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Abstract: The increase of bacterial community tolerance to Cu, and of cotolerance to the antibiotics
tetracycline (TC), oxytetracycline (OTC) and chlortetracycline (CTC), was studied in three soils spiked
with six different Cu concentrations (resulting in 0, 125, 250, 500, 750 and 1000 mg kg−1 into soils) in a
laboratory experiment, after 42 days of incubation. The results show significant increases of bacterial
community tolerance to the metal when soil Cu concentrations were between 125 and 500 mg kg−1.
Moreover, Cu soil pollution also caused cotolerance to the three antibiotics studied but for higher Cu
concentrations (1000 mg kg−1).
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1. Introduction

Soil pollution due to Cu is widely extended worldwide, mainly caused by human activities such as
agriculture, mining or industry. The use of Cu-based fungicides is of special importance in agriculture,
especially in crops with high economic value, such as fruits and vineyards [1]. However, the use of Cu
fungicides in agriculture is currently under discussion due to its high persistence and potential harmful
effects on soil microbes [2–5]. In fact, the European Commission restricted the amounts of Cu per hectare
and year that can be used in agriculture [6]. Therefore, an increase in knowledge regarding the impact
of Cu accumulation on soil microbes is of key importance for clarifying the discussions about Cu uses
in agriculture. One understudied effect, especially regarding allowable threshold for Cu concentrations,
is the increase of bacterial community tolerance to antibiotics in Cu polluted soils. It is well known
that the increase of the concentration of any pollutant in a soil may suppose a selection pressure on soil
bacterial communities, causing tolerance to that pollutant [7]. This effect is called pollution-induced
community tolerance (PICT) and may be useful to quantify the harmful effects produced by pollutants
on soil bacteria. In previous studies, various authors have observed increases in bacterial community
tolerance to Cu in soils polluted with this metal [8–11]. Moreover, Cu pollution may increase the
bacterial community tolerance to other pollutants, such as different heavy metals or antibiotics [5,12,13].
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This effect of cotolerance for metals and antibiotics is a matter of high concern [14], since metal pollution
in the environment may play an important role in the proliferation of antibiotic resistance [15–17].

Taking into account that the increase of bacterial community resistance to antibiotics has become
a crucial threat to public health worldwide, the study of eventual increases in bacterial community
resistance to antibiotics in Cu polluted soils is of major importance. The studies about this topic may
be addressed using DNA fingerprints (such as the presence of resistant genes) or from a functional
point of view (PICT), i.e., direct measurements of the bacterial community tolerance to antibiotics.
Although DNA techniques (for resistant genes) may be more sensitive than functional endpoints,
they do not directly imply confirmation of toxicity. In addition, the interpretation of the data on
changes in resistance genes is not always easy [18]. Therefore, functional endpoints such as bacterial
community tolerance (PICT) to antibiotics are also needed. However, up to date, many studies
focused on resistance genes [19–21], but only few studies dealing with functional tolerance (PICT)
are available. Among them, Berg et al. [12] studied cotolerance to antibiotics (chloramphenicol,
nalidixic acid, olaquindox, streptomycin, tetracycline, ampicillin and vancomycin) in a Cu polluted
soil; Fernández-Calviño and Bååth [5] studied cotolerance to bronopol, streptomycin, chloramphenicol,
vancomycin, tetracycline and tylosin, while Li et al. [10] studied cotolerance to tylosin and vancomycin,
both studies being also performed in Cu-polluted soils; Liu et al. [22] studied the cotolerance to tylosin
in a Cu polluted soil; and Song et al. [13] studied cotolerance to tetracycline in a Cu and Zn polluted soil.
However, no studies have been performed focusing on bacterial community tolerance to oxytetracycline
and chlortetracycline in Cu polluted soils. The family of tetracycline antibiotics is of special concern
because they are the antibiotics most used in veterinary in the European Union [23], and among them
the most widely used are tetracycline (TC), oxytetracycline (OTC) and chlortetracycline (CTC) [24].
Therefore, increases in bacterial community tolerance to these antibiotic represent and important risk
for livestock and also for human heath if these bacteria reach drinking water or are present in irrigation
water used for fruits and vegetables [25–27].

In the current work we hypothesize that soil contamination with Cu will induce functional bacterial
community tolerance to this metal but also functional cotolerance to the antibiotics tetracycline (TC),
oxytetracycline (OTC) and chlortetracycline (CTC). Therefore, the aims of this study are: firstly, to verify
the eventual development of tolerance to Cu and cotolerance to TC, OTC and CTC in soil bacterial
communities exposed to different Cu concentrations; secondly, to determine the Cu concentrations from
which bacterial communities develop tolerance to Cu and cotolerance to antibiotics (relevant to stablish
Cu threshold levels in soils); thirdly, to evaluate eventual differences in tolerance and cotolerance
development for soils differing in texture, total carbon content and effective cation exchange capacity.

2. Materials and Methods

2.1. Chemicals

Tetracycline hydrochloride (TC, CAS. 64-75-5; ≥95% in purity), oxytetracycline hydrochloride
(OTC, CAS 2058-46-0; ≥95% in purity) and chlortetracycline hydrochloride (CTC, CAS 64-72-2;
≥97% in purity) were supplied by Sigma–Aldrich (Steinheim, Germany). Copper (as CuSO4 5H2O,
CAS: 7758-99-8, 99% in purity), was supplied by Panreac (Barcelona, Spain).

2.2. Soil Samples

Three soils from A Limia area, located in Southeast of Galicia (NW Spain), were selected form
a set of soils previously analyzed by Conde-Cid et al. [28]. The three soils were classified as Mollic
Umbrisols (Anthric) according to IUSS Working Group WRB [29]. Soil samples were taken with a
soil auger (0–20 cm depth) to an overall amount of 2 kg (10 subsamples) along each sampling plot.
Soil subsamples were subsequently mixed into a single composite soil sample for each of the three
soils. Once in the laboratory, composite soil samples were air-dried, sieved through a 2 mm mesh and
stored in polyethylene bottles until analysis.
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The proportions of sand (particle size 2–0.05 mm), silt (0.05–0.002 mm) and clay (<0.002 mm) of
the soils were determined by wet sieving for the size fractions greater than 0.05 mm and using the
international pipette method for all others. The pH in water (pHw) was measured at a soil/water
ratio of 1:2.5 after 10 min using a glass electrode. Total carbon and nitrogen contents were determined
on a ThermoFinnigan 1112 Series NC elemental analyzer. The effective cation exchange capacity at
soil pH (eCEC) was estimated as the sum of exchangeable basic cations (K, Na, Ca, Mg) extracted
with 0.2 M NH4Cl [30], and exchangeable Al extracted with 1 M KCl [31]. Available phosphorus was
extracted using 0.5 M NaHCO3 and determined using the phosphomolybdic complex method [32].
Total concentrations of Na, K, Ca, Mg, Al, Fe, Mn, as well as As, Cd, Cr, Cu, Ni, Pb, and Zn,
were determined using ICP-mass spectrometry (820-NS, Varian, Palo Alto, CA, USA), after nitric acid
(65%) microwave assisted digestion.

The studied soils present different textures [sandy loam (soil 1), clay loam (soil 2) and sandy clay
loam (soil 3)], total carbon contents (between 1.1 and 10.9%) and effective cation exchange capacity
(4.1–11.7 cmolc kg−1), while similar pH (4.5–4.8) and available P (136–262 mg kg−1). In addition,
the studied soils present similar (and low) Cu concentrations (between 10.7 and 21.6 mg kg−1).
These and other soil characteristics are shown in Table 1.

Table 1. General characteristics of the three soils used.

Soil

Parameter 1 2 3

Sand (%) 70.4 40.6 48.9
Silt (%) 11.9 25.8 19.2

Clay (%) 17.7 33.6 32.0
Texture Sandy Loam Clay Loam Sandy clay loam

pHw 4.8 4.7 4.5
C (%) 1.1 5.3 10.9
N (%) 0.1 0.5 0.8

Cae (cmolc kg−1) 1.5 5.9 5.9
Mge (cmolc kg−1) 0.4 1.7 1.5
Nae (cmolc kg−1) 0.3 0.6 0.4
Ke (cmolc kg−1) 1.3 3.0 1.1
Ale (cmolc kg−1) 0.6 0.5 2.7

eCEC (cmolc kg−1) 4.1 11.6 11.6
Pavailable (mg kg−1) 225.4 261.9 135.9

CrT (mg kg−1) 5.9 11.5 11.7
CoT (mg kg−1) <DL 2.7 3.4
NiT (mg kg−1) 14.7 18.6 14.0
CuT (mg kg−1) 10.7 19.2 21.6
AsT (mg kg−1) 4.9 10.3 12.7
CdT (mg kg−1) <DL <DL <DL
PbT (mg kg−1) 13.1 13.7 15.1
NaT (mg kg−1) 25.3 131.4 115.8
KT (mg kg−1) 1132.1 1877.6 2044.7
CaT (mg kg−1) 318.9 2038.3 1461.9
MgT (mg kg−1) 470.4 860.0 764.4
AlT (mg kg−1) 9142.3 16,234.9 21,963.8
MnT (mg kg−1) 54.5 50.9 47.1
FeT (mg kg−1) 4072.3 5236.8 6082.0
ZnT (mg kg−1) 63.8 141.3 126.1

pHW is pH measured in water; C is total carbon; N is total nitrogen; eCEC is the effective cation exchange
capacity (cmolc kg−1); Xe: exchangeable concentration of the element; XT: total concentration of the element.
DL: detection limit.
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2.3. Experimental Design

The three soils were spiked with Cu, incubated during a 42 days period (in order to have enough
time for microbial communities adaptation to the new conditions), and then, the bacterial community
tolerance to Cu and the three antibiotics (TC, OTC and CTC) was estimated.

The procedure used for soil spiking with Cu was as follows: dry soil samples were weighted in
54 polypropylene jars (5 g of soil on each jar), rewetted until 40% of water holding capacity to recover
the microbial activity, and incubated at 22 ◦C for 15 days. Then, soil samples were spiked by triplicate
with different Cu concentrations (Cu added as CuSO4 5H2O), giving soil Cu concentrations of 0, 125,
250, 500, 750 and 1000 mg kg−1) and reaching a moisture content of 80% of the water holding capacity.
Then, the resulting 54 microcosms (3 soils × 6 Cu concentrations × 3 replications) were incubated at
22 ◦C in darkness during 42 days. Each microcosm was incubated in 50 mL polypropylene bottles in
systems allowing air-exchange, at constant moisture content, adding water when necessary.

PICT, i.e., bacterial community tolerance to Cu and antibiotics (TC, OTC and CTC) was
estimated essentially according to Bååth [2] and Díaz-Raviña et al. [33]. In brief, after 42 days of
incubation, soil bacteria were extracted from soil microcosms using homogenization and centrifugation
techniques [34], i.e., mixing soil samples with distilled water (ratio soil:water 1:20) using a multivortex
shaker for 3 min at maximum intensity. The resulting soil suspensions were then centrifuged for
10 min at 1000× g to obtain a bacterial suspension (supernatant). Then, aliquots (1.35 mL) of the
bacterial suspension were transferred to 2 mL microcentrifugation tubes and mixed with 0.15 mL
of different concentrations of Cu or antibiotics (TC, OTC or CTC). Seven different concentrations
of each compound (Cu, TC, OTC or CTC), plus a control with only distilled water, were used for
each compound and soil sample. The final concentrations varied between 10−5 and 10−2 mol L−1

for Cu; and between 0.01 and 400 mg L−1 for TC, OTC and CTC. On each microcentrifugation tube,
bacterial community growth was estimated using the [3H]leucine incorporation method [35]: 0.2 µL
of [3H]Leu (37 MBq mL−1 and 5.74 TBq mmol−1; Amersham) were added with nonlabeled Leu to
each microcentrifugation tube, resulting in 275 nM Leu in the bacterial suspensions. After 2 h of
incubation at 22 ◦C, growth was terminated by adding 75 mL of 100% trichloroacetic acid. Washing
was performed as described by Bååth et al. [35], and subsequent measurement of radioactivity was
performed using a liquid scintillation counter (Tri-Carb 2810 TR, PerkinElmer, Waltham, MA, USA).
The resulting [3H] leucine incorporation data (an estimation of bacterial community growth) were
used to perform dose-response curves (leucine incorporation vs. Cu or antibiotic concentration), from
which bacterial community tolerance to Cu (or antibiotics) indexes (log IC50) were estimated.

2.4. Data Analyses

The tolerance of the bacterial community to Cu and the three antibiotics (TC, OTC and CTC) was
estimated as log IC50, the logarithm of the concentration that resulted in 50% inhibition of bacterial
community growth (leucine incorporation) in the dose-response curves. A higher value of log IC50

indicates a higher community tolerance, while a lower value indicates that Cu or the antibiotics are more
toxic to the bacterial community, i.e., it is less tolerant. Log IC50 was calculated using a logistic model,
a model commonly used for IC50 estimations from dose-response curves [36–38]: Y = c/[1 + eb(X−a)],
where Y is the measured level of Leu incorporation, X is the logarithm of the substance (Cu, TC, OTC or
CTC) added to the bacterial suspension, a is the log IC50, c the bacterial growth rate in absence of the
toxic substance, and b is a slope parameter indicating the inhibition rate.

The distribution of the data was tested for normality by the Kolmogorov-Smirnov (K-S) test and
for variance homogeneity by the Levene’s Test. Significant increases of bacterial community tolerance
to Cu or to antibiotics were estimated by analysis of variance (ANOVA) followed by Dunnett’s posthoc
test. This test allowed comparison of the statistical differences between control soils (no Cu added)
and soils spiked with Cu.
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3. Results

Results showed clear dose-response curves for all soils and substances tested (Figure 1). However,
for soil 1 (with low carbon content), it was not possible to obtain dose-response curves, due to the high
inhibition of bacterial growth taking place for soil Cu concentrations higher than 125 mg kg−1.
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Figure 1. Dose-response curves showing the inhibition of bacterial community growth in response
to increases of Cu or antibiotics (TC, OTC and CTC) concentrations in the bacterial suspensions,
expresses as log concentration (mg L−1). Each line represents one of the six microcosms tested in the
soil (0, 125, 250, 500, 750 and 1000 mg Cu kg−1 of soil). Dose-response curves were modeled using a
logistic model. A curve shifted to the right indicates increases in bacterial community tolerance to Cu
or antibiotics (TC, OTC or CTC). TC: tetracycline; OTC: oxytetracycline; CTC: chlortetracycline.
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Clear increases in bacterial community tolerance to Cu (PICT) were found as a function of
Cu concentration rise, i.e., dose-response curves shifted to the right as Cu concentration in the soil
increased (Figure 1). In order to check the magnitude of bacterial community tolerance to Cu increases,
log IC50 values were estimated from dose-response curves using the logistic model (Figure 2), with R2

values > 0.9 in most cases. Looking to log IC50 values (Figure 2), significant increases of bacterial
community tolerance to Cu were found in soil samples polluted with Cu concentrations ≥125 mg kg−1

(for soil 1), ≥500 mg kg−1 (for soil 2), and ≥250 mg kg−1 (for soil 3). For 125 mg kg−1 of Cu, bacterial
community tolerance to Cu (PICT) increased in 0.81, 0.27 and 0.18 log units in soils 1, 2 and 3, while for
the highest Cu concentration (1000 mg kg−1) PICT increased 1.45 and 0.63 log units for soil 2 and soil
3, respectively.
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Figure 2. Variation of bacterial community tolerance to Cu (expressed as log IC50), as a function of Cu
concentration in the soil. (A): soil 1; (B): soil 2; and (C): soil 3. * Indicates significant increases in log
IC50 compared to the control log IC50 (p < 0.05).

The results obtained in this study also show that Cu pollution may cause increases in bacterial
community tolerance to the antibiotics TC, OTC and CTC (Figure 1; Figure 3). However, according
to log IC50 values, the increase in bacterial community tolerance to antibiotics was only significant
for the highest dose of Cu (1000 mg kg−1) in soils 2 and 3 (in the case of TC and CTC), while it was
only significant for OTC in soil 3. For soils 2 and 3, the magnitude of increases in bacterial community
tolerance to antibiotics for soil samples polluted with 1000 mg kg−1 of Cu were (expressed in log
units): for TC, 0.53 (soil 2) and 0.79 (soil 3); for OTC, 0.07 (soil 2; not significant) and 0.61 (soil 3);
and for CTC, 0.77 (soil 2) and 0.27 (soil 3). Although not significant, in soil 1 the magnitude of bacterial
community tolerance to antibiotics (expressed as log IC50) was relatively high, reaching values of 0.29,
0.19 and 0.40 log unit for TC, OTC and CTC (respectively) in the sample polluted with Cu at a dose of
125 mg kg−1. Figure 3 also shows that, for intermediate Cu concentrations, the bacterial community
tolerance to antibiotics decreased in some cases.
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4. Discussion

The addition of Cu to the soils studied caused a significant increase in bacterial community
tolerance to Cu in Cu-polluted soils (with higher tolerance for higher Cu concentrations), which is an
expected result, previously found by other authors [5,13,33,39–41]. However, the present work shows
that the magnitude of those increases was different for different soils, suggesting that increases in
bacterial community tolerance to Cu in Cu-polluted soils may be highly influenced by soil characteristics.
Thus, soil management may modulate the increases of bacterial community tolerance to Cu (and hence
Cu toxicity). Therefore, further studies would be needed to clarify the influence of soil properties
on bacterial community tolerance to Cu, and hence improve soil management in Cu-polluted soils,
such as those devoted to vineyards [42].

Cu pollution also causes increases in bacterial community tolerance to tetracycline (TC) antibiotic,
as previously reported [5,12,13]. Bearing in mind that bacterial community tolerance to TC in Cu-polluted
soils has been found only for three tested soils in previous works, the results of the present work for three
more soils support the previous research. Moreover, this work is the first one showing the increase of
bacterial community tolerance for oxytetracycline (OTC) and chlortetracycline (CTC) in Cu-polluted soils,
enhancing the previous short list of antibiotics for which it had been shown that Cu pollution may cause
bacterial community tolerance: tetracycline, vancomycin and tylosin [5,12]. In relation to coselection
mechanisms, there are a great variety that may be involved, such as: coresistance, cross-resistance
or coregulation [14], but their relative importance is still unknown [13]. However, irrespective of the
cotolerance mechanisms involved, increasing the knowledge about Cu concentrations that may induce
bacterial community tolerance to antibiotics is of key importance. The cotolerance to the three antibiotics
here studied was found for Cu concentrations higher than those that increased tolerance to Cu (Figure 2),
in accordance with results previously found for TC in a Cu-polluted soil [5] but also for cotolerance to
metals [33] or phenols [43]. In the present work, significant increases in bacterial community tolerance to
TC, OTC and CTC were found for 1000 mg kg−1 of Cu. In relation with these data, Fernández-Calviño and
Bååth [5] found that, for a Cu concentration in soil ≥500 mg kg−1, there was bacterial community tolerance
to TC, while Song et al. [13] found significant bacterial community tolerance to TC for Cu concentration
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in the soil ≥365 mg kg−1. Together with the magnitude of the changes, these differences found among
different works suggest that increases in bacterial community tolerance to TC in Cu-polluted soils are
dependent on soil type. The most important parameters for Cu availability in soils, and hence for Cu
toxicity, are soil pH and organic matter content [44,45]. Therefore, increasing the soil pH and/or organic
matter content in soils may reduce the risk of increases of bacterial community tolerance to tetracycline
antibiotics in these soils. However, the increases of bacterial community tolerance to tetracycline antibiotics
found in the present work did not show a clear pattern for the different soils, suggesting that other factors
may affect those increases. Therefore, in order to clarify the effect of soil properties on the increase of
bacterial community tolerance to tetracycline antibiotics, further research using a higher number of soil
samples is needed.

The increases of bacterial community tolerance to TC, OTC and CTC antibiotics for Cu
concentrations around 1000 mg kg−1, indicate that, in fact, real increases of this kind are relatively
improbable in current vineyard soils worldwide, since actual Cu concentrations in vineyards generally
range between 100 and 200 mg kg−1 [42]. However, in some vineyard soils, values higher than
1000 mg kg−1 were found [46,47]. Moreover, in vineyard soils with common and lower Cu values
(100–200 mg kg−1), it is probable that some hotspots with Cu concentrations higher than 1000 mg kg−1

occur, due to the high horizontal [48] and vertical [49] variability found for Cu in vineyards soil.
Therefore, those soil need an especial control to avoid potential environmental problems and human
health risks. In addition, results found for soil 1 in the current study, although not significant,
suggest that increases in bacterial community tolerance to antibiotics may occur in soils with Cu
concentrations around 100 and 200 mg kg−1, and therefore many soils worldwide may present this
type of problem. Therefore, more research is needed to identify the most sensitive soils to this potential
issue, together with soil characteristics that may be modified to minimize it.

Finally, the decreases in the bacterial community tolerance to antibiotics found in some cases
for intermediate Cu concentrations (250–500 mg kg−1) (Figure 3) may be due to the development of
bacterial community tolerance to Cu for those intermediate Cu concentrations, together with more
sensitivity to antibiotics. However, at high Cu concentrations (1000 mg kg−1), bacterial communities
developed tolerance to both Cu and antibiotics. These results suggest that a different tolerance
mechanism may take place at intermediate and high Cu concentrations, but further research would be
needed to deepen understanding and clarify this possibility.

5. Conclusions

Soil spiking with Cu caused bacterial community tolerance to this metal in the three soils studied
for Cu concentrations ranging between 125 and 500 mg kg−1. Moreover, the addition of Cu to the soils
also caused cotolerance to the three antibiotics tested: tetracycline, oxytetracycline and chlortetracycline.
However, the Cu concentration needed to achieve cotolerance to these three tetracycline antibiotics
was much higher (around 1000 mg kg−1). In addition, the results suggest that the magnitude of
bacterial community tolerance to tetracycline antibiotics in Cu polluted soils may be different in soils
with different characteristics. These results have environmental implications and could be taken into
account when programming management practices for soils with high Cu levels in order to reduce
risks of damage to soil microbiota, the surrounding environment and livestock and human health.
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