same genotype sown in close proximity [53,93]. Excavation-based shovelomics
approaches can provide the throughput needed in a field setting to overcome the variability inherent in
root phenotyping by virtue of their low equipment requirement and relatively simple procedure [50].
Shovelomics and its accompanying software tools (REST [94], DIRT [85]) collectively enable root
phenotyping at scale in the field. Though full excavation becomes impossible for mature plants,
the correlative traits derived from immature root systems or from mature root crowns remove the
confounding factor of having a controlled environment. This potentially allows them to be more
indicative of mature plant phenotypes for breeding or of underlying plant physiology for research.
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Overall, the needs of the wheat research community for root phenotyping are increasingly being met
with the collection of physical tools and the development of effective imaging tools [30].

4. Phenotyping of Seed Traits

4.1. Challenges and Software Applicable to Seed Phenotyping in Wheat

Wheat is grown almost exclusively for grain consumption. The yield of wheat has an obvious
interplay with grain-centered phenotypes such as seed number, shape, and size. Grain color is also
relevant as it may influence consumer preference of end-use products [95]. Despite the importance
of seed phenotypes to wheat cultivation and marketing, phenotyping of wheat seed is limited by
a pair of factors. Firstly, seeds are small and variable in size, requiring a high number of careful
dimensional measurements to successfully capture the trends in seed characteristics across cultivars or
populations [96]. Secondly, robust measurements of seed color are difficult or impossible to make by
human estimation. To circumvent the issue of throughput and color phenotyping, several image-based
tools have emerged in the last 20 years that can enable rapid quantification of seed dimensions and
colors. There is currently a pair of publicly available software tools, as well as a pair of proprietary,
hardware-specific tools, available to researchers for seed phenotyping (Table 3).

Table 3. Commonly used image-based tools for seed phenotyping in wheat.

Software Software/
Hardware Cost

Open
Source

Operating
System Automation Example Output Trait

SmartGrain No No Windows XP+ Semi-automated Seed size, dimensions,
seed count

GrainScan No No Windows 7+
Fully

automated
Seed size, dimensions,

color, seed count

WinSEEDLE Yes No Windows 7+
Fully

automated
Seed size, dimensions,
color, curvature, count

SeedCount Yes No Windows 7 Fully
automated

Seed size, dimensions,
color, seed count

SmartGrain [97] and GrainScan [96] are independent of specialized hardware and can be used
with low-cost, conventional flatbed document scanners. SmartGrain analyzes seed size and dimensions
for each grain in the image, effectively giving the seed count [97]. SmartGrain is semi-automated in
the sense that the user needs to review and potentially correct the masking of the grains from the
background to ensure that they were detected properly. GrainScan is fully automated and analyzes seed
size and dimensions while also taking standardized color measurements [96]. Although GrainScan
is equipped with batch processing and tunable thresholding parameters, it does not offer manual
correction by the user. Both packages have been widely employed in wheat research. SmartGrain has
been leveraged to explore the genetics underlying yield components [98–102], to aid breeding and
introgression [103–105], and to analyze drought response [106]. GrainScan has been used in the
exploration of yield genetics [107,108], the evaluation of ancestral germplasm [109], and in the
unraveling of wheat domestication [110]. Both of the phenotyping tools noted here could see broad
implementation in academic laboratories, as they have low equipment requirements and require little
advanced technical expertise to operate.

The proprietary phenotyping platforms, WinSEEDLE (Regent Instruments, Quebec City, QC,
Canada) and SeedCount (Next Instruments, Condell Park, Australia), are associated with specialized
hardware that comes as an extra expense for researchers. In both cases, this specialized hardware
functions to increase throughput and image quality relative to conventional flatbed scanners.
Both WinSEEDLE and SeedCount are fully automated and provide information about seed shape,
number, and color. These systems predate the freeware outlined above and have been applied in many
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studies since their release. Like GrainScan and SmartGrain, WinSEEDLE has been used in explorations
of genetic and phenotypic underpinnings of yield components in wheat [111–116]. SeedCount has seen
broad use in academic research. In addition to usage in genetic mapping studies for yield [117–119],
SeedCount has been leveraged to explore wheat abiotic stress response [120–122], grain mineral
accumulation [118,123–125], and to evaluate germplasm [126,127]. Usage of these proprietary tools
certainly extends beyond what is reported in academic literature. The marketing of these proprietary
platforms is primarily directed toward seed industry professionals. As such, applications in the
public domain represent only a subset of their overall usage. Nonetheless, there are clear avenues for
usage of these proprietary seed phenotyping tools in academic research, provided that their cost is
not prohibitive.

4.2. Research Trajectories in Seed Phenotyping

Compared to images of shoots and roots, the images of seeds are less complex in terms of the
identification of individual seeds and to the number of informative phenotypes that can be garnered
from these seeds. Discrepancies in seed size are detected readily by gravimetric measurements while
clear discrepancies in seed shape across varieties are often not quantified. However, phenotypes
that are difficult or arduous to assay by hand such as color or seed count are quickly measured by
image analysis using aforementioned tools. Improvements in this space could stand to leverage recent
advances in deep learning and image analysis to enable more reliable identification of seeds against a
wider range of image backgrounds, namely light-colored or textured backgrounds with low contrast to
the seeds [128]. Increasing robustness of seed identification across many backgrounds could expand
the currently limited collection of mobile applications for seed phenotyping, which are currently
limited to seed counting [129], by supplying tools capable of measuring dimensions and shape from
smartphone images. Such improvements have the potential to supplant the need for scanning devices
when phenotyping wheat grains, much like the portable apps that are becoming increasingly germane
to shoot phenotyping.

5. Concluding Remarks and Future Perspectives

A suite of accessible phenotyping tools has been developed that is applicable to both fundamental
and applied wheat research. An integrated phenotyping approach that accounts for many aspects of
plant growth can unravel the effects of genetics, environmental factors, and management practices on
the physiology of wheat and ultimately translate this to enhancing its performance and productivity in
the field. Rapid, comprehensive evaluation of wheat at varying stages in the breeding pipeline—from
wild species to landraces to elite breeding lines—will be instrumental in increasing wheat yields
to accommodate the increase in the demand for wheat that comes with a rapidly growing world
population. Moreover, the increasing accessibility of these tools, particularly for shoot and seed
phenotyping, has resulted in lower learning curves and imaging requirements so that a wider range of
breeders can rise to meet this global need without being required to reinvent their breeding pipelines.

Research trajectories for shoot, root, and seed phenotyping in wheat, and in crops in general, are
discussed in the above sections. Looking forward, several developments will continue to improve
the throughput, accuracy, and accessibility of the phenotyping outlined here. From the biological
sciences, advances in next-generation sequencing, genetic, and functional genomic analyses collectively
improve our ability to leverage phenotypic observations to explore the idiosyncrasies of the wheat
genome and to develop new cultivars. From the engineering and computational sciences, the software
and hardware tools available for this effort will steadily improve as well; breakthroughs in deep
learning, computer vision, and graphical user interfaces are being complemented by advances in
image acquisition and computing clusters. The continued collaborative efforts among these disciplines
hold promise to generate a wealth of phenotyping data readily accessible for analysis by researchers
in basic and applied sciences, much like wealth of genetic information that already exists publicly
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for wheat [130]. The expansion of phenotyping information will facilitate multidisciplinary research
investigations in wheat that enable us to hit the needed yield benchmarks for decades to come.
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