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Abstract: A failure of the EPSPS-inhibiting herbicide glyphosate to control several populations of
Hordeum murinum subsp. leporinum (or H. murinum) occurred in southern Spain after more than
fifteen applications in both crop (olive, orchards, and citrus) and non-crop (dry areas, roadsides and
ditches) areas. Eight out of 18 populations studied were resistant (R) to glyphosate with R factors
higher than four based on GR50. These populations also had the highest values of LD50 and the
lowest levels of shikimic acid accumulation. Two adjuvants tested increased glyphosate efficacy
in both susceptible (S) and R populations thanks to better spray foliar retention. Moreover, PS I-,
PS II-, and ACCase-inhibiting herbicides, in pre- or post-emergence, proved to be the best chemical
alternatives with different sites of action (SoA) to control both S and glyphosate-R populations.
This study represents the first report worldwide of glyphosate resistance in H. murinum found in very
different crop and non-crop areas from southern Spain. To design chemical strategies to implement
integrated weed management programs for glyphosate-R H. murinum, both adjuvants and herbicides
with alternative SoA as well as application timings should be considered.

Keywords: adjuvant; alternative chemical control; foliar retention; fruit trees; glyphosate resistance;
herbicide resistance; non-crop land; olive orchards; shikimik acid; wall barley

1. Introduction

Hordeum spp. is a genus of the Poaceae family widely distributed in the world, from Africa, Europe,
and Asia to Central and North America [1,2]. In this genus, there are species with different reproduction
systems ranging from highly autogamous to allogamous with genetic self-incompatibility [3], and also
including both annual and perennial species [1]. Hordeum murinum subsp. leporinum (Link) Arcang
(Syn. Hordeum murinum), also known as false barley or wall barley, is one of the most important species
in the south of Spain in perennial and other crops under no-till. It is a winter annual weed and has
become a serious threat to agricultural productivity in Spain in recent years. Moreover, this species has
evolved resistance to herbicides due to its genetic diversity and biological, physiological, and ecological
adaptations [4]. The evolution of herbicide resistance in H. murinum to several sites of action (SoA)
has been confirmed mainly in Australia and has made these weed species more problematic for the
agricultural community [5–14].
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Historically, glyphosate has been the most used herbicide worldwide in annual and perennial
crops [15,16]. The SoA of glyphosate (G for WSSA or 9 for HRAC) is the inhibition of the synthesis of
essential amino acids for the plant by acting on the shikimic acid pathway [17]. The target protein of
this herbicide is the chloroplast enzyme 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) that
catalyzes the binding of shikimate-3-phosphate and phosphoenolpyruvate, ending with the production
of chorismate, which is the precursor of the amino acids tyrosine, phenylalanine, and tryptophan,
necessary for protein, cell wall, and secondary plant product synthesis [18].

This herbicide has become a popular weed control tool in agricultural systems owing to its broad
spectrum weed control, high efficacy, and low cost compared with other herbicides [13], which resulted
in the evolution of resistant (R) weeds around the world [19]. From an agronomic perspective, evolved
herbicide resistance becomes a problem when weed control becomes “unacceptable” to a grower.
This will typically happen when about 10 to 15% of weeds (normally considered susceptible, S) survive
the herbicide application [20]. Therefore, an early detection of R weeds can contribute to improve
integrated weed management (IWM) and thus to crop protection in agriculture. Herbicide resistance is
the ability of a weed biotype to survive an herbicide application, where under normal circumstances
that herbicide applied at the recommended rate should kill the weed [21]. This is an evolutionary
process, and its impact generally depends on the genetics and biology of weed species and selection
pressure with the same SoA, among other factors [22].

Up-to-date, 48 cases of glyphosate resistance have been confirmed in the world, of which
24 species belong to the poaceae family [14]. The resistance levels and resistance mechanisms of
grass weeds are very variable, being the best studied genus: Lolium spp. [23,24], Chloris spp. [25–28],
Echinochloa colona [29–31], Digitaria insularis [32], and Sorghum halepense [33–35]. The only case of
glyphosate resistance in the genus Hordeum was detected in Australia in 2016 in the subspecies
H. murinum subsp. glaucum (Steud.) Tzvelev. (Syn. Hordeum glaucum) [13]. Although gene amplification
was deciphered as the resistance mechanism in H. murinum subsp. glaucum [13], in other grass weed
species, both target-site and non-target-site resistance mechanisms can evolve. Reduced absorption,
retention, impaired transport, metabolism, point mutations, and amplification of the EPSPS gene have
been cited [23–35].

Andalusia currently has the highest concentration of cultivated trees in Europe, with a continuous
woodland of more than 200 million trees [36]. Different types of fruit orchards are abundant, such as
almond or citrus, among others, but olive orchards are, by far, the most prominent, covering a surface
area that exceeds 1.5 million hectares [37]. Andalusia is the world’s leading olive oil-producing region:
Spain produces 33% of the world’s olive oil, and the Andalusia region accounts for 80% of total
Spanish output [38]. Most tree orchards are rain-fed, with high slopes where conventional tillage is the
traditional soil management system used, leading to high erosion and a significant transport of organic
carbon [37]. In the last decades, growers are increasingly implementing conservation agriculture
techniques, such as no tillage, to avoid these problems. Under no-till weeds are usually managed with
chemical tools, and glyphosate, the unique remaining non-selective herbicide registered in Europe,
is the most applied. However, the overreliance on herbicides for weed control, particularly glyphosate,
is boosting the evolution of several herbicide R weeds. Given the importance of tree orchards in the
country, especially olives, and the need to optimize the resources invested, monitoring glyphosate
resistance is crucial to design better IWM strategies.

Recently, control failures with glyphosate on H. murinum subsp. leporinum, H. murinum as from now,
were reported in different locations in southern Spain (Andalusia). Usually, in those locations glyphosate
was the only herbicide treatment for at least the last five years. The aim of this study was to investigate
the glyphosate resistance in several putative R populations from this region and propose alternative
chemical options for this weed species, which is essential to promote the development of integrated
and multi-tactical strategies to prevent further development and propagation of resistance. Specifically,
eighteen H. murinum populations were characterized by dose–response assays, accumulation of shikimic
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acid, foliar retention assays, and effects of adjuvants on glyphosate efficacy. In addition, herbicides with
different SoA were studied as possible chemical alternatives to glyphosate in H. murinum.

2. Materials and Methods

2.1. Plant Material and Growing Conditions

Eighteen Spanish populations of H. murinum were studied in this work. Most of these populations
were collected in Andalusia (located in the south of Spain) in spring–summer (2018) (Table 1).
Three populations were collected from sites where glyphosate has never been applied and, hence,
were considered as potentially S standards (populations Hm7, Hm9, and Hm17 in Table 1). The remaining
15 populations were collected at sites where glyphosate was applied for at least five years. The harvested
populations were collected from 25 plants that survived the glyphosate field-dose (1080 g ae ha−1).
The seeds were arranged in paper envelopes and stored in a cold chamber at 4 ◦C until the assays were
performed. Then, the seeds of each population were mechanically scarified to remove traces of dry
matter. Germination tests in Petri dishes (60 × 15 mm) were performed (four Petri dishes per population
with 25 seeds each one). The dishes were placed in a cold chamber at 4 ◦C for 48 h and then taken to a
growth chamber (26 ◦C day/18 ◦C night), with 60% relative humidity and a photoperiod of 16 h at a
light density of 850 mmol m−2 s−1, obtaining germination rates between 80 and 85% for each population.
The germinated seeds were grown to produce seedlings as necessary for the assays described below.

Table 1. Populations of H. murinum employed in this study, code assigned to each population, location,
crops, historical herbicide application, and coordinates of their locations.

Code Location Crops H. Application Coordinates

Hm1 Cordoba Orchard Many years using glyphosate 37.708194, −4.789167
Hm2 Cordoba Orchard Many years using glyphosate 37.709861, −4.788778
Hm3 Cordoba No crop Tank mix a 37.695903, −4.504091
Hm4 Cordoba Orchard Many years using glyphosate 37.548358, −4.275374
Hm5 Cordoba Orchard Many years using glyphosate 37.709694, −4.806389
Hm6 Cordoba Orchard Many years using glyphosate 37.696306, −4.816556
Hm7 Cordoba No crop Mechanical control 37.914798, −4.714411
Hm8 Cordoba No crop Tank mix a 37.646018, −4.3771
Hm9 Lleida Vineyard Mechanical control 41.679000, 0.474111

Hm10 Cordoba No crop Tank mix a 37.506787, −4.847001
Hm11 Sevilla Olive Many years using glyphosate 37.511594, −4.842501
Hm12 Sevilla Olive Many years using glyphosate 37.513054, −4.841346
Hm13 Sevilla Olive Many years using glyphosate 37.509776, −4.838388
Hm14 Sevilla Olive Many years using glyphosate 37.575327, −4.985865
Hm15 Sevilla Olive Many years using glyphosate 37.536481, −4.959472
Hm16 Malaga Olive Many years using glyphosate 36.974889, −4.918069
Hm17 Sevilla Cereal ACCase inhibitors 37.511594, −4.842501
Hm18 Malaga Olive Many years using glyphosate 37.039433, −4.553680

a Mix of herbicides used to control grass and broadleaf weeds in roads. No more information available. Populations
Hm7, Hm9, and Hm17 are putative susceptible standard populations.

Seedlings of the eighteen populations were transplanted into 250 mL (7 × 7 × 5 cm) pots (one plant
per plot) with 230 g of substrate (soil:peat moss (1:1)). The plants were taken to the greenhouse and
irrigated daily as necessary close to field capacity until the pertinent assays, undertaken in January
2019, at the University of Cordoba.

2.2. Dose–Response Curves

This test was performed on ten whole plants with three to four true leaves from each population.
Glyphosate doses of 0, 31.25, 62.5, 125, 250, 500, 1000, 1500, and 2000 g ae ha−1 were applied with
a treatment chamber (SBS-060 De Vries Manufacturing, Hollandale, MN, USA) equipped with 8002
flat fan nozzles and delivering 200 L ha−1 at 250 KPa. The experiments were conducted using a
completely randomized design with 10 repetitions per dose of glyphosate. Twenty-one days after
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application (DAA), plants were cut at the ground level and oven-dried at 60 ◦C for 48 h. Then, the plants
were weighed, and values transformed to the percentage of dry weight reduction with respect to the
untreated control to determine the herbicide rate inhibiting plant growth to 50% (GR50). In addition,
plant mortality per dose was evaluated to determine the lethal dose that kills 50% of a population
(LD50). The experiments were repeated twice.

2.3. Shikimic Acid Accumulation

Disks of fresh leaf tissue (~50 mg) were taken from individual plants (10 plants per population; three
replications per population) and transferred to 2 mL Eppendorf tubes. Following the methodology
described by Shaner et al. [39] with some modifications, 1 mL of monoammonium phosphate
(NH4H2PO4 10 mM, pH 4.4) plus glyphosate at 1000 µM were added. The samples were incubated for
24 h under fluorescent light (150 µM m−2 s−1). Then, the samples were frozen and stored at −20 ◦C until
used. The frozen samples were incubated at 60 ◦C for 30 min. Next, 250 µL of hydrochloric acid (HCl
1.25 N) was added followed by incubation at 60 ◦C for 15 min. Aliquots of 250 µL were transferred to
1.5 mL Eppendorf tubes containing 500 µL of periodic acid (0.25% w/v) and sodium metaperiodate
(0.25% w/v) solution in proportion (1:1 (v/v)). The tubes were incubated at room temperature (25 ◦C)
for 90 min. Then, 500 µL of a mix containing sodium hydroxide (NaOH 0.6 N) and sodium sulfite
(Na2SO3, 0.22 N) in a 1:1 ratio was added. Absorbance at 380 nm was measured in all samples using a
spectrophotometer mod. DU-640 (Beckman Instruments Inc., Fullerton, CA, USA). The absorbance
results were expressed as micrograms of shikimate per g−1 fresh weight (mg/g) using a calibration
curve with known concentrations of shikimate. The experiment had a completely randomized design
and was repeated twice.

2.4. Adjuvant Effectiveness Assays

For this assay, the most S and R populations were selected based on the data obtained in the
dose–response experiments. Plants at three- to four-leaf stage were sprayed with glyphosate at a dose
of 100 g ae ha−1 for the Hm10 population (lowest dose of GR50), the S population, and 750 g ae ha−1

for Hm2 population (highest dose of GR50 value), the R one. Two adjuvants were added to each dose
of glyphosate at the recommended doses (1 mL L−1 Trend 90; 2 mL L−1 Retenol). The applications
were performed with the same calibration and chamber sprayer described above. After spraying, the
plants were maintained for 21 DAA in the greenhouse. Then, the plants were cut at ground level and
shoots were dried at 60 ◦C for two days. The experimental design was completely randomized with
four replications, and each replicate included three plants from each population. Next, the plants were
evaluated by determining the reduction of dry weight. Furthermore, the increase of effectiveness (IE)
of the glyphosate was determined with each adjuvant {IE = [(dwGA − dwG)/dwG]×100} where dwGA
is the dry weight reduction with glyphosate plus adjuvant and dwG is the dry weight reduction with
glyphosate only [40]. This represents the increase in the activity of the glyphosate with adjuvants.
Assays were conducted twice.

2.5. Foliar Retention Assay

The methodology used for the foliar retention was described by Gauvrit [41]. Six plants of Hm10
(putative S) and Hm2 (putative R) populations were sprayed with 360 g ae ha−1 of glyphosate plus
adjuvants (at the doses mentioned in adjuvant effectiveness) and 100 mg L−1 Na-fluorescein using the
same calibration and conditions described above. Plants were cut at ground level when they dried
(40 to 60 min). Shoot tissue was submerged in test tubes containing 50 mL of 5 mM NaOH for 30 s to
remove spray solution. The washing solution was recovered in glass flasks. Fluorescein absorbance
was determined using a spectrofluorometer (Hitachi F-2500, Tokyo, Japan) with excitation wavelength
of 490 nm and absorbance at 510 nm. Then, the plants were wrapped in filter paper and oven-dried at
60 ◦C for 48 h and weighed. The experimental design was the same as that of the previous section.
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Foliar retention was expressed as µL g−1 of spraying solution per gram of dry weight. Afterwards,
the increase of effectiveness (IE) of glyphosate retention was determined as above.

2.6. Alternative Chemical Control

The putative S (Hm10) and a putative R (Hm2) population of H. murinum were sprayed with
10 different herbicides (at field and half field doses) which belonged to seven different SoA (WSSA;
HRAC) (Table 2). The application of the herbicides was done on 10 plants with 3–4 true leaves from
each population. The applications were made with the application chamber previously described in
the dose–response section. Visual assessments were made at 7, 14, 21 (data not shown), and 28 DAA,
to determine the percentage of injury in each population. The injury was evaluated considering the
presence of chlorosis or reduced growth with respect to an untreated plant, 0% attributed when there
was no injury, and 100% when there was total control of the plants by herbicides. H. murinum control
was considered unsatisfactory when plant survival was greater than or equal to 15%. Surviving plants
at 28 DAA were also evaluated. In this step, the plants were cut at ground level and weighed.
Fresh weight data were transformed into percentage of fresh weight reduction with respect to the
untreated control for each herbicide. The experiment was repeated twice in a completely randomized
design using ten plants per dose and population.

Table 2. Chemical treatments applied to two populations of H. murinum (Hm2 and Hm10) in pre- or
post-emergence under greenhouse conditions.

Active Ingredient SoA a HRAC (WSSA Group) Doses (g ai ha−1) Timing

Propaquizafop ACCase A (1) 62.5 and 125 Post
Quizalofop ACCase A (1) 50 and 100 Post

Iodosulfuron ALS B (2) 2.5 and 5 Post
Flazasulfuron ALS B (2) 25 and 50 Pre

Paraquat PS I D (22) 200 and 400 Post
Oxyfluorfen PPO E (14) 250 and 500 Pre
Glufosinate GS H (10) 250 and 500 Post
Tembotrione HPPD F2 (27) 60 and 120 Post

Diuron PS II C2 (7) 900 and 1800 Pre
Atrazine PS II C1 (5) 1000 and 2000 Pre

a Site of Action, abbreviations: Acetyl CoA carboxylase (ACCase); Acetolactate synthase (ALS); Photosystem
I-electron diversion (PS I); Protoporphyrinogen oxidase (PPO); Glutamine synthetase (GS); 4-hydroxyphenylpyruvate
dioxygenase (HPPD) and Photosystem II (PSII).

2.7. Data Analysis

The results of the dose–response trials were subjected to nonlinear regression using Formula (1),
with which the herbicide dose required to reduce growth by 50% (GR50) and to kill 50% of a population
(LD50) was estimated,

y = d/{1 + exp[b(log x − log e)]} (1)

where y represents shoot dry weight and survival as a percentage of non-treated control at herbicide
rate of x, d is the upper limit, e represents GR50 and LD50, and b is curve slope in e. Resistance factor
(RF) was calculated with Formula (2),

RF = (GR50 or LD50 R/GR50 or LD50 S) (2)

where “R” refers to a R population and “S” to a S population.
Regression analyses were conducted using the drc package [42] with the program R version 3.6.1

(R Core Team, 2020) and the data were plotted using SigmaPlot 12.0 (Systat Software, Inc., San Jose,
CA, USA).



Agronomy 2020, 10, 992 6 of 14

Data of shikimic acid accumulation, adjuvant effectiveness, foliar retention, and alternative
chemical controls were subjected to Analysis of Variance (ANOVA) using the Statistix software v10.0
(Analytical software, Tallahassee, FL, USA). The model assumptions of a normal error distribution
and homogeneous variance were graphically inspected. When differences were considered significant,
a Tukey’s test (p < 0.05) was conducted to compare the means.

3. Results

3.1. Dose–Response Assays

The estimated parameters of each population are shown in Table 3. Eighteen populations of
H. murinum showed different levels of susceptibility to glyphosate, with GR50 values ranging from
122.8 to 172.6 g ae ha−1 in very S populations (Hm7, Hm9, Hm10, and Hm17), to 665.7 to 1081.6 g
ae ha−1 in highly R populations (Hm1, Hm2, Hm6, and Hm14). The remainder of the populations
had intermediate GR50 values. Based on these values, RF varied among populations (Figure 1), Hm2
population was 8.8 times more R than Hm10, which was the most S population. The LD50 of Hm10
was 318.6 g ae ha−1, while the LD50 of five populations exceeded the field dose established in Spain
(1080 g ae ha−1) (Table 3), which killed all S populations. Based on LD50, again the Hm2 population
was the most R (6.2) compared to the most S one (Hm10).

Table 3. GR50 and LD50 values (g ae ha−1) of glyphosate-resistant and -susceptible H. murinum populations.

Parameters a Calculated Using Non-Linear Regression b

Population b d GR50 RF c b d LD50 RF c

Hm1 1.5 98.1 794.1 ± 62.9 6.5 5.3 98.8 1427.8 ± 61.7 4.5
Hm2 2.4 93.4 1081.6 ± 56.5 8.8 7.2 100.1 1977.9 ± 21.8 6.2
Hm3 1.4 97.2 277.0 ± 26.4 2.3 2.8 99.5 447.7 ± 22.3 1.4
Hm4 3.2 97.2 225.1 ± 12.1 1.8 2.0 97.9 373.0 ± 44.2 1.2
Hm5 1.8 93.2 504.8 ± 49.9 4.1 3.3 100.2 1024.7 ± 61.6 3.2
Hm6 1.5 96.7 665.7 ± 65.7 5.4 4.9 98.8 1165.1 ± 50.0 3.7
Hm7 2.5 99.4 150.0 ± 9.0 1.2 1.9 101.3 343.4 ± 30.7 1.1
Hm8 1.6 98.5 549.4 ± 42.9 4.5 4.5 97.0 1111.3 ± 59.3 3.5
Hm9 2.5 99.7 170.0 ± 10.1 1.4 3.3 100.5 388.0 ± 21.1 1.2
Hm10 1.5 99.1 122.8 ± 10.7 - 1.9 100.0 318.6 ± 14.1 -
Hm11 1.7 97.6 269.5 ± 19.4 2.2 2.1 99.9 659.2 ± 9.9 2.1
Hm12 3.3 95.0 515.3 ± 20.8 4.2 2.7 100.0 802.0 ± 21.8 2.5
Hm13 3.1 91.7 494.0 ± 24.3 4.0 2.6 100.0 775.5 ± 15.0 2.4
Hm14 3.4 95.8 940.9 ± 30.7 7.7 3.8 100.4 1644.7 ± 55.8 5.2
Hm15 7.7 95.9 280.1 ± 12.1 2.3 4.6 99.6 413.8 ± 13.2 1.3
Hm16 6.4 98.0 363.0 ± 15.3 3.0 6.4 97.6 639.7 ± 13.1 2.0
Hm17 2.5 99.9 172.6 ± 5.8 1.4 3.2 100.1 322.1 ± 13.4 1.01
Hm18 7.1 97.8 290.5 ± 6.2 2.4 9.8 99.2 471.8 ± 28.2 1.5

a y = d/{1 + exp[b(log x − log e)]}, where b is the relative slope around e, d is the upper limit. GR50 in g ae ha−1 is the
amount of glyphosate required to reduce dry weight by 50%, LD50 is the glyphosate dose required for 50% mortality.
b Mean ± standard error (SE). c RF = Resistance factor (R/S) calculated using the GR50 or LD50 values of the resistant
populations respect to the most susceptible population.
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Figure 1. Resistant factor (RF) of 18 H. murinum populations from Spain based on GR50. Population
Hm10 was the reference population to estimate RF. The line represents the minimum RF (≥4) accepted
to consider a glyphosate-resistant (G-R) population [14].

3.2. Shikimic Acid Accumulation

The response of 18 populations was different at 1000 µM of glyphosate. Hm10 population had the
maximum level of shikimic acid accumulation (0.16 mg g−1 fresh weight), four times more than Hm2
(0.04 mg g−1 fresh weight); the rest of the populations were around these values (Figure 2).

Figure 2. Shikimic acid accumulation in 18 H. murinum populations from Spain. Means with different
letters are statistically different at 95% probability according to the Tukey’s test.
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3.3. Adjuvant Effectiveness Assays

Although 7.5-fold more glyphosate was applied to the R population than to the S one, the %
of dry weight reduction was similar in both populations when adjuvants were not added to the
glyphosate (Table 4). On the other hand, the increase of effectiveness (IE) of glyphosate augmented
significantly with the addition of adjuvants in both S and R populations. The effects were stronger in
the R population, with IE values of 92% and 105% for Retenol and Trend 90 adjuvants, respectively,
while in the S population values were 48% and 73% (Table 4). Trend 90 adjuvant was slightly better
than Retenol in increasing glyphosate efficacy in both populations.

Table 4. Glyphosate (Gly) activity in dry weight (dw) reduction (%) and increase of effectiveness (IE)
with and without adjuvants in putative resistant (R) and susceptible (S) H. murinum populations.

Treatment
dw Reduction (%)

R a (750 g ae ha−1)a IE (%) S a (100 g ae ha−1) IE (%)

Gly 36.6 ± 4.5 b - 40.3 ± 1.7 b -

Gly + Retenol 70.3 ± 3.3 a 91.9 59.7± 4.1 a 48.3

Gly + Trend 90 75.0 ± 5.4 a 104.9 69.5 ± 3.3 a 72.7
a Means within a column followed by the same letter are not significantly different at the 5% level as determined by
the Tukey test. Mean values ± standard errors of the mean.

3.4. Foliar Retention Assays

At 360 g ae ha−1, foliar retentions of glyphosate were similar in the R and S populations for
each of the treatments (Table 5). It should be highlighted that the herbicide foliar retention increased
significantly in both populations when each one of the adjuvants were added. However, Trend 90
adjuvant was significantly better than Retenol in increasing the retention in both populations; the value
in terms of µL of glyphosate g−1 dry weight was nearly two-fold higher, and the differences in IE
values were higher than 100% (Table 5).

Table 5. Foliar retention of glyphosate (Gly) at 360 g ae ha−1 and increase of effectiveness (IE) with and
without adjuvants in resistant (R) and susceptible (S) H. murinum populations.

Treatment Mean a (µL g−1 dry weight)

R IE (%) S IE (%)

Gly 447.5 ± 14.4 c - 467.25 ± 13.2 c -

Gly + Retenol 638.75 ± 12.1 b 42.7 631.75 ± 7.8 b 35.2

Gly + Trend 90 1133.75 ± 12.5 a 153.4 1222.5 ± 15.5 a 161.6
a Means within a column followed by the same letter are not significantly different at the 5% level as determined by
the Tukey test. Mean values ± standard errors of the mean.

3.5. Alternative Chemical Control

In this research, H. murinum (e.g., Hm2) from southern Spain was R to glyphosate. Results showed
that it is possible to control these R populations applying herbicides with different SoA. The PS II
(atrazine), the PS I (paraquat), and ACCase (propaquizafop and quizalafop) inhibitors were the best
alternative herbicides for controlling the R and S populations at field and half doses, with 100% of
visual control, no survival, and 100% of fresh weight reduction (Table 6). Diuron (PS II inhibitor)
and flazasulfuron (ALS inhibitor) had unequal effects on S and R populations; although visual injury
had always the maximum value, fresh reduction was 100% at both doses only in the S population.
None of the plants from the S population survived at any of the doses, while 50–60% of the plants
from the R population survived at the highest doses of these herbicides. Oxyfluorfen (PPO inhibitor)
and glufosinate (glutamine synthetase inhibitor) showed excellent visual control (100%) and good
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fresh weight reductions levels (66–99%). However, plant survivals for these two herbicides were
generally too high (60–100%) and the only acceptable value (10%) was obtained when the R population
was treated with the highest doses of glufosinate. Finally, the worst options were the ALS inhibitor
iodosulfuron and the HPPD inhibitor tembotrione, with 0–30% of visual control, all plants surviving
and very low levels of fresh weight reduction (Table 6).

Table 6. Effect of alternative herbicides to control putative resistant (R) and susceptible (S) H. murinum
populations (Hm2 and Hm10, respectively) at 28 days after application, visual evaluation, survival
plant, and fresh weight (fw) reduction.

Herbicides Doses (g ai ha−1) Visual Evaluation a % Survival Plant b % fw Reduction c

S R S R S R

Check
(untreated) 0 D 0 C 100 A 100 A 0 D 0 I

Propaquizafop 62.5 100 A 100 A 0 D 0 F 100 A 100 A
125 100 A 100 A 0 D 0 F 100 A 100 A

Quizalofop 50 100 A 100 A 0 D 0 F 100 A 100 A
100 100 A 100 A 0 D 0 F 100 A 100 A

Iodosulfuron
2.5 0 D 0 C 100 A 100 A 5.83 D 0 I
5 0 D 0 C 100 A 100 A 5 D 10.36 H

Flazasulfuron
25 100 A 100 A 0 D 100 A 100 A 57.31 E
50 100 A 100 A 0 D 50 D 100 A 93.29 B

Paraquat 200 100 A 100 A 0 D 0 F 100 A 100 A
400 100 A 100 A 0 D 0 F 100 A 100 A

Oxyfluorfen 250 100 A 100 A 100 A 100 A 78.5 B 66.46 D
500 100 A 100 A 65 C 75 B 95.83 A 87.80 C

Glufosinate
250 100 A 100 A 85 B 60 C 80 B 83.53 C
500 100 A 100 A 65 C 10 E 81.6 B 98.78 A

Tembotrione
60 0 D 0 C 100 A 100 A 28.33 C 18.29 G

120 30 C 25 B 100 A 100 A 30.83 C 25.60 F

Diuron
900 85 B 100 A 0 D 75 B 100 A 68.29 D
1800 85 B 100 A 0 D 60 C 100 A 93.9 B

Atrazine
1000 100 A 100 A 0 D 0 F 100 A 100 A
2000 100 A 100 A 0 D 0 F 100 A 100 A

a The visual evaluation was based on the vigor and chlorosis of the plant, compared to the untreated check, with 0%
attributed when there was no injury and 100% when there was total control of the plants by herbicides. b H. murinum
control was considered unsatisfactory when plant survival was greater than or equal to 15%. c Means with different
letter within a column are statistically different at 95% probability determined by the Tukey’s test.

4. Discussion

Eighteen H. murinum populations were studied for resistance to glyphosate. Most of them were
from Andalusia (southern Spain), mainly from olive orchards, but also from other types and non-crop
land too. Eight populations had RF higher than four based on GR50, and three of them based on LD50

(Table 3 and Figures 1 and 3). According to the definition of herbicide resistance, RF must be higher
than four [14]. Therefore, our study represents the first report worldwide of glyphosate resistance in
H. murinum subsp. leporinum. It should be noted that, in this species, resistance to glyphosate has only
been reported in an Australian H. murinum subsp. glaucum population [13]. Therefore, our study is the
second global case for this species and the first one for Europe.

The levels of shikimic acid accumulation across populations confirmed the above-mentioned results.
The three putative S populations, or those with RF lower than two, showed two- to four-fold higher
concentrations, while the ascribed R populations showed the lowest values (Figure 2). Significant lower
levels of shikimic acid in R compared to S populations are accepted as quick and easy indicators
for confirming glyphosate resistance [39]. Moreover, there was a clear relationship between the
three resistance indicators evaluated to assess the levels of herbicide resistance. When a RF was also
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estimated for shikimic acid (ratio between R and S populations), the lowest values in S populations
corresponded always to lowest RF for GR50 and LD50 too (Figure 3). In R populations, the highest RF
for shikimic acid accumulation corresponded to RF (GR50) higher than four and usually higher than
three based on LD50.

Figure 3. Relation between resistant factor (RF) of Shikimic acid, GR50 and LD50 for 18 H. murinum
populations from Spain. Population Hm10 was the reference S population to estimate RF.

LD50 values for the eighteen H. murinum populations were plotted together with the field
recommend rates for glyphosate in Spain, United Kingdom and Australia (Figure 4). The Spanish field
dose doubles the Australian and English ones. Therefore, referring to a R population by the LD50

value is quite subjective from an agronomic perspective, as the dose used in the field varies between
countries [25–27]. For example, in this study eight populations were classified as R according to the RF
(GR50) [14]. Nevertheless, although six had LD50 values equal or above the Spanish field recommended
dose, 10 were already above the recommended dose in Australia (Figure 4).

Figure 4. LD50 values for eighteen H. murinum populations from Spain. Blue and red lines represent
the field recommend doses in Spain (1080 g ae ha−1) and Australia plus UK (540 g ae ha−1), respectively.
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The two tested adjuvants—Retenol and Trend 90—clearly increased glyphosate efficacy in both S
and R H. murinum populations (Table 4). These results were in accordance with increased herbicide
foliar retention observed in this study on both populations with the addition of both adjuvants
(Table 5). Adjuvants, either included in formulated products or added in the tank mixtures, have been
found to improve glyphosate performance in different ways, such as improving spray retention
on the leaf surface [43]. Therefore, adding the most suitable adjuvants could not only maintain
glyphosate efficacy against S and R H. murinum, but also reduce environmental impacts thanks
to lower doses of herbicides [40]. This tool should also be considered to design better chemical
programs, because maximizing efficacy at field recommended rates is crucial to prevent the evolution
and spreading of herbicide resistance [20,21]. Finally, Trend 90, a non-ionic surfactant, was better
in increasing glyphosate efficacy thanks to a better foliar retention than Retenol, a terpene alcohol
obtained from pine resin (according to manufacturers). Non-ionic surfactants are better in increasing
foliar retention than plant derived adjuvants most suitable to reduce drift [44].

This study demonstrated that it is possible to control glyphosate R H. murinum populations
applying herbicides with alternative SoA, such as PS II, PS I, and ACCase inhibitors. These results
are in agreement with previous studies where these SoA were effective in controlling other Hordeum
species (reviewed in [4]). On the other hand, insufficient control levels with ALS inhibitors in POST
have been previously reported too [4], because herbicides such as iodosulfuron usually need an
admixture partner. In this research, different herbicides both in PRE and POST were good alternatives
in controlling H. murinum, which should aid in designing improved chemical programs to manage
these glyphosate R populations. To prevent the evolution of herbicide resistance, recent studies point
out that it is better to (tank) mix alternative herbicides with different SoA rather than rotating them in
sequential applications [45]. Unfortunately, H. murinum is able to evolve herbicide resistance to all the
above-mentioned SoA [14,46]. Therefore, growers must use IWM strategies, involving combinations of
all weed control tactics available, such as mechanical, biological, and cultural together with chemical
to effectively manage them [47].

5. Conclusions

The overuse of glyphosate can promote the evolution of resistance in H. murinum subsp. leporinum.
This study confirmed the first case of glyphosate resistance in this subspecies in the world. It also
represents the first resistance case to any herbicide in Europe. Chemical control with herbicides with
different SoA should be the choice for an improved IWM program. The best chemical options for both
glyphosate S and R populations were ACCase (propaquizafop and quizalafop), PS I (paraquat), and PS
II (atrazine) inhibiting herbicides. Moreover, adjuvants should be considered when designing chemical
programs to prevent resistance because they enhance glyphosate efficacy through increased herbicide
foliar retention. The presence of glyphosate R H. murinum populations in southern Spain, particularly
in olive orchards, highlights the necessity to advocate for a more sustainable use of this herbicide and
implement IWM strategies including non-chemical tools.
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