Supplementary Material

Ming Fung Chua, Laothao Youbee, Saythong Oudthachit, Phanthasin Khanthavong, Erik J. Veneklaas, Al Imran Malik: Potassium fertilisation is required to sustain cassava yield and soil fertility

Table S1. Total stem length (cm), total plant dry weight (g), harvest index (HI), starch content (\%) and starch yield (t ha ${ }^{-1}$) at harvest 1 (8 months growth) and at harvest 2 (10 months growth) in response to five fertiliser treatments ($\mathrm{N}-\mathrm{P}_{2} \mathrm{O}_{5}-\mathrm{K}_{2} \mathrm{O}, \mathrm{kgg} \mathrm{ha}^{-1}$), $\mathrm{T}_{1} 0-0-0, \mathrm{~T}_{2}$ 40-20-0, $T_{3} 40-20-40, T_{4} 40-20-80$ and $T_{5} 40-20-120$. Means are followed by standard errors ($\mathrm{n}=3$). A two-way-Anova was done considering both harvests and treatments T2-T5 only; exclusion of treatment T 1 renders this a comparison of the K effect only. Values within a column and within a harvest followed by different letters are significantly different $(P<0.05)$.

Treatment	Total stem length (cm)	Total plant dry weight (g)	Harvest index HI	Starch content (\%)	Starch yield (t ha ${ }^{-1}$)
Harvest 1					
T1	411 ± 62.3	1416 ± 284.5	0.69 ± 0.007	29.1 ± 1.18	7.1 ± 1.50
T_{2}	$581{ }^{\text {a }} \pm 51.8$	$1718{ }^{\text {a }} \pm 125.7$	$0.69 \mathrm{a} \pm 0.006$	$28.8{ }^{\text {a }} \pm 0.66$	$8.7^{\mathrm{a}} \pm 0.74$
T_{3}	609 a ± 60.7	$1756^{\mathrm{a}} \pm 6.0$	$0.72{ }^{\text {a }} \pm 0.014$	$30.7{ }^{\text {a }} \pm 0.79$	$8.9{ }^{\text {a }} \pm 0.65$
T4	$753{ }^{\text {a }} \pm 52.3$	$2243{ }^{\text {a }} \pm 92.4$	$0.71{ }^{\text {a }} \pm 0.005$	$29.3{ }^{\text {a }} \pm 1.08$	$11.9{ }^{\text {ab }} \pm 0.53$
T_{5}	$699^{\mathrm{a}} \pm 62.0$	$2331{ }^{\text {a }} \pm 214.0$	$0.72{ }^{\mathrm{a}} \pm 0.030$	$29.0{ }^{\text {a }} \pm 0.24$	$12.4{ }^{\text {b }} \pm 0.85$
Harvest 2					
T1	729 ± 118.9	2127 ± 319.5	0.75 ± 0.023	34.6 ± 0.50	10.9 ± 1.46
T_{2}	$636^{\mathrm{a}} \pm 66.5$	$2176{ }^{\text {a }} \pm 85.8$	$0.77^{\mathrm{a}} \pm 0.007$	$33.5{ }^{\text {b }} \pm 0.47$	$11.6^{\mathrm{a}} \pm 0.52$
T_{3}	$810^{\mathrm{a}} \pm 142.0$	$2473{ }^{\text {a }} \pm 153.1$	$0.75{ }^{\mathrm{a}} \pm 0.012$	$34.5{ }^{\text {b }} \pm 0.10$	$12.7{ }^{\mathrm{a}} \pm 0.64$
T_{4}	$746^{\text {a }} \pm 129.8$	$2260^{\text {a }} \pm 244.9$	$0.75{ }^{\mathrm{a}} \pm 0.006$	$32.4{ }^{\text {ab }} \pm 0.98$	$11.7^{\mathrm{a}} \pm 1.38$
T_{5}	$742^{\mathrm{a}} \pm 75.6$	$2560{ }^{\text {a }} \pm 409.0$	$0.79 \mathrm{a} \pm 0.020$	$30.3^{\mathrm{a}} \pm 1.00$	$13.4{ }^{\text {a }} \pm 2.28$
Treatment (T)	$\mathrm{P}=0.384$	$\mathrm{P}=0.059$	$\mathrm{P}=0.253$	$\mathrm{P}=0.015$	$\mathrm{P}=0.075$
Harvest (H)	$\mathrm{P}=0.234$	$\mathrm{P}=0.010$	$\mathrm{P}<0.001$	$\mathrm{P}<0.001$	$\mathrm{P}=0.019$
$\mathrm{T} \times \mathrm{H}$	$\mathrm{P}=0.638$	$\mathrm{P}=0.236$	$\mathrm{P}=0.273$	$\mathrm{P}=0.189$	$\mathrm{P}=0.234$

Table S2. Potassium (K) concentrations ($\mu \mathrm{g} \mathrm{g} \mathrm{g}^{-1}$ dry weight) of different plant parts: leaf blades, petioles, upper stem, lower stem, roots and senesced leaves at harvest 1 (8 months growth) and at harvest 2 (10 months growth) in response to five fertiliser treatments ($\mathrm{N}-\mathrm{P}_{2} \mathrm{O}_{5}-\mathrm{K}_{2} \mathrm{O}, \mathrm{kg} \mathrm{ha}^{-1}$), $\mathrm{T}_{1} 0-0-0, \mathrm{~T}_{2} 40-20-0, \mathrm{~T}_{3} 40-20-40, \mathrm{~T}_{4} 40-20-80$ and $\mathrm{T}_{5} 40-20-120$. Means are followed by standard errors ($\mathrm{n}=3$). Two-way-Anovas were done considering both harvests and all treatments (T1-T5) or treatments T2-T5 only. ND = not determined.

Treatment	Leaf blades	Petioles	Upper stem	Lower stem	Roots	Senesced leaves
Harvest 1						
T1	8970 ± 827	3067 ± 766	5427 ± 1008	7479 ± 1594	6985 ± 674	2374 ± 319
T2	7888 ± 662	2768 ± 98	3727 ± 282	7668 ± 1168	6526 ± 534	3423 ± 679
T_{3}	8930 ± 154	3936 ± 1207	3892 ± 459	8045 ± 1496	6457 ± 545	2826 ± 239
T_{4}	8180 ± 491	2594 ± 418	4124 ± 1113	6851 ± 864	6734 ± 286	4542 ± 798
T_{5}	8612 ± 627	4147 ± 795	3915 ± 802	9491 ± 1245	8007 ± 661	4619 ± 523
Harvest 2						
T1	7565 ± 645	2710 ± 215	3121 ± 713	5471 ± 248	6099 ± 409	ND
T_{2}	6628 ± 281	2429 ± 235	3966 ± 783	4899 ± 142	5936 ± 393	
T_{3}	6172 ± 455	2469 ± 240	3738 ± 494	5048 ± 46	5850 ± 430	
T4	7199 ± 769	2677 ± 282	4019 ± 244	6365 ± 580	6523 ± 176	
T_{5}	7312 ± 838	2624 ± 264	4958 ± 570	7674 ± 742	7058 ± 731	
Treatment (T)	$\mathrm{P}=0.405$	$\mathrm{P}=0.807$	$\mathrm{P}=0.872$	$\mathrm{P}=0.082$	$\mathrm{P}=0.076$	
Harvest (H)	$\mathrm{P}<0.001$	$\mathrm{P}=0.033$	$\mathrm{P}=0.564$	$\mathrm{P}=0.002$	$\mathrm{P}=0.050$	
T x H	$\mathrm{P}=0.526$	$\mathrm{P}=0.624$	$\mathrm{P}=0.213$	$\mathrm{P}=0.621$	$\mathrm{P}=0.945$	
ANOVA Without T1						
Treatment (T)	$\mathrm{P}=0.629$	$\mathrm{P}=0.734$	$\mathrm{P}=0.790$	$\mathrm{P}=0.064$	$\mathrm{P}=0.064$	
Harvest (H)	$\mathrm{P}=0.001$	$\mathrm{P}=0.041$	$\mathrm{P}=0.605$	$\mathrm{P}=0.005$	$\mathrm{P}=0.127$	
Tx H	$\mathrm{P}=0.395$	$\mathrm{P}=0.594$	$\mathrm{P}=0.806$	$\mathrm{P}=0.476$	$\mathrm{P}=0.913$	

