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Abstract: Strawberry fruit quality traits can be affected by genotype–environment interactions,
determining the final consumer acceptance of fruits. Trait stability under varying environments
is necessary to ensure the fruit quality of strawberries selected by breeding programs. Hence,
inter- and intra-annual variation of organoleptic and functional fruit quality parameters of five
strawberry varieties throughout four consecutive cropping seasons was analyzed to assess their
relative stability. In most varieties, organoleptic parameters showed higher inter-annual stability
but greater variability throughout the season, while the reverse was true for the functional quality
parameters. Relative humidity and mean and minimum temperatures partially accounted for fruit
quality variation but other factors along with the genotype may also have an influence. Among the
varieties, ‘Splendor’ displayed greater year-on-year stability in organoleptic parameters, and ‘Sabrina’
and Candonga® showed higher inter- and intra-annual stability on functional fruit quality, respectively.
Environmental variation did not affect fruit quality parameters similarly in all strawberry varieties.
In ‘Sabrina’ and Candonga® antioxidant capacity (TEAC) was greater and stable throughout the
cropping season, underlining TEAC as a tool for varietal selection, and suggesting these two varieties
as parents for breeding programs that seek healthy features and high-quality fruits that meet
consumer demands.

Keywords: Fragaria × ananassa; fruit quality variability; environmental variation; genotype

1. Introduction

Fruits and vegetables are an important part of the daily diet since they provide essential nutrients
and fibers [1]. This is the case of strawberry fruits, highly appreciated by consumers due to their
texture, aroma and flavor (i.e., organoleptic fruit quality). In addition to its organoleptic properties,
epidemiological studies attribute certain benefits against different diseases to strawberries, due to the
presence of various bioactive compounds (i.e., functional fruit quality) [2,3], mainly antioxidants of
polyphenolic nature, enhancing its demand for consumption.

However, strawberry cultivation includes a wide range of varieties as a result of several breeding
programs developed throughout the world to obtain genotypes adapted to the agroclimatic conditions
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of specific areas. For this reason, not all strawberry varieties present the same fruit quality [4–6]
and they do not respond in the same way to the variation of environmental factors such as incident
light, temperature and relative humidity [7,8]. Thus, it is known that changes in environmental
conditions determine the development of strawberry plants, affecting flowering, fruiting and fruit
quality, among other characteristics [7,9]. Furthermore, in specific situations, climatic conditions can
be a source of stress for the crop depending on the ability of the varieties to cope with it. In this sense,
it has been described that antioxidant compounds of polyphenolic nature play an important role in
the general mechanisms of response to different stressors and, therefore, changes in environmental
variables could be expected to influence the composition and synthesis of these compounds in different
parts of the plant, including fruits [10].

Thus, both the quantity and the quality of the incident light can affect biosynthesis and the
accumulation of different phytochemical compounds at the fruit level (i.e., sugars, carotenoids, phenolic
acids or anthocyanins), and their effect depends on the species and cultivar [11]. More specifically,
a low incidence of light directly reduces photosynthesis and, therefore, the synthesis of sugars and
carbohydrates, and vitamin C [12,13], affecting fruit quality.

Changes in temperature affect both the production and the quality of strawberry fruits.
Low temperatures (below 7 ◦C) increase the incidence of misshapen fruits, alterations in fruit size and
color [4,14]. On the other hand, high temperatures decrease the photosynthetic rate of the plant by up to
44%, compromising crop yield [15] and causing a decrease in sugars at the fruit level and, consequently,
in sweetness [14]. However, slightly elevated temperatures could induce the synthesis of phenolic
compounds, including anthocyanins, leading to redder and darker fruits [14–16], thereby increasing
the antioxidant capacity of the fruits and their functional quality [17].

The air relative humidity is closely related to the temperature and it conditions the evaporative
demand and the transpiration of the plant both at the leaf and fruit level. Therefore, it directly affects
their water content, size and the concentration of bioactive compounds. Currently, there are few studies
analyzing the effect of this variable on the quality of fruits and vegetables [18], although a negative
correlation with the antioxidant capacity of the fruits has been found in strawberries, especially in
rainy periods [17].

Therefore, the variation of environmental factors can affect—to a different extent—the organoleptic
and functional quality of the fruits in the different strawberry genotypes [19,20], and, consequently,
their acceptance by the consumers.

In this sense, numerous breeding programs seek to develop new strawberry varieties, well adapted
to the agroclimatic conditions of a specific area, with high yield and fruit quality [21–24]. However,
although genotype selection in these breeding programs involves the study of advanced selections over
several years, to date, few comprehensive approaches regarding the relative contribution of genotypic
and environmental factors to the organoleptic and functional quality of the fruits are available [19,20,25].
Additionally, it is unknown to what extent these fruit quality traits remain stable throughout the
changing environmental conditions during the cropping season and between different years (intra- and
inter-annual environmental variation, respectively).

Thus, in the productive area of Huelva, contrasting environmental conditions between the
early and late cropping season are differentiated. In the early season (between January and March),
photoperiod is shorter, light incidence and temperatures are lower and relative humidity is higher
whereas the reverse is true for the late season (between April and May). These environmental
differences throughout the season may involve that the same variety could have fruits of different
quality depending on the time of harvest. This would depend on the sensitivity of the different varieties
to environmental changes and on the stability of its fruit quality parameters. Hence, those varieties
with high and stable fruit quality (organoleptic and functional) throughout the cropping season could
be selected as parents in breeding programs aiming for new strawberry varieties with higher fruit
quality attributes.
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The present work aims to assess the effect of intra- and inter-annual environmental variation
in the organoleptic and functional fruit quality of five strawberry varieties widely cultivated in
the conventional cropping conditions of the Huelva area in order to determine their relative fruit
quality stability.

2. Materials and Methods

2.1. Plant Material and Experimental Design

An experiment was carried out during 4 consecutive cropping seasons (2011–2012 (2012),
2012–2013 (2013), 2013–2014 (2014) and 2014–2015 (2015)) at the IFAPA experimental farm “El Cebollar”
(37◦08′52” N, 6◦47′28” O, 63 m high), in Moguer, Huelva (Spain). This area has a Mediterranean-type
climate, with dry and warm summers and moderately cold winters. On each season, plants from
five short-day strawberry varieties: Candonga®, ‘Fortuna’, ‘Primoris’, ‘Sabrina’ and ‘Splendor’ were
arranged in a complete randomized block design with three replicate plots per cultivar and 50 plants
per plot. On each season, plants were propagated during summer at high-elevation nurseries
in Castilla-Leon (north-eastern Spain; lat.41◦30′ N, long. 4◦55′ W, alt. 900–1200 m a.s.l.) where
chilling requirements for strawberry cold hardening are provided (i.e., 150–200 h at T < 7 ◦C) [26].
In mid-October, plants were transplanted into a double row mulched raised beds (35 cm high and
50 cm wide) spaced at 25 × 25 cm on sandy soil with 5.8% clay, 5% silt and 89.2% sand, 0.09 % organic
matter, 0.25 dS m−1 EC1-2.5, <1% active CaCO3 and a pH of 5.4 (saturated soil extract in 1:2.5 soil:H2O).
Prior to planting, the soil was solarized and biofumigated (biosolarization) [27], to reduce the presence
of soil pathogens and irrigated with ≈ 650 m3 ha−1. Plants were cultivated following conventional
cropping practices [26] and polyethylene-covered tunnel structures (macrotunnel) [7] were installed in
mid-November and removed at the end of the cropping season (late May).

Fruit set takes place from January (mid-winter) to the end of May (late spring), involving that fruit
set and ripening occur under different environmental conditions during the cropping season. For the
analyses of the organoleptic and functional fruit quality parameters throughout the cropping season,
mature fruit samples of all varieties and repetitions were taken in three harvest times (mid-February,
mid-March and mid-April) on each season. Fruits with homogeneous reddish color were selected as
mature fruits.

Daily data of temperature (◦C), relative humidity (%) and incident solar radiation (MJ m−2 day−1)
were obtained from a weather station installed inside the macrotunnel and belonging to the Andalusian
Agroclimatic Information Network (RIA) [28].

2.2. Fruit Quality Analysis

2.2.1. Organoleptic Parameters

The organoleptic parameters measured were firmness, acidity and total soluble solids content
(TSS). Firmness was measured by a penetrometer with a 3.5 mm diameter hammer on 6 fruits per
repetition. Each fruit was measured twice in two opposite sides of the equatorial zone. The results
obtained were expressed in kg/cm2.

Samples of ~250 g of ripe fruits (i.e., 8–10 fruits per plot) were immediately homogenized with a
mixer to obtain a puree for carrying out the remaining quality analyses. The acidity was measured by
titrating 1 g of puree diluted in 100 mL distilled water to pH 8.1 with 0.01 M NaOH on a Titroline Easy
pH meter (Schott Instruments® GmbH, Mainz, Germany). Acidity was expressed as g of citric acid per
100 g of fresh fruit weight (FW). The TSS was measured in an aliquot of this puree with a refractometer
(PR-32α, Atago, Japan) and expressed in ◦Brix. The rest of the puree was stored at −20 ◦C for the
subsequent analysis of the functional quality parameters.
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2.2.2. Functional Parameters

Quantification of vitamin C was performed using test strips on a reflectometer (Rqflex 10, Merck
KGaA, Darmstadt, Germany) from 1 g of puree diluted in 10 mL of distilled water. The results obtained
were expressed in mg of ascorbic acid per 100 g FW.

The analysis of the polyphenol content was carried out from a hydrometanolic extraction. Briefly,
2 g of puree was diluted in 10 mL of methanol: HCl (99.9:0.01), incubated at 4 ◦C for 24 h and then it
was centrifuged at 10,000 rpm for 15 min at 4 ◦C. The supernatant was diluted in the same extraction
solvent (2:1) and stored at −20 ◦C until the time of analysis.

The total phenol content (TPC) of the hydrometanolic extract was determined by the
Folin–Ciocalteu method [29], modified by Tulipani et al. [30]. Hence, Folin–Ciocalteu reagent
(200 µL), Na2CO3 (400 µL, 35% w/v) and 50-fold diluted extract (2 mL) were mixed and incubated 1 h
at room temperature in the dark. The absorbance at 725 nm was measured on a spectrophotometer
(Shimadzu UV-1700, PharmaSpec Inc., WA, USA,). Gallic acid was used as standard and results were
expressed in mg of gallic acid equivalents (GAE) per 100 g FW.

The total flavonoid content (TFC) was determined as in Dewanto et al. [31]. Briefly, 250 µL of the
hydrometanolic extract was taken and mixed with 1.25 mL of MilliQ water and 75 µL of 5% NaNO2.
After 6 min 150 µL of 10% AlCl3 6 H2O was added and incubated for 5 min. Finally, 500 µL of NaOH
(1 M) and 275 µL of MilliQ water were added and the absorbance was measured at 510 nm. Catechin
was used as standard, and the results were expressed in mg of catechin (CAE) per 100 g FW.

Total anthocyanin content (TAC) was measured according to the differential pH method [32],
whereby a solution at pH 1 (KCl 0.025 M) and another at pH 4.5 (CH3CO2Na 0.4 M) were used to
prepare two different dilutions (1:10 v/v) of the hydrometanolic extract. These mixtures were incubated
in the dark for 15 min and their absorbance was measured at 500 nm and 700 nm. The final total
absorbance (AbsT) was calculated as:

AbsT = (Abs500 nm − Abs700 nm) pH 1.0 − (Abs500 nm - Abs700 nm) pH 4.5 (1)

The total anthocyanin content was calculated as follows:

Anthocyanin content = (AbsT ×MW × fd × 1000)/(ε × 1) (2)

where:
MW: molecular weight of the reference anthocyanin (perlangonidine-3-glucoside).
fd: Sample dilution factor
ε: molar extinction coefficient of perlangonidine-3-glucoside. The result was expressed in mg of

pelargonidin-3-glucoside equivalent (PE) per 100 g FW.
For the determination of the antioxidant capacity, new extracts were obtained by mixing 2.8 g

of puree in 10 mL of 60% methanol. The samples were centrifuged at 3000 rpm for 15 min at 4 ◦C.
The supernatant was stored at −20 ◦C until antioxidant capacity (TEAC) analysis (Trolox Equivalent
Antioxidant Capacity) [33]. Briefly, an ABTS• + radical solution was prepared by mixing 7 mM aqueous
ABTS• + solution with 2.45 mM K2S2O8, and incubated in the dark for 12 h. Before performing the
analysis, the working solution was prepared by diluting 1.15 mL of ABTS• + radical solution with
100 mL of ethanol. Then, 1 mL of this mixture was added to 10 µL of sample and after 1–3 min the
absorbance at 734 nm was determined and the percentage of color inhibition of the ABTS• + radical by
the sample was calculated:

% inhibition = (Abscontrol − Abssample/Abscontrol) × 100 (3)

where: Abscontrol: absorbance at 734 nm of a water sample.
Trolox reagent was used as standard and results were expressed as µmoles of trolox equivalent

(TE) per g FW.
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2.3. Statistical Analysis

Statistical analyses were carried out with STATISTICA 7.0 analytical software (Stat Sotf Inc., Tulsa,
OK, USA). To assess the effects of the ‘variety’, ‘year’ and ‘harvest time’ and their interaction on the
fruit quality parameters, a CRBD analysis of variance (ANOVA) was performed in which ‘variety’ was
considered as ‘between-subjects’ factor and ‘year’ and ‘harvest time’ were ‘within subjects’ factors.
When significant interactions between ‘variety’ and the other factors were observed, the effect of
‘year’ and ‘harvest time’ on fruit quality was analyzed separately for each variety (two-way ANOVA).
For comparison among varieties within a ‘year’ or ‘harvest time’, data sets were subjected to one-way
ANOVA. Assumptions of normality and homogeneity were tested by the Shapiro–Wilk’s and Cochran’s
C tests, respectively.

To assess the relationship between environmental variables and the fruit quality parameters,
Pearson’s correlations and stepwise multiple regression [34,35] were performed. Data from each
harvest time were plotted against averaged data of daily minimum and maximum temperature,
percentage of relative humidity and radiation of the 10 days before fruit picking. This period was
selected considering that most of the metabolic changes associated with ripening from white to red
fruit occur around 10 days prior to harvest [36].

3. Results and Discussion

This study reports an integrative analysis of the intra- and inter- annual stability of organoleptic
and functional fruit quality traits on different strawberry genotypes and their specific relationship with
the environmental variation. In this work, it is shown that both the genotype and the environmental
variation occurring between and within cropping seasons in the productive area of Huelva (Table 1)
influence the organoleptic and functional fruit quality.

Table 1. Averaged values of the environmental variables measured under the macro-tunnel on the 10
days before fruit sampling on four consecutive years (2012–2015) and at three harvest times (February,
March and April). Different letters indicate significant differences between years, each month (p < 0.05).

February March April

Maximum Temperature (Tmax; ◦C)

2012 15.15 ± 0.72 ns 21.78 ± 0.58 a 18.85 ± 0.97 b
2013 15.96 ± 0.43 ns 17.04 ± 0.43 b 26.69 ± 0.66 a
2014 15.67 ± 0.38 ns 22.18 ± 0.74 a 21.20 ± 1.65 b
2015 16.06 ± 0.41 ns 21.01 ± 1.09 a 21.59 ± 0.8 b

Minimum Temperature (Tmin; ◦C)

2012 0.43 ± 0.95 c 5.37 ± 0.57 ns 8.12 ± 0.83 b
2013 3.67 ± 0.65 b 7.59 ± 1.07 ns 11.72 ± 0.70 a
2014 7.94 ± 1.21 a 6.51 ± 0.37 ns 9.90 ± 0.81 ab
2015 6.36 ± 0.58 a 5.3 ± 0.42 ns 11.33 ± 0.39 a

Mean Temperature (Tmed; ◦C)

2012 7.52 ± 0.8 c 12.98 ± 0.36 ab 13.45 ± 0.62 c
2013 9.63 ± 0.36 b 11.88 ± 0.59 b 18.71 ± 0.56 a
2014 11.77 ± 0.68 a 13.83 ± 0.33 ab 15.51 ± 1.00 b
2015 11.31 ± 0.32 a 12.61 ± 0.42 ab 15.80 ± 0.39 b

Relative Humidity (RH; %)

2012 50.55 ± 4.60 c 60.47 ± 4.23 c 73.65 ± 3.49 ns
2013 68.57 ± 2.44 b 78.45 ± 3.82 a 72.45 ± 2.57 ns
2014 85.61 ± 4.10 a 66.63 ± 3.11 bc 81.16 ± 3.06 ns
2015 73.92 ± 3.59 b 74.36 ± 3.04 ab 76.98 ± 2.43 ns

Radiation (mJ/m2)

2012 15.8 ± 0.24 a 20.46 ± 0.47 a 19.44 ± 1.65 b
2013 14.76 ± 0.41 a 15.26 ± 1.85 b 23.88 ± 0.71 a
2014 9.32 ± 1.85 b 20.07 ± 0.65 a 19.18 ± 1.71 b
2015 10.93 ± 1.19 b 19.37 ± 1.47 a 18.22 ± 1.6 b
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This was evidenced by the overall significant effect of the ‘variety’, ‘year’ and ‘harvest time’
in the fruit quality parameters analyzed (Tables 2 and 3). Although previous works [19,20,37,38]
have described an interactive effect between genotype and environment on the quality of strawberry
fruits, no comprehensive studies have performed a comparative analysis of the relative stability of
organoleptic and functional traits to the environmental variation occurring between different years
(inter-annual) and during crop development (intra-annual) in different strawberry varieties.

During the study period, average temperature and relative humidity values in the 10 days before
fruit harvesting were lower in 2012 than in the other seasons whereas 2014 and 2015 displayed similar
environmental conditions (Table 1). Higher year-on-year variability was observed in February in
comparison with the other months. Only mid- and late-season values of maximum temperature and
incident radiation differed significantly in 2013 from the other seasons (Table 1).

It should be noted that the range of environmental variation did not translate into values of fruit
quality out of the range described for strawberry in the literature [30,39–41]. Thus, values of fruit
firmness, acidity, soluble solids (TSS) and TSS/acidity, ranged from 179–583 kg/cm2, 0.53–0.98 mg/100 g
FW, 5.5–9.9 ◦Brix and 7–14, respectively. Similarly, functional fruit quality parameters including the
content of total phenols, total flavonoids, total anthocyanins, vitamin C and antioxidant capacity,
displayed values between 77–304 mg GAE/100 g FW, 9–67 mg CAE/100 g FW, 10–26 mg PE/100 g FW,
33–88 mg ascorbic acid/100 g FW and 17–65 µmol TE/g FW, respectively. Among varieties, there were
significant differences in most of the parameters evaluated except in flavonoid content and TEAC
(Table 2).

The year-on-year variation in environmental conditions observed in our study did not necessarily
involve variability in all the organoleptic and functional fruit quality parameters nor all varieties
(Table 2). Thus, fruit quality parameters in ‘Sabrina’ were more stable than in the rest of the varieties,
displaying significant inter-annual variation only in three out of the nine fruit quality parameters
evaluated (i.e., total content of phenols, total flavonoids and antioxidant capacity; Table 2). The rest of the
varieties showed a different degree of inter-annual variability depending on the parameter considered.

Regarding organoleptic fruit quality parameters, it should be noted that firmness and TSS did
not show significant inter-annual variation in any of the study varieties. Only acidity in ‘Fortuna’
and TSS/acidity in ‘Primoris’ showed a significant inter-annual variation. In general, these results are
pointing out great stability of the organoleptic fruit quality parameters in the range of year-on-year
environmental variation of our study, consistently with the preservation of the varietal selection
features of their respective breeding programs.

In contrast, there was great inter-annual variability in most of the functional quality parameters in
all varieties, with the exception of the anthocyanins content in all varieties, and vitamin C in ‘Sabrina’
(Table 2), suggesting that the magnitude of the year-on-year environmental changes is enough to induce
different levels of antioxidants in the varieties studied. These results are consistent with previous
studies [19] and with the involvement of polyphenols in the plant response to environmental changes,
as it has been reported in several Mediterranean plant species exposed to multiple and simultaneous
environmental stresses [20,42]. The activation of biosynthesis and the accumulation of different
polyphenolic compounds in the different tissues occur after the onset of different protective/defense
mechanisms (i.e., response to excess light, salinity or drought) [42]. It should be noted that differences
among varieties in the content of polyphenols did not translate into a different antioxidant capacity
(TEAC), supporting that, in addition to polyphenols and vitamin C, other types of compounds with
antioxidant characteristics must be contributing to TEAC in the different varieties. This parameter
integrates the antioxidant processes of the fruits [43–45] and has been suggested as an indicator of
fruit healthy properties [46–48] and as a tool for varietal selection in breeding programs seeking for
healthy features.
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Table 2. Inter-annual variation of the organoleptic and functional fruit quality parameters in the
five strawberry varieties. Each value is the mean ± SE for each year regardless of the harvest time.
Lowercase letters indicate significant differences between years on each variety, and capital letters
indicate significant differences between varieties (p < 0.05).

Candonga® ‘Splendor‘ ’Fortuna’ ’Primoris’ ’Sabrina’

Firmness (Kg/cm2)

2012 438.1 ± 38.3 ns 341.7 ± 49.3 ns 402.6 ± 24.9 ns 449.2 ± 38.8 ns 475.3 ± 45.3 ns
2013 343.3 ± 58.2 ns 287.8 ± 63.3 ns 334.8 ± 37.6 ns 386.1 ± 69.8 ns 383.1 ± 72.4 ns
2014 403.9 ± 30.0 ns 318.1 ± 55.2 ns 376.8 ± 39.9 ns 449.9 ± 50.5 ns 446.3 ± 25.5 ns
2015 413.4 ± 62.8 ns 324.7 ± 56.5 ns 356.2 ± 47.7 ns 419.9 ± 73.0 ns 449.1 ± 77.8 ns

Average 399.7 ± 23.5 C 318.1 ± 24.7 E 367.6 ± 18.0 D 426.3 ± 26.6 B 438.5 ± 27.2 A

TSS (◦Brix)

2012 8.63 ± 0.77 ns 7.04 ± 0.15 ns 7.29 ± 0.54 ns 8.43 ± 0.54 ns 7.84 ± 0.70 ns
2013 8.18 ± 0.86 ns 6.13 ± 0.20 ns 7.34 ± 0.61 ns 7.61 ± 1.13 ns 7.40 ± 1.01 ns
2014 7.30 ± 0.51 ns 7.20 ± 0.32 ns 6.83 ± 0.44 ns 8.03 ± 0.51 ns 7.59 ± 0.27 ns
2015 9.05 ± 0.24 ns 7.31 ± 0.47 ns 7.83 ± 0.34 ns 8.00 ± 0.72 ns 7.31 ± 0.27 ns

Average 8.29 ± 0.34 A 6.92 ± 0.19 C 7.32 ± 0.24 B 8.02 ± 0.34 A 7.53 ± 0.28 B

Acidity (mg cítric acid/100 g FW)

2012 0.77 ± 0.03 ns 0.68 ± 0.01 ns 0.59 ± 0.03 b 0.62 ± 0.03 ns 0.67 ± 0.06 ns
2013 0.74 ± 0.02 ns 0.68 ± 0.04 ns 0.60 ± 0.02 b 0.70 ± 0.05 ns 0.72 ± 0.05 ns
2014 0.84 ± 0.07 ns 0.73 ± 0.03 ns 0.72 ± 0.03 a 0.76 ± 0.05 ns 0.82 ± 0.02 ns
2015 0.82 ± 0.07 ns 0.78 ± 0.05 ns 0.70 ± 0.01 a 0.80 ± 0.07 ns 0.80 ± 0.07 ns

Average 0.79 ± 0.02 A 0.72 ± 0.02 C 0.65 ± 0.02 D 0.72 ± 0.03 C 0.76 ± 0.03 B

TSS/acidity

2012 11.28 ± 1.21 ns 10.44 ± 0.38 ns 12.35 ± 0.58 ns 13.65 ± 0.17 a 11.72 ± 0.70 ns
2013 10.81 ± 0.84 ns 9.03 ± 0.40 ns 12.22 ± 0.53 ns 10.70 ± 0.93 b 10.20 ± 0.83 ns
2014 8.85 ± 1.02 ns 9.87 ± 0.15 ns 9.62 ± 0.96 ns 10.63 ± 0.87 b 9.22 ± 0.33 ns
2015 11.27 ± 1.04 ns 9.39 ± 0.66 ns 11.24 ± 0.56 ns 10.06 ± 0.26 b 9.26 ± 0.76 ns

Average 10.55 ± 0.54 B 9.68 ± 0.24 C 11.36 ± 0.44 A 11.26 ± 0.51 A 10.10 ± 0.42 BC

Total Phenolic Content (mg GAE/100 g FW)

2012 128.1 ± 15.8 c 114.2 ± 17.8 b 91.4 ± 10.5 c 116.0 ± 7.9 b 121.0 ± 15.3 b
2013 249.1 ± 21.3 a 218.5 ± 18.4 a 204.3 ± 13.8 ab 220.7 ± 38.6 a 201.4 ± 44.7 a
2014 264.1 ± 9.00 a 224.8 ± 12.1 a 212.7 ± 5.3 a 264.0 ± 20.2 a 223.6 ± 1.7 a
2015 221.5 ± 10.8 b 229.2 ± 4.30 a 174.2 ± 6.3 b 220.9 ± 10.9 a 181.1 ± 9.2 a

Average 215.7 ± 17.2 A 196.7 ± 15.6 B 170.6 ± 15.0 D 205.4 ± 19.1 B 181.8 ± 15.4 C

Total Flavonoid Content (mg CAE/100 g FW)

2012 15.84 ± 1.50 b 12.84 ± 0.51 b 12.77 ± 1.08 b 15.88 ± 1.15 b 11.79 ± 0.99 b
2013 16.38 ± 1.79 b 13.68 ± 0.61 b 13.29 ± 1.30 b 15.62 ± 0.59 b 11.26 ± 1.10 b
2014
2015 54.96 ± 4.97 a 46.62 ± 4.29 a 41.87 ± 2.14 a 57.40 ± 4.72 a 42.27 ± 2.28 a

Average 29.06 ± 6.67 NS 24.38 ± 5.70 NS 22.64 ± 4.87 NS 29.63 ± 7.08 NS 21.78 ± 5.18 NS

Total Anthocyanin Content (mg PE/100 g FW)

2012 16.48 ± 3.28 ns 21.51 ± 2.68 ns 19.09 ± 3.33 ns 14.25 ± 2.09 ns 15.22 ± 4.55 ns
2013 16.13 ± 1.21 ns 19.56 ± 1.60 ns 23.05 ± 2.77 ns 16.24 ± 2.32 ns 16.80 ± 2.37 ns
2014 17.29 ± 0.53 ns 18.35 ± 0.86 ns 21.12 ± 1.71 ns 15.63 ± 2.82 ns 20.15 ± 1.78 ns
2015 14.75 ± 0.20 ns 22.21 ± 1.72 ns 21.31 ± 1.72 ns 15.15 ± 2.04 ns 19.52 ± 1.53 ns

Average 16.16 ± 0.80 C 20.41 ± 0.91 A 21.14 ± 1.14 A 15.32 ± 1.02 D 17.92 ± 1.35 B

TEAC (µmol TE/g FW)

2012 55.20 ± 2.27 a 56.04 ± 4.68 a 38.14 ± 5.57 a 49.76 ± 4.03 a 46.57 ± 1.56 a
2013 47.16 ± 5.05 ab 36.84 ± 6.60 b 35.99 ± 11.1 a 43.62 ± 7.90 a 32.97 ± 0.99 bc
2014 38.64 ± 2.76 bc 32.62 ± 4.24 b 32.61 ± 4.45 b 29.74 ± 7.75 b 38.66 ± 1.41 b
2015 31.56 ± 3.84 c 28.72 ± 3.16 b 25.46 ± 5.04 c 27.27 ± 3.74 b 28.54 ± 3.45 c

Average 43.14 ± 3.10 NS 38.55 ± 3.78 NS 33.05 ± 3.34 NS 37.60 ± 3.87 NS 36.68 ± 2.22 NS

Vitamin C (mg ascorbic acid/100 g FW)

2012 58.11 ± 3.96 b 52.28 ± 3.11 b 42.67 ± 1.00 b 54.11 ± 2.11 b 52.11 ± 2.00 ns
2013 54.67 ± 3.67 b 46.44 ± 2.04 b 43.78 ± 1.87 b 49.39 ± 5.47 b 47.22 ± 5.39 ns
2014 45.67 ± 4.00 b 44.67 ± 4.00 b 37.92 ± 0.42 b 38.17 ± 4.83 b 40.83 ± 5.83 ns
2015 75.50 ± 6.40 a 70.44 ± 5.86 a 62.00 ± 5.74 a 72.00 ± 6.33 a 63.67 ± 9.43 ns

Average 59.65 ± 3.91 A 54.26 ± 3.68 B 47.38 ± 3.23 C 54.80 ± 4.29 B 51.88 ± 3.72 B

Within each season, most of the fruit quality parameters showed a significant variation between
harvest times (Table 3). However, there were exceptions depending on the variety and the parameter
considered. Thus, a generalized trend towards lower firmness, TSS and TSS/acidity values was
observed in all varieties as the season progressed, while the reverse was true for acidity and for the
total phenolic and anthocyanin content, consistently with Taghavi et al. [49]. Only in ‘Splendor’ did
the TSS and TSS/acidity values not vary significantly (Table 3). The decrease in TSS and TSS/acidity
in strawberry throughout the season has been attributed to the increase in temperature resulting in
an increase in the respiration rate and, consequently, decreasing the content of sugars, organic acids
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and soluble solids of the fruits [50–52]. On the other hand, total flavonoid and vitamin C fruit content
did not show significant variation throughout the season in any of the study varieties, except in
‘Sabrina’, with lower values of vitamin C as the season progressed (Table 3). Finally, the antioxidant
capacity of the fruits (TEAC) increased significantly from the beginning of the season in ‘Splendor’,
‘Fortuna’ and ‘Primoris’, while in Candonga® and ‘Sabrina’, no significant variation was found (Table 3).
These results indicate that the environmental variation during the cropping season does not affect fruit
quality parameters and strawberry varieties in the same way.

Table 3. Intra-annual variation of the organoleptic and functional fruit quality parameters in the five
strawberry varieties. Each value is the mean ± SE for each harvest time regardless of the year. On each
variety, letters indicate significant differences (p < 0.05) between harvest times.

Candonga® ‘Splendor’ ‘Fortuna’ ‘Primoris’ ‘Sabrina’

Firmness (Kg/cm2)

February 481.25 ± 11.35 a 424.33 ± 6.06 a 433.67 ± 10.15 a 533.55 ± 10.46 a 537.25 ± 12.91 a
March 399.08 ± 11.44 b 288.75 ± 7.63 b 359.50 ± 8.32 b 396.92 ± 6.91 b 430.83 ± 10.18 b
April 318.75 ± 18.24 c 241.08 ± 13.40 c 309.58 ± 15.30 c 346.42 ± 18.92 c 347.33 ± 19.84 c

TSS (◦Brix)

February 8.93 ± 0.41 a 6.62 ± 0.16 ns 8.15 ± 0.19 a 8.74 ± 0.31 a 8.35 ± 0.33 a
March 8.23 ± 0.44 ab 6.86 ± 0.30 ns 6.76 ± 0.27 b 7.27 ± 0.45 c 6.95 ± 0.28 b
April 7.67 ± 0.33 b 7.26 ± 0.23 ns 7.10 ± 0.25 b 8.13 ± 0.26 b 7.30 ± 0.20 b

Acidity (mg citric acid/100 g FW)

February 0.78 ± 0.01 b 0.70 ± 0.01 b 0.66 ± 0.02 b 0.74 ± 0.03 a 0.79 ± 0.01 a
March 0.74 ± 0.01 b 0.68 ± 0.02 b 0.61 ± 0.02 c 0.66 ± 0.03 b 0.67 ± 0.03 b
April 0.86 ± 0.03 a 0.77 ± 0.03 a 0.69 ± 0.02 a 0.76 ± 0.03 a 0.81 ± 0.03 a

TSS/acidity

February 11.47 ± 0.50 a 9.49 ± 0.24 ns 12.53 ± 0.45 a 12.16 ± 0.51 a 10.55 ± 0.47 a
March 11.14 ± 0.59 a 10.07 ± 0.30 ns 11.26 ± 0.43 b 10.95 ± 0.55 b 10.59 ± 0.46 a
April 8.74 ± 0.51 b 9.48 ± 0.40 ns 10.42 ± 0.58 b 10.96 ± 0.57 b 9.06 ± 0.34 b

Total Phenolic Content (mg GAE/100 g FW)

February 203.01 ± 18.91 b 183.97 ± 16.80 b 159.36 ± 15.80 b 177.43 ± 15.79 b 151.78 ± 17.20 b
March 217.95 ± 20.22 ab 204.06 ± 15.13 a 168.19 ± 15.14 b 214.28 ± 22.29 a 191.79 ± 12.46 a
April 230.57 ± 14.69 a 217.23 ± 13.99 a 180.39 ± 14.99 a 224.53 ± 17.18 a 198.62 ± 14.53 a

Total Flavonoid Content (mg CAE/100 g FW)

February 44.97 ± 10.72 ns 45.40 ± 11.13 ns 41.50 ± 12.24 ns 46.72 ± 10.67 ns 43.82 ± 13.35 ns
March 45.99 ± 10.86 ns 42.49 ± 10.84 ns 41.69 ± 10.97 ns 48.43 ± 12.61 ns 41.58 ± 12.09 ns
April 50.94 ± 10.57 ns 46.31 ± 11.57 ns 44.26 ± 10.80 ns 50.36 ± 10.98 ns 43.39 ± 11.01 ns

Total Anthocyanin Content (mg PE/100 g FW)

February 13.63 ± 0.75 b 18.76 ± 0.73 b 16.49 ± 0.77 b 10.73 ± 0.36 b 14.45 ± 1.00 c
March 17.44 ± 0.57 a 23.38 ± 1.19 a 23.59 ± 0.59 a 17.20 ± 0.30 a 18.15 ± 1.29 b
April 17.64 ± 0.76 a 19.46 ± 0.60 b 23.17 ± 0.76 a 18.12 ± 0.54 a 21.62 ± 0.98 a

TEAC (µmol TE/g FW)

February 45.43 ± 3.25 ns 34.58 ± 2.73 b 30.51 ± 2.87 b 37.07 ± 3.69 b 39.07 ± 2.26 ns
March 40.97 ± 2.46 ns 42.13 ± 4.17 a 30.12 ± 1.95 b 37.20 ± 2.83 b 38.06 ± 3.07 ns
April 44.34 ± 4.34 ns 39.69 ± 4.67 a 39.63 ± 4.81 a 40.15 ± 5.26 a 34.97 ± 2.95 ns

Vitamin C (mg ascorbic acid/100 g FW)

February 61.45 ± 4.96 ns 54.17 ± 4.50 ns 50.00 ± 4.26 ns 58.17 ± 5.73 ns 61.30 ± 4.81 a
March 58.58 ± 3.79 ns 57.00 ± 3.70 ns 46.92 ± 3.42 ns 53.36 ± 3.81 ns 50.45 ± 3.16 b
April 67.33 ± 6.36 ns 64.73 ± 7.48 ns 59.92 ± 7.42 ns 67.36 ± 7.06 ns 48.44 ± 1.42 b

In previous studies on strawberries and other berries, the variation of fruit quality parameters
throughout the season has been associated with the increasing photoperiod and/or temperatures
towards the end of the season [16,37,53]. However, in these works, there are inconsistencies regarding
the relative contribution of environmental factors and about the acting mechanisms for explaining
the trends of fruit quality variation. For instance, some authors reported the degradation of fruit
anthocyanin content at the end of the season due to photoinhibition and the highest photoperiod [54],
while others observed anthocyanin accumulation at the end of the season as a result of the higher
temperatures [53,55]. On the other hand, Wang and Zheng [16] observed higher content of numerous
phenolic compounds and antioxidant capacity as temperature increased, and Lee and Kader [56]
suggested a direct effect of light on Vitamin C formation in horticultural crops.
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Therefore, due to the complexity of the interactions between the factors determining crop
development [57,58], it is difficult to identify a single environmental factor accounting for the
observed variability.

In our study, although fruit quality parameters generally displayed consistent trends across
varieties, a more exhaustive analysis of their relationship with the environmental variation
(i.e., temperature, relative humidity, and incident radiation) on each genotype is required for a
better understanding of the genotype–environment interaction and its effect on fruit quality traits.

Pearson’s correlation and stepwise multiple regression analyses were performed to discriminate
those environmental variables explaining the greater amount of the variability in fruit quality parameters
observed throughout the season. Most of them were significantly correlated with the environmental
variables in all varieties (data not shown), but the regression models fitted revealed that their
environmental dependence was not similar in all cases. Overall, mean temperature (Tmed), minimum
temperature (Tmin) and relative humidity (RH) were the environmental variables that, to some extent,
accounted for the observed variation of fruit quality parameters in all varieties.

Thus, a very strong and negative relationship was observed between Tmed and fruit firmness
in all varieties (0.63 < R2 < 0.75; Table 4), which is consistent with previous reports on strawberries
and other fruits [59,60]. Fruit firmness is a complex phenomenon whose mechanism is not fully
understood, although it has been associated with increased enzymatic activity and loss of turgor in
fruit cells with increasing temperature [61,62]. It is noteworthy that, despite the firmness’s dependence
on the environment, the differences between varieties remain consistently, which underlines its use as
a selection criterion in breeding programs [63]. On the contrary, little or no dependence was found
between environmental variables and TSS and Vitamin C, which suggests that other variables not
considered in this work should account for the variation observed in these parameters.

For the remaining parameters, although the fitted models revealed a significant (p < 0.05)
relationship with some environmental variables, the percentage of variation explained by the
environment was rather low (R2 < 0.50), with some exceptions in ‘Sabrina’, ‘Fortuna’ and ‘Primoris’
(Table 4). In ‘Sabrina’, Tmin was negatively and positively related with TSS/acidity (~ flavor) and
phenolic content, respectively (R2 = 0.55 and R2 = 0.51), suggesting a greater dependence of this variety
on Tmin. This is consistent with the increase in phenolic compounds towards the end of the season,
which is in agreement with previous reports on strawberries and other berries [16,64]. In ‘Primoris’
and ‘Fortuna’, there was a remarkable relationship between anthocyanin content and Tmax and Tmed,
respectively (R2 = 0.62 and R2 = 0.55), while the other fruit quality parameters showed a significant
relationship with relative humidity (RH), which was stronger for the fruit phenolic content in ‘Fortuna’
(R2 = 0.54; Table 4).

In Candonga® and ‘Splendor’, the relationship between the variation of fruit quality parameters
and the environmental variables was weaker, and RH was the environmental variable that mostly
correlated with functional quality parameters, except for anthocyanins, whose variation was associated
with temperature in Candonga® (Table 4).

It is remarkable that, in all varieties, RH was the main variable explaining, to a certain extent,
the variation in flavonoids (positive relationship) and TEAC (negative relationship) (Table 4). In this
sense, the relative humidity can affect cell turgor and fruit water content [60] and, consequently,
the proportion of antioxidant compounds per unit of fresh weight. The slight relationship between RH
and flavonoids but consistent across all varieties suggests that RH may influence their biosynthesis,
which would be in consonance with the flavonoid increase observed in strawberries during storage
at high humidity [65]. It should be noted that the relationship between RH and TEAC was opposite
to that of RH and total phenolic content (Table 4), pointing out once again that other non-phenolic
compounds are contributing to the fruits antioxidant capacity (TEAC).
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Table 4. Coefficients of the fitted linear regression models (Y = aX +β) after stepwise multiple regression
between fruit quality parameters (organoleptic and functional) and environmental variables in the
five varieties studied. All models fitted were significant (p < 0.05) and the values of the coefficient of
determination (R2) are shown.

Organoleptic Parameters Functional Parameters

Firmness TSS Acidity TSS/Acidity TPC 1 TFC TAC TEAC Vit C

Candonga® β 705.82 - - 13.26 −53.79 −42.60 12.69 94.64 -
Tmin - - −0.586 - - 0.52 - -
Tmax - - - - - - - -
Tmed −0.821 - - - - - - - -

RH - - - 0.58 0.46 - -0.63 -
Radiation - - - - - - - -

R2 0.67 - - 0.32 0.32 0.18 0.25 0.37 -

‘Splendor’ β 652.41 - 0.54 10.52 −53.45 −95.93 - 108.497 -
Tmin - - - −0.334 - - - - -
Tmax - - - - - - - - -
Tmed −0.867 - 0.497 - - - - - -

RH - - - - 0.59 0.49 - −0.61 -
Radiation - - - - - - - - -

R2 0.75 - 0.22 0.09 0.10 0.22 - 0.35 -

‘Fortuna’ β 602.23 - 0.3374 18.95 −127.22 −98.82 7.42 11.48 −4.47
Tmin - - - - - - - - -
Tmax - - - - - - - - -
Tmed −0.798 - - - - - 0.75 - -

RH - - 0.551 −0.520 0.74 0.49 - - 0.38
Radiation - - - - - - - 0.43 -

R2 0.63 - 0.28 0.25 0.54 0.21 0.55 0.16 0.12

‘Primoris’ β 858.42 12.61 - 19.96 111.54 −101.99 −0.95 97.03 -
Tmin - - - - 0.63 - - - -
Tmax - - - - - - 0.80 - -
Tmed −0.85 - - - - - - - -

RH - −0.47 - −0.61 - 0.53 - −0.56 -
Radiation - - - - - - - - -

R2 0.71 0.20 - 0.35 0.38 0.26 0.62 0.29 -

‘Sabrina’ β 797.93 - - 19.063 95.75 −98.27 −6.05 76.63 -
Tmin - - - −0.75 0.72 - - - -
Tmax - - - - - - - - -
Tmed −0.85 - - - - - - - -

RH - - - - - 0.48 0.65 −0.60 -
Radiation - - - - - - -

R2 0.71 - - 0.55 0.51 0.21 0.41 0.34 -
1 TPC: Total phenol content; TFC: Total flavonoid content; TAC: Total anthocyanin content.

Taking into account the values of determination coefficients (R2) explaining a considerable
percentage of the observed variation in fruit quality parameters (i.e., R2 > 0.50), it could be pointed out
that fruit quality of ‘Sabrina’ and ‘Fortuna’ is more dependent upon the environmental variation than
that of ‘Primoris’, ‘Splendor’ and Candonga®.

Overall, the results of the present study showed that the variation of fruit quality parameters
throughout the season (intra-annual) did not necessarily match their year-on-year stability (inter-annual)
on each strawberry variety (Figure 1) and that environmental influence on organoleptic and functional
fruit quality traits is genotype-dependent.
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4. Conclusions

Fruit quality is a complex concept that includes organoleptic and functional attributes (i.e., health
benefits) highly appreciated by consumers. It, therefore, comprises different types of parameters
which, depending on the genotype, may be affected to a different extent by environmental variations.
Knowledge of the relative stability of fruit quality traits in different genotypes is important for selecting
parents and genotypes in strawberry breeding programs.

This work shows that strawberry organoleptic and functional fruit quality parameters evaluated
in this study have a contrasting pattern of inter- and intra-annual variation. Thus, organoleptic
characters considered in this study hardly varied year-on-year, while they showed great variability
throughout the season in most varieties studied, except in ‘Splendor’, which displayed greater stability
in these characters (i.e., lower percentage of organoleptic parameters with significant intra-annual
variation; Figure 1). In contrast, functional fruit quality traits showed greater year-on-year variation
in all varieties, ‘Sabrina’ displaying higher stability, whereas the reverse was true for the variation
throughout the season, being less remarkable in Candonga®.

This dichotomy was kept in the different genotypes, hindering the selection of a genotype with
stability at the inter- and intra-annual levels in organoleptic and functional fruit quality parameters.
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In this sense, among the three varieties with greater stability, ‘Splendor’, ‘Sabrina’ and Candonga®,
fruit quality values in the latter were always among the highest (or not significantly different from other
varieties), while in ‘Splendor’, even though organoleptic parameters were more stable, their values
were lower than in most varieties. It is also noteworthy that, in ‘Sabrina’ and Candonga®, TEAC did
not vary throughout the season and values were among the highest. These results suggest that these
two varieties may be good candidates for parents in breeding programs that seek high-quality fruits
meeting consumer demands.

Finally, fruit quality variation in the different strawberry varieties was only partially dependent
upon the environmental variables, among which RH and Tmin were notable, suggesting that, along
with the genotype, other environmental factors not considered in this study may account for it.
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