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Abstract: Cassava is often grown in low-fertility soils and has a reputation for having modest nutrient
requirements. The storage roots that are harvested, however, contain relatively large amounts of
potassium (K). We carried out a field experiment in Laos to determine the growth response to K
fertiliser and to examine the field’s K balance over the cropping season. Four different rates of K
(0-40-80-120 kg K2O equivalents ha−1) were applied to cassava variety Rayong11. Harvests were
done at 8 and 10 months after planting, when the crop was at early and full maturity respectively,
to assess if any benefits for productivity or K balance could be achieved by early harvest. We found
a positive effect of K fertiliser (up to 39% yield increase compared to no K fertiliser at early harvest,
21% at late harvest) and a positive effect of late harvest (on average a 35% increase compared to
early harvest) on cassava root yield. Low-K crops benefited more from a late harvest. At 10 months,
the harvested cassava contained 99–142 kg K ha−1, indicating that there was a net removal of K from
the fields, even at high K fertilisation levels. This experiment was carried out in comparatively fertile
soil with relatively high background K levels, yet, yield benefits of K fertilisation were observed and
soil K reserves were depleted by the harvest. It can be concluded that K fertilisation of cassava is
advisable for better yields and to avoid progressive depletion of the soil K capital.
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1. Introduction

Cassava (Manihot esculenta Crantz) is a rainfed crop grown in tropical and subtropical countries
of Latin America, Africa and Asia [1–3]. It is reputed to grow in soils with low fertility and is also
drought and acid tolerant [2,4,5]. As the world’s third most important crop, it acts as a staple food for
at least 500 million people worldwide; its tuberous roots are a main source of calories [4–8].

In Asia, elimination of soil constraints, such as low fertility, could increase cassava yields by 35% [9].
In Laos, a majority of farmers engage in traditional subsistence agriculture and make minimal use of
purchased inputs such as inorganic fertilisers [10]. Furthermore, Smith et al. [11] reported that less than
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1% of households apply inorganic fertilisers and understand what nitrogen (N), phosphorus (P) and
potassium (K) i.e., NPK fertilisers are, and only 4% have seen fertiliser demonstrations. Nevertheless,
cassava yields in Laos are among the highest in Southeast Asia (on average 32.2 t fresh root ha−1) as
farmers tend to grow on relatively new lands compared to other countries in the region; country-wide
production is 3.1 million t fresh root on ~100,000 ha of land, and it is increasing [1].

Continuous cropping without inputs results in a decline in yields and soil nutrient capital [2,12].
Cassava is highly responsive to NPK fertilisers, therefore, proper management of soil nutrients is
important to maintaining yield [13]. Application of appropriate fertilisers helps to replenish nutrients
that were lost due to removal of yield and residues from the field [2,14].

Cassava roots are rich in K. Among tropical crops, the harvested product of cassava has
a much higher K:N ratio, 3.9, than other crops, e.g., banana (Musa X paradisiaca) 2.88, sugarcane
(Saccharum officinarum) 1.89, rice (Oryza sativa) 0.43 and maize (Zea mays) 0.82 [2]. Due to the higher
ratio of K to N, K has to be supplied in sufficient amounts to help increase root yield and improve root
quality [15–17]. However, care is needed in fertiliser rate decisions, as exceeding a critical amount of K
can result in decreased starch content due to the decreased absorption of calcium (Ca) and magnesium
(Mg), leading to Mg deficiency [17–19].

Traditionally, in Southeast Asia the clonal propagated cassava crop is grown for ~10 months to
achieve optimum yield and to ensure adequate time for re-planting of the following crop at the onset
of the rainy season. Nevertheless, timing of the industrial cassava crop harvest is often driven by the
market price of fresh root, and early harvest may fetch more income for smallholder farmers. However,
this may significantly alter fertilizer utilization and soil K balance.

This study is aimed at identifying the K fertiliser rate required to optimise yield and K balance of
the field, i.e., a fertiliser rate that produces a high yield without depleting the soil’s K reserves. It is
hypothesized that (i) as the fertilisation rate of K increases, there is a corresponding rise in root yield,
however, this process results in a diminishing return in starch yield and (ii) at the K fertiliser rate
producing maximum yield, there is no net deficit of K due to cassava cultivation.

2. Materials and Methods

The experiment was conducted between 30 March 2018 and 18 January 2019 at the National
Agricultural and Forestry Research Institute (NAFRI) at Naphok, Vientiane, Laos (18◦0′45.1′′ N;
102◦44′20.7′′ E). The soil at the station was a sandy loam with a pH of 4.5 (1:5 soil and water suspension),
containing 17 g organic matter/kg dry soil, 600 mg total N/kg dry soil (Kjelldahl extraction), 12.7 mg
available P/kg dry soil (Bray-2 extraction) and the following exchangeable cations (NH4-acetate
extraction): 164 mg K/kg dry soil, 9.2 mg Na/kg dry soil, 194 mg Ca/kg dry soil and 39.6 mg Mg/kg dry
soil. Amounts of soil N, P, and K present at the experimental site are regarded as low, medium and
adequate, respectively [20]. On this land, prior to the current experiment, maize (Zea mays) was
grown for three years (2014–2017), without any fertiliser, and mangos (Mangifera indica) for 20 years
(1994–2013). Rainfall and temperature records were collected from a nearby weather station (~1 km).
A blanket irrigation was applied for even sprouting and establishment of the crop. The site received a
total of 1776 mm rain between April 2018 and January 2019, with an average temperature of 28.3 ◦C.
Weeding was carried out manually when necessary after crop establishment to keep the plots weed
free. Cassava variety Rayong11 stakes (25 to 30 cm long) were handplanted vertically. As farmers
are influenced by the market price at the time of harvest, a first harvest was done at 8 months after
planting (early) and a second harvest at 10 months after planting (mature crop).

2.1. Experimental Design

The experiment was laid out in completely randomized block design with three replicates,
with each treatment allocated to a plot. Each plot size was 54 m2 (6 m × 9 m) and plant spacing was
1 m × 1 m. For the first harvest, 12 plants were sampled from one side of the plot, leaving the border
row. This was repeated for the second harvest at the other side of the plot. These 12 plants were used
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to measure starch content and tuber yield. Three plants were used for the detailed measurements
described in the next two sections.

Two months after planting, five fertiliser treatments were applied 25–30 cm away from each
cassava stake at 10 cm depth and covered with soil. The treatments are characterised as follows,
following the convention to express rates as N, P2O5 and K2O (kg ha−1): T1 0-0-0, T2 40-20-0, T3 40-20-40,
T4 40-20-80 and T5 40-20-120. Nitrogen was applied in the form of urea, P as triple superphosphate
(TSP) and K as muriate of potash (KCl). The actual rates of elemental N, P and K were as follows:
T1 0-0-0, T2 40-8.7-0, T3 40-8.7-33.2, T4 40-8.7-66.5 and T5 40-8.7-99.7.

2.2. Fresh Weights, Stem Lengths and Estimates of Leaf Loss

These variables were quantified using three plants per plot. Prior to the harvest, the number of
leaves present and the number of shed leaves was estimated as follows. For all stems, the lengths
with leaves still attached to the stem and the lengths with leaf scars were measured. For these
sections, the internode lengths were estimated by counting the number of leaves or scars per unit
length. Total numbers of live and shed leaves were then estimated by dividing stem section lengths
by internode lengths. The average shed leaf dry weight and K concentration (see below) allowed the
estimation of the total amount of shed leaf dry weight (and K contained in it), representing K returned
to the soil.

Harvested plants were separated into aboveground (i.e., stem and leaves) and tubers. Four different
tubers were selected and 1–2 cm thick discs were cut from each. Bulk fresh weights were recorded for
all plant parts. All plant parts were placed into separate air-tight plastic bags and put onto ice to avoid
any moisture loss prior to further analysis.

Leaves with petioles, upper stem (defined by the presence of green leaves) and lower stem were
separated. Ten randomly chosen young fully expanded leaf and petioles were separated, and three
sections of approximately 3–4 cm were cut from the upper stem and lower stem, and fresh weights
recorded. Ten senesced (recently shed) leaves were also collected from each plot from the three
selected plants. Fresh weights of all these subsampled plant parts were recorded. Dry weight of
aboveground plant samples were recorded after 72 h and tubers after 120 h drying in an oven at 70 ◦C.
Dry matter content (dry weight/fresh weight * 100%) and water content ((fresh weight-dry weight)/fresh
weight * 100) were calculated. The harvest index (HI) was calculated as tuber dry weight/total plant
dry weight.

2.3. Starch Content

Starch content (%) was measured following the procedure described by Howeler [18]. Briefly, ~5 kg
of fresh roots (cut in 2–4 cm pieces) were placed in a light-weight nylon mesh bag and its weight
recorded (i.e., weight in air). Then, with a 1000 g capacity hanging balance, the roots in the nylon
mesh bag were completely immersed in water in a big bucket, and their underwater weight recorded.
The starch content was estimated from specific gravity (SG) defined as follows:

SG = weight in air/(weight in air−weight in water)
Starch content = 210.8 SG−213.4
Starch yield (t ha−1) was calculated from the tuber fresh weight and starch content (%).

2.4. Analysis of K and Other Nutrients

Pulverised samples were used for nutrient analysis. Potassium was extracted in 0.5 M HNO3 by
shaking for 48 h at room temperature. K+ was determined in dilutions of the extract using a flame
photometer (Flame Photometer 410, Sherwood, Cambridge, UK). A plant reference sample was also
analysed, yielding a recovery for K of 101%. Data were not adjusted. Site K balance was estimated
by comparing amounts of K removed (total K contained in root yield) with K supplied in the form
of fertiliser.
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2.5. Data Analysis

Data were analysed by calculating means, standard errors, regression and analysis of variance
(ANOVA), where appropriate using GenStat 19 for Windows statistical software (VSN International).
Significant difference refers to P > 0.05. To find significant differences between means, a Tukey’s test
was carried out separately for harvest 1 and harvest 2, where appropriate.

3. Results

3.1. Plant Growth

Plant biomass and total stem length benefitted from higher K treatments and later harvest, but to
a relatively modest degree (Table 1). The increase of total biomass and total stem length from harvest
1 to harvest 2 was on average 26% and 25% respectively, across treatments. The high K treatment (T5)
had 39% and 26% higher biomass than the treatment that did not receive any K, that is, T1 (no fertiliser)
and T2 (only N and P), respectively, in Harvest 1. Similarly, the high K treatment (T5) had 17% and
15% higher biomass than the treatment that did not receive any K, that is, T1 and T2, respectively,
in harvest 2. The K treatment × harvest interaction was not significant for either measure of plant
growth (Table 1), indicating that any treatment effects present in the first harvest were similar at the
later harvest. A separate ANOVA was done on treatments T2–T5 only (omitting T1), for a comparison
of the effect of K without differences in N and P fertiliser. This analysis (see Supplementary Materials
Table S1) yielded results that were very similar to those shown in Table 1.

Table 1. Total stem length (cm), total plant dry weight (g), harvest index (HI), starch content (%) and
starch yield (t ha−1) at harvest 1 (8 months growth) and at harvest 2 (10 months growth) in response to
five fertiliser treatments (N-P2O5-K2O, kg ha−1), T1 0-0-0, T2 40-20-0, T3 40-20-40, T4 40-20-80 and T5

40-20-120. Means are followed by standard errors (n = 3). Values within a column followed by different
letters are significantly different (P < 0.05). The comparisons were made separately for harvest 1 and
harvest 2.

Treatment Total Stem Length (cm) Total Plant Dry wt. (g) Harvest Index HI Starch Content (%) Starch Yield (t ha−1)

Harvest 1
T1 411 a

± 62.3 1416 a
± 284.5 0.69 a

± 0.007 29.1 a
± 1.18 7.1 a

± 1.50
T2 581 ab

± 51.8 1718 ab
± 125.7 0.69 a

± 0.006 28.8 a
± 0.66 8.7 ab

± 0.74
T3 609 ab

± 60.7 1756 ab
± 6.0 0.72 a

± 0.014 30.7 a
± 0.79 8.9 ab

± 0.65
T4 753 b

± 52.3 2243 b
± 92.4 0.71 a

± 0.005 29.3 a
± 1.08 11.9 b

± 0.53
T5 699 b

± 62.0 2331 b
± 214.0 0.72 a

± 0.030 29.0 a
± 0.24 12.4 b

± 0.85

Harvest 2
T1 729 a

± 118.9 2127 a
± 319.5 0.75 a

± 0.023 34.6 b
± 0.50 10.9 a

± 1.46
T2 636 a

± 66.5 2176 a
± 85.8 0.77 a

± 0.007 33.5 ab
± 0.47 11.6 a

± 0.52
T3 810 a

± 142.0 2473 a
± 153.1 0.75 a

± 0.012 34.5 b
± 0.10 12.7 a

± 0.64
T4 746 a

± 129.8 2260 a
± 244.9 0.75 a

± 0.006 32.4 ab
± 0.98 11.7 a

± 1.38
T5 742 a

± 75.6 2560 a
± 409.0 0.79 a

± 0.020 30.3 a
± 1.00 13.4 a

± 2.28

Treatment (T) P = 0.164 P = 0.008 P = 0.212 P = 0.019 P = 0.009
Harvest (H) P = 0.028 P < 0.001 P < 0.001 P < 0.001 P = 0.002

T × H P = 0.282 P = 0.208 P = 0.428 P = 0.118 P = 0.198

3.1.1. Tuber Production

Tuber yield was greater at the later harvest across all treatments (Figure 1). This can be attributed
to the overall growth of plants between harvest 1 and 2, as seen in an increased total plant biomass,
and also to an increased allocation of biomass to the roots, as seen in a statistically higher harvest index
(Table 1). On average, the harvest index increased from 0.71 to 0.76 between the harvests. There was no
significant effect of K treatments on the harvest index or any K treatment x harvest interaction (Table 1).

While tuber yield did increase with K fertilisation (treatment effect P = 0.003), a reasonable yield
was achieved in unfertilised plots (9.9 t ha−1 dry wt. in harvest 1, 15.9 t ha−1 dry wt. in harvest 2).
The maximum increase due to K fertilisation, comparing T2 (40-20-0 NPK) to T5 (40-20-120 NPK),
was 4.7 t ha−1 (+39%) in harvest 1, decreasing to 3.5 t ha−1 (+21%) in harvest 2. Treatments with low
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levels or no K fertiliser seemed to benefit most from the later harvest, as their yield increased more
in that later period. The interaction K treatment × harvest was however not statistically significant
(P = 0.228). Fertilisation with nitrogen and phosphorus alone had a moderate positive effect on tuber
yield: tuber yield in T2 (40-20-0 NPK) was 2.1 and 0.7 t ha−1 higher than in T1 (0-0-0 NPK) in harvests 1
and 2, respectively.
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Figure 1. Tuber yield (t ha−1 dry weight) at harvest 1 (H1, pale green) and harvest 2 (H2, dark green)
in response to five fertiliser treatments of N-P2O5-K2O (kg ha−1), T1 0-0-0, T2 40-20-0, T3 40-20-40,
T4 40-20-80 and T5 40-20-120. Values are means of three replicates ± s.e. Treatment, P = 0.003;
harvest, P < 0.001; treatment × harvest, P = 0.228.

3.1.2. Starch Yield

Starch content increased on average 1.13-fold, from 29.4% to 33.1%, between harvest 1 and harvest
2 (P < 0.001, Table 1). There was a significant K treatment effect on starch content. The Tukey’s tests
showed that treatment means at harvest 1 were not significantly different; however, at harvest 2,
means were significantly different, with the higher K treatments having lower starch content. As tuber
yields were increased by K fertilisation and by later harvest, total starch yield (t ha−1) showed similar
treatment and harvest effects (Table 1).

3.2. K Uptake, Distribution and Export in Yield

K concentrations of cassava storage roots were not highly variable across treatments and harvest
dates, staying within 0.58–0.80 mg K g−1 DW (for details on K concentrations in roots and other plant
parts see Supplementary Materials Table S2). Root K concentrations decreased on average by 9% from
the first to second harvest, and while the highest K concentrations were observed in the 120 K treatment,
the lowest K concentrations were not found in the unfertilised treatments but in the 40 K treatment.
K concentrations of aboveground parts of the plant differed from those of roots: they were either
higher (leaf blades, 17% higher overall) or lower (leaf petioles, 52% lower; upper stems, 38% lower).
K concentrations of the lower stems were 14% higher than those of roots at the first harvest, but 7%
lower at the second harvest. Overall, mean aboveground and belowground tissue concentrations were
not very different, such that the proportion of K held belowground was similar to the proportion of dry
weight (equalling the harvest index), though slightly increased in the later harvest (77%) compared to
the first harvest (69%).

The total K contained in the cassava plants increased with increasing K fertilisation (Figure 2).
In the period between the first and second harvest, additional K was taken up mainly by the treatments
that received 0–40 kg K ha−1 as fertiliser, whereas the treatments that received higher K fertiliser doses
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did not show evidence of further K uptake. The increase in K content from the first to the second
harvest was due to growth in biomass, as K concentrations decreased somewhat in all plant parts.
There was net remobilisation after the first harvest from leaves and upper stems to roots, while the
lower-stem K content remained similar (Figure 2).
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harvest 2, 8 and 10 months after planting, respectively, (B) in response to five fertiliser treatments of
N-P2O5-K2O (kg ha−1), T1 0-0-0, T2 40-20-0, T3 40-20-40, T4 40-20-80 and T5 40-20-120. Where the
upper stem K is not visible, the amounts are too small compared to the K in other plant fractions to
distinguish them. Standard error bars refer to whole plant K (n = 3).

Due to the large amount of K contained in the cassava roots (Figure 2), harvesting removes
a significant amount of K from the field. In this experiment, the cassava harvest caused a net negative
K balance in all treatments, in both the first and second harvest. While K fertiliser input decreases
the K deficit, from 99 to 42 kg K ha−1 in the second harvest, even the highest K fertiliser rate was
not sufficient to compensate for the K removal in terms of yield (Figure 3). The estimates in Figure 3
assume that only roots are removed from the field and all the aboveground material remains in the
field. Removal of leaves (especially at an early harvest or before harvest), and in particular removal of
lower stems (as planting material or fuel), would further increase the K deficit.Agronomy 2020, 10, x FOR PEER REVIEW 7 of 11 
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Figure 3. K balance of the cassava crop. The graph shows amounts of elemental K supplied as fertiliser
(dotted line) and removed in tuber yield (solid line) at harvest 2, for N-P2O5-K2O (kg ha−1) treatments
T2 40-20-0, T3 40-20-40, T4 40-20-80 and T5 40-20-120. Values are means of three replicates ± s.e. for K
removed in tuber yield.
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4. Discussion

Several studies have exposed cassava crops to different fertiliser treatments to determine the
optimum rates of N, P and K to produce maximum yield or maximum net income in a particular
soil or region [12,21], however, the current study contributes new insights into the K balance in a K
fertiliser response trial. Our results highlight the large amount of K accumulated in tubers compared
to other plant parts and other crops, which is eventually removed from the field as harvested product.
Application of K fertiliser increased the amount of K in tubers but only to a modest level, thus offsetting
some of the deficit of soil K.

4.1. K Fertilisation Increased Tuber Yields

Cassava tuber yield has been observed to decline after continuous cropping without adequate
fertiliser inputs, which has been attributed to the exhaustion of soil K along with other nutrients [12,22].
In long-term trials, K fertilisation of 125 and 66 kg K ha−1 was required to maintain near-potential
yield levels and soil K at sites in Colombia and Vietnam respectively [2,12]. In the current experiment,
fertilisation with K resulted in higher yields compared to unfertilised controls, and the highest tuber
yield of 20.16 t ha−1 dry weight was achieved at the highest fertiliser rate at harvest 2. The modest
1.3 to 1.7-fold yield increase compared to yield without K fertiliser observed by us contrasts with the
7-fold yield increase reported for the long-term study in Vietnam [2]. Since in both cases N and P
was applied, the limited response to K in the current experiment can probably be attributed to high
background levels in soil K at our experimental site. The role of K in different cellular activities such
as enzyme activation and stomatal movement, and thus photosynthesis and ATP generation [23–27],
presumably contributed to the positive effect on tuber yield. The lowest yield (i.e., 9.88 t ha−1 dry
wt.) was observed in the treatment without any fertilisation. This yield was still higher than some
other experiments [13,28], which is probably due to the relatively high fertility level of the soil at the
experimental site. Indeed, soil assay results (see Methods) indicate that the levels of N, P and K at
the site were relatively low for N, medium for P and adequate for K. Nevertheless, higher doses of
fertiliser K did increase yield.

4.2. K Fertilisation Affects Starch Content

Fertiliser treatments resulted in modest but significant differences in starch content, and starch
content increased over time. Studies show that exceeding a critical amount of K can cause Mg
deficiency due to cation competition, resulting in a decreased starch content [2,17,19,29]. This may have
contributed to the lower starch content in treatments receiving higher K inputs, for the late harvest.

Starch content is also influenced by rainfall and age [30–33]. The 12.5% increase in starch content
at 10 months was accompanied by an 8.0% decrease in water content (data not shown); this could
be partly due to dehydration and partly due to an increase in tuber fibre content over time [30,34].
The two-month period between the first and second harvest was dry without any rainfall.

Most cassava in South-East Asia is grown for the industrial production of starch. In several
countries, the industry pays a higher price for roots that have a higher starch content. Our results show
that farmers’ decisions about K fertilisation and the timing of their harvest are likely to influence not
only yield levels but also the price per ton paid by the industry.

4.3. More K Moved to Tubers Later in the Season

In both harvests, tubers contained most of the K taken up by the plant, regardless of treatment.
At the late harvest, very little K remained in leaves and upper stems, but lower stems retained
a significant amount of K (Figure 2). High K content of cassava tubers was also found in a meta-analysis
conducted by Howeler [2] across 15 studies, concluding that on average 56.2% of the whole plant’s K
resided in the tubers. The high K content of cassava tubers means that large amounts of K are exported
from the field with the harvested product, resulting in a large soil K depletion. Tuber yield was the
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most important factor determining K export in yield, since tuber K concentrations were relatively
stable (Supplementary Materials Table S2).

4.4. High K in Lower Stems may Benefit K Balance and Future Yield

Retention of K in the lower stems, even at the late harvest, could potentially benefit the next crop,
as stems (stakes) are commonly harvested and used as seeding stock for the next cropping season.
Indeed, the nutritional content of the stems affects stake quality and, in turn, the yields of subsequent
crops [2,35]. Furthermore, Keating et al. [36] demonstrated that stakes taken from fertilised plants had
a faster sprouting rate than stakes taken from low-fertility soils. The early vigour was presumably
due to the higher starch and sugar content of the stakes from fertilised plants [2]. Our current results
suggest that late harvest may also improve stake quality through increased K content. This higher K
content may reduce K fertiliser requirement at an early cropping stage. It is also important, however,
to note that the high K content of lower stems means that stems that are not used as planting stakes
should be retained as residues on the field, to minimise K deficits.

4.5. Reduction of K Deficit

In common practice, stakes used as future seeding stock and tubers for sale are removed from the
field, potentially causing nutrient depletion and soil degradation [2,18,37]. K contained in crop biomass
(and therefore deficit upon harvest) is highest if the crop is harvested late (Figure 2), especially for
crops that receive low or no K, which seem to mature later (Figure 2). From the point of view of
retaining mineral nutrients and organic matter in the soil, returning crop residues in the field is best
practice [2,18,38,39], and an early harvest would minimise K export from the field. Any leaching of
soil K that may occur during or between cropping cycles will further increase K deficits and would
require additional fertiliser K inputs to sustain cassava yield levels.

Crop response to K fertilisation can be expected to vary considerably due to edaphic and climatic
variation, as well as management. Multi-year, multi-site trials will be needed to improve K balance
estimates and optimise K fertiliser recommendations.

5. Conclusions

In this study, tuber exports of K were observed to be much higher than K supplied (Figure 3).
Although early harvest and crop residue retention could help to decrease K deficit, it would be at the
cost of a small yield loss. The high and rather constant K content of cassava tubers means that cassava
cropping will progressively reduce soil K availability unless fertiliser is used to compensate for the K
exported as tuber yield. All crop residues should be returned to the soil no matter what the time of
harvest to improve soil K and reduce the need for additional fertiliser inputs, but also to retain other
nutrients. With low fertiliser input, later harvests appear to benefit yield, but also increase K deficits,
which may cause a longer-term decrease in yields. Other factors such as the availability of inorganic
and organic inputs, crop rotation, cassava market prices and access to different cultivars would need to
be assessed in the future for a more accurate and longer-term assessment of costs and benefits of K
fertilisation practice.

Supplementary Materials: The Supplementary Materials are available online at http://www.mdpi.com/2073-
4395/10/8/1103/s1. Table S1. Total stem length (cm), total plant dry weight (g), harvest index (HI), starch content
(%) and starch yield (t ha−1) at harvest 1 (8 months growth) and at harvest 2 (10 months growth) in response to
five fertiliser treatments (N-P2O5-K2O, kg ha−1), T1 0-0-0, T2 40-20-0, T3 40-20-40, T4 40-20-80 and T5 40-20-120.
Table S2. Potassium (K) concentrations (µg g−1 dry weight) of different plant parts.

Author Contributions: Conceptualization, A.I.M. and E.J.V.; methodology, A.I.M., E.J.V., M.F.C., L.Y., S.O., P.K.;
formal analysis, A.I.M., E.J.V., M.F.C.; investigation, M.F.C., L.Y., S.O., P.K.; writing—original draft preparation,
M.F.C., E.J.V., A.I.M.; writing—review and editing, A.I.M., E.J.V.; supervision, A.I.M., E.J.V. All authors have read
and agreed to the published version of the manuscript.

http://www.mdpi.com/2073-4395/10/8/1103/s1
http://www.mdpi.com/2073-4395/10/8/1103/s1


Agronomy 2020, 10, 1103 9 of 11

Funding: This research was funded by an RTB fund to the CIAT cassava program, projects AGB-2012-078
and AESM-2014-053 funded by ACIAR. M.F.C. acknowledges an UWA Overseas Travel Award to travel to
Vientiane, Laos.

Acknowledgments: We thank Lukasz Kotula for guidance with K analysis.

Conflicts of Interest: The authors declare no conflicts of interest. The funders had no role in the design of the
study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to
publish the results.

References

1. Malik, A.I.; Kongsil, P.; Nguyễn, V.A.; Ou, W.; Srean, P.; Sheela, M.N.; Luis Augusto Becerra, L.A.; Utsumi, Y.;
Lu, C.; Kittipadakul, P.; et al. Cassava breeding and agronomy in Asia- 50 years of history and future
directions. Breed Sci. 2020, 20, 145–166. [CrossRef] [PubMed]

2. Howeler, R.H. Sustainable soil and crop management of cassava in Asia. In A Reference Manual; International
Center for Tropical Agriculture (CIAT): Cali, Colombia, 2014; p. 280.

3. Aye, T.M. Cassava Cultivation in Asia. In Achieving Sustainable Cultivation of Cassava; Hershey, C., Ed.;
Burleigh Dodds Science Publishing: Cambridge, UK, 2017; pp. 101–122.

4. Gleadow, R.; Pegg, A.; Blomstedt, C.K. Resilience of cassava (Manihot esculenta Crantz) to salinity:
Implications for food security in low-lying regions. J. Exp. Bot. 2016, 67, 5403–5413. [CrossRef] [PubMed]

5. Bechoff, A. Use and Nutritional Value of Cassava Roots and Leaves as a Traditional Food. In Achieving
Sustainable Cultivation of Cassava Volume 1: Cultivation Techniques; Burleigh Dodds Series in Agricultural
Science; Hershey, C., Ed.; Burleigh Dodds Science Publishing: Cambridge, UK, 2017; pp. 33–55.

6. Alene, A.D.; Abdoulaye, T.; Rusike, J.; Labarta, R.; Creamer, B.; del Río, M. Identifying crop research priorities
based on potential economic and poverty reduction impacts: The case of cassava in Africa, Asia, and Latin
America. PLoS ONE 2018, 13, e0201803. [CrossRef] [PubMed]

7. El-Sharkawy, M.A.; Mwanza, F. Drought-tolerant cassava for Africa, Asia, and Latin America. BioScience
1993, 43, 441–451. [CrossRef]

8. Kawana, K.; Cock, J.H. Breeding cassava for underprivileged: Institutional, Socio-Economic and Biological
Factors for success. J. Crop. Impro. 2005, 14, 197–214. [CrossRef]

9. Henry, G.; Gottret, V. Global Cassava Trends: Reassessing the Crop’s Future. In Working Document No. 157;
CIAT: Cali, Colombia, 1996.

10. Viswanathan, P.K. Lao Census of Agriculture 2010/11: Analysis of Selected Themes, Ministry of Agriculture
and Forestry, Government of the Lao People’s Democratic Republic, Vientiane. Food and Agriculture
Organization of the United Nations: Vientiane, Lao PDR, 2014. Available online: http://www.fao.org/3/a-
at767e.pdf (accessed on 7 May 2020).

11. Smith, D.; Newby, J.; Malik, A.I.; Yadav, L.; Cramb, R. Fertiliser use patterns of smallholder
farmers-implications for private sector involvement in technology dissemination, Cassava Program
Discussion Paper Number 8, September 2018, School of Agriculture and Food Sciences, University of
Queensland, 2018, ISSN 2209–2684. Available online: http://cassavavaluechains.net/wp-content/uploads/
2018/09/Discussion-paper-number-8.pdf (accessed on 20 April 2020).

12. Howeler, R.H. Long term effect of cassava cultivation on soil productivity. Field Crops Res. 1991, 26, 1–18.
[CrossRef]

13. Nguyen, H.; Schoenau, J.; Nguyen, D.; Van Rees, K.; Boehm, M. Effects of long-term nitrogen, phosphorus,
and potassium fertilization on cassava yield and plant nutrient composition in North Vietnam. J. Plant Nutr.
2002, 25, 425–442. [CrossRef]

14. Ezui, K.S.; Franke, A.C.; Mando, A.; Ahiabor, B.D.K.; Tetteh, F.M.; Sogbedji, J.; Janssen, B.H.; Giller, K.E.
Fertiliser requirements for balanced nutrition of cassava across eight locations in West Africa. Field Crops Res.
2016, 185, 69–78. [CrossRef]

15. Cadavid, L.F.; El-Sharkawy, M.A.; Ascota, A.; Sánchez, T. Long-term effects of mulch, fertilization and tillage
on cassava grown in sandy soils in northern Colombia. Field Crops Res. 1998, 57, 45–56. [CrossRef]

16. Howeler, R.H. Cassava Mineral Nutrition and Fertilization. In Cassava: Biology, Production and Utilization;
Hillocks, R.J., Thresh, J.M., Bellotti, A., Eds.; CABI: Wallingford, UK, 2002; pp. 115–147.

http://dx.doi.org/10.1270/jsbbs.18180
http://www.ncbi.nlm.nih.gov/pubmed/32523397
http://dx.doi.org/10.1093/jxb/erw302
http://www.ncbi.nlm.nih.gov/pubmed/27506218
http://dx.doi.org/10.1371/journal.pone.0201803
http://www.ncbi.nlm.nih.gov/pubmed/30089159
http://dx.doi.org/10.2307/1311903
http://dx.doi.org/10.1300/J411v14n01_09
http://www.fao.org/3/a-at767e.pdf
http://www.fao.org/3/a-at767e.pdf
http://cassavavaluechains.net/wp-content/uploads/2018/09/Discussion-paper-number-8.pdf
http://cassavavaluechains.net/wp-content/uploads/2018/09/Discussion-paper-number-8.pdf
http://dx.doi.org/10.1016/0378-4290(91)90053-X
http://dx.doi.org/10.1081/PLN-120003374
http://dx.doi.org/10.1016/j.fcr.2015.10.005
http://dx.doi.org/10.1016/S0378-4290(97)00114-7


Agronomy 2020, 10, 1103 10 of 11

17. Fernandes, A.M.; Gazola, B.; Nunes, J.G.S.; Garcia, E.L.; Leonel, M. Yield and nutritional requirements of
cassava in response to potassium fertilizer in the second cycle. J. Plant Nutr. 2017, 40, 2785–2796. [CrossRef]

18. Howeler, R.H. Effect of cassava production on soil fertility and the long-term fertilizer requirements to
maintain high yields. In The Cassava Handbook: A Reference Manual Based on the Asian Regional Cassava Training
Course, Held in Thailand; Howeler, R.H., Ed.; Centro Internacional de Agricultura Tropical (CIAT): Bangkok,
Thailand, 2012; pp. 411–428.

19. Chan, S.K.; Lee, C. Relationships of Tuber Yield, Starch Content and Starch Yield of Cassava with Potassium
Status of Fertilizer, Soil and Leaf. In Proceedings of the 5th International Symposium on Tropical Root and
Tuber Crops, Manila, Philippines, 17–21 September 1979; pp. 461–465.

20. Howeler, R.H. Diagnosis of Nutritional Disorders and Soil Fertility Maintenance of Cassava. In Tropical
Tuber Crops: Problems, Prospects and Future Strategies; Kurup, G.T., Palaniswami, M.S., Potty, V.P., Padmaja, G.,
Kabeerathumma, S., Pilai, S.V., Eds.; Oxford and IBH Publishing Co.: New Delhi, India, 1983; pp. 181–192.

21. Howeler, R.H.; Tan, S.L. Cassava’s Potential in Asia in the 21st Century: Present Situation and Future
Research and Development Needs. In Proceedings of the Sixth Regional Workshop, Ho Chi Minh City,
Vietnam, 21–25 February 2000; p. 666.

22. Nguyen, H.H.; Nguyen, T.D.; Pham, V.B. Cassava agronomy research and adaptation of improved practices
in Vietnam. In Cassava’s Potential in Asia in the 21st Century: Present Situation and Future Research and
Development Needs, Proceedings of the Sixth Regional Workshop, Ho Chi Minh City, Vietnam, 21–25 February 2000;
Howeler, R.H., Tan, S.L., Eds.; 2001; pp. 216–227.

23. Hasanuzzaman, M.; Bhuyan, M.; Nahar, K.; Hossain, M.S.; Mahmud, J.A.; Hossen, M.S. Potassium: A Vital
Regulator of Plant Responses and Tolerance to Abiotic Stresses. Agronomy 2018, 8, 31. [CrossRef]

24. Jin, S.H.; Huang, J.Q.; Li, X.Q.; Zheng, B.S.; Wu, J.S.; Wang, Z.J. Effects of potassium supply on limitations of
photosynthesis by mesophyll diffusion conductance in Carya cathayensis. Tree Physiol. 2011, 31, 1142–1151.
[CrossRef] [PubMed]

25. Page, M.J.; Di Cera, E. Role of Na+ and K+ in enzyme function. Physiol. Rev. 2006, 86, 1049–1092. [CrossRef]
[PubMed]

26. Prajapati, K.; Modi, H. The importance of potassium in plant growth—A review. Indian J. Plant Sci. 2012, 1,
177–186.

27. Siegel, G.J.; Goodwin, B. Sodium-Potassium-activated adenosine triphosphatase: Potassium regulation
of enzyme phosphorylation sodium-stimulated, potassium-inhibited uridine triphosphate hydrolysis.
J. Biol. Chem. 1972, 247, 3630–3637.

28. Kang, B.T.; Okeke, J.E. Nitrogen and Potassium Responses of Two Cassava Varieties Grown on an Alfisol
in Southern Nigeria. In Proceedings of the International Society of Tropical Root Crops Symposium, Lima,
Peru, 21 February 1983; pp. 231–234.

29. Spear, S.N.; Edwards, D.G.; Asher, C.J. Response of cassava, sunflower, and maize to potassium concentration
in solution III. Interactions between potassium, calcium and magnesium. Field Crops Res. 1978, 1, 375–389.
[CrossRef]

30. Chatakanonda, P.; Chinachoti, P.; Sriroth, K.; Piyachomkwan, K.; Chotineeranat, S.; Tang, H.; Hills, B.
The influence of time and condition of harvest on functional behaviour of cassava starch-a proton NMR
relaxation study. Carbohydr. Polym. 2003, 53, 233–240. [CrossRef]

31. Santisopasri, V.; Kurotjanawong, K.; Chotineeranat, S.; Piyachomkwan, K.; Sriroth, K.; Oates, C.G. Impact of
water stress on yield and quality of cassava starch. Ind. Crops Prod. 2011, 13, 115–129. [CrossRef]

32. Sriroth, K.; Santisopasri, V.; Petchalanuwat, C.; Kurotjanawong, K.; Piyachomkwan, K.; Oates, C.G.
Cassava starch granule structure—function properties: Influence of time and conditions at harvest on
four cultivars of cassava starch. Carbohydr. Polym. 1999, 28, 161–170. [CrossRef]

33. Wholey, D.W.; Booth, R.H. Influence of variety and planting density on starch accumulation in cassava roots.
J. Sci. Food Agric. 1979, 30, 65–170. [CrossRef]

34. Baharuddin, N.H.; Mohamed, M.; Abdullah, M.M.A.B.; Muhammad, N.; Rahman, R.; Omar, M.N.;
Amini, M.H.M.; Razab, M.K.A.A.; Rizman, Z.I. Potential of cassava root as raw material for bio composite
development. ARPN J. Eng. Appl. Sci. 2016, 11, 6138–6147.

35. Molina, J.L.; El-Sharkawy, M.A. Increasing crop productivity in cassava by fertilizing production of planting
material. Field Crop. Res. 1995, 44, 151–157. [CrossRef]

http://dx.doi.org/10.1080/01904167.2017.1382520
http://dx.doi.org/10.3390/agronomy8030031
http://dx.doi.org/10.1093/treephys/tpr095
http://www.ncbi.nlm.nih.gov/pubmed/21990026
http://dx.doi.org/10.1152/physrev.00008.2006
http://www.ncbi.nlm.nih.gov/pubmed/17015484
http://dx.doi.org/10.1016/0378-4290(78)90038-2
http://dx.doi.org/10.1016/S0144-8617(03)00047-X
http://dx.doi.org/10.1016/S0926-6690(00)00058-3
http://dx.doi.org/10.1016/S0144-8617(98)00117-9
http://dx.doi.org/10.1002/jsfa.2740300211
http://dx.doi.org/10.1016/0378-4290(95)00082-8


Agronomy 2020, 10, 1103 11 of 11

36. Keating, B.A.; Evenson, J.P.; Edwards, D.G. Effect of pre-harvest fertilization of cassava, prior to cutting
for planting material on subsequent establishment and root yield. In Proceedings of the 5th International
Symposium on Tropical Root and Tuber Crops, Manila, Philippines, 17–21 September 1979; Belen, E.H.,
Villanueva, M., Eds.; Philippine Council for Agriculture and Resources Research: Laguna, Philippines, 1982;
pp. 301–306.

37. Howeler, R.H.; Cadavid, L. Accumulation and distribution of dry matter and nutrients during a 12-month
growth cycle of cassava. Field Crop. Res. 1983, 7, 123–139. [CrossRef]

38. Carsky, R.; Toukourou, M. Identification of nutrients limiting cassava yield maintenance on a sedimentary
soil in southern Benin, West Africa. Nutr. Cycl. AgroecoSyst. 2005, 71, 151–162. [CrossRef]

39. Turmel, M.S.; Speratti, A.; Baudron, F.; Verhust, N.; Govaerts, B. Crop residue management and soil health:
A systems analysis. Agric. Syst. 2015, 134, 6–16. [CrossRef]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/0378-4290(83)90017-5
http://dx.doi.org/10.1007/s10705-004-1803-9
http://dx.doi.org/10.1016/j.agsy.2014.05.009
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Experimental Design 
	Fresh Weights, Stem Lengths and Estimates of Leaf Loss 
	Starch Content 
	Analysis of K and Other Nutrients 
	Data Analysis 

	Results 
	Plant Growth 
	Tuber Production 
	Starch Yield 

	K Uptake, Distribution and Export in Yield 

	Discussion 
	K Fertilisation Increased Tuber Yields 
	K Fertilisation Affects Starch Content 
	More K Moved to Tubers Later in the Season 
	High K in Lower Stems may Benefit K Balance and Future Yield 
	Reduction of K Deficit 

	Conclusions 
	References

