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Abstract: Smart agriculture is an evolving trend in the agriculture industry, where sensors are
embedded into plants to collect vital data and help in decision-making to ensure a higher quality
of crops and prevent pests, disease, and other possible threats. One of the most critical pests of
palms is the red palm weevil, which is an insect that causes much damage to palm trees and can
devastate vast areas of palm trees. The most challenging problem is that the effect of the weevil is
not visible by humans until the palm reaches an advanced infestation state. For this reason, there
is a pressing need to use advanced technology for early detection and prevention of infestation
propagation. In this project, we have developed an IoT-based smart palm monitoring prototype
as a proof-of-concept that (1) allows monitoring palms remotely using smart agriculture sensors,
(2) contribute to the early detection of red palm weevil infestation. Users can use web/mobile
applications to interact with their palm farms and help them in getting early detection of possible
infestations. We used an industrial-level IoT platform to interface between the sensor layer and
the user layer. Moreover, we have collected data using accelerometer sensors, and we applied
signal processing and statistical techniques to analyze collected data and determine a fingerprint of
the infestation.

Keywords: precision agriculture; red palm weevil detection; internet-of-things; data analytics

1. Introduction

Smart farming is an increasingly attractive agricultural approach that leverages cutting-edge
technologies to enhance productivity, provide real-time monitoring, and participate in attaining
food security and sustainable production. This trend is particularly challenging in the Middle East,
with regards to the increasing population and the diminishing water resources.

In Saudi Arabia, as a case study, date palms are the most cultivated trees, provide an essential
food commodity, and contribute significantly to the economy. There are over 28 million date palms
in the Kingdom of Saudi Arabia, which ranks third on the globe in date production (FAOSTAT,
2017). Nevertheless, date palms are threatened by an invasive pest, the red palm weevil (RPW),
Rhynchophorus Ferrugineus, which was first discovered in the 1980s in the Gulf region, and has
become today the most devastating pest affecting nearly 40 palm species, in more than 60 countries
worldwide [1]. The number of date palms infested by RPW is exceptionally high; an estimated
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number of 80,000 infested palm trees is reported in Saudi Arabia [2], and numbers are rising rapidly.
The RPW is reported to be a category-1 pest to date palms in the Gulf area [3]. The larvae of RPW
are the causing agent in the infestation process, where they feed internally in the date palms trunks.
This feeding behavior has a few externally visible signs, which complicates early detection. Failure
in early detection of the infestation causes rotting of the internal parts of the palm trunk leading to its
death [4]. It is estimated that the removal of critically infested palms costs around $8 million yearly
in the Middle East [1]. Furthermore, the RPW can complete many generations a year in the same host
before its death [5,6].

Consequently, a timely and precise automatic detection of such infestations would increase
production quantity and quality and reduce the excessive use of insecticides that are harming
the environment and public health. In this paper, we propose a comprehensive, integrated
Internet-of-Things-based solution for (1) online tracking and monitoring of the vital signs of palm
trees using specialized sensors, (2) detecting infestations by red palm weevils at an early stage using
statistical analysis, even before it is visible to the human eye. To the best of our knowledge, this paper
is the first work that provides a complete IoT system from the sensor to the end-user for the monitoring
of palm trees and the early detection of the RPW.

The remaining of the paper is organized as follows. Section 2 presents a brief background and
the main related works that dealt with RPW infestation detection using various sensor types and
techniques. Section 3 describes the general system architecture of the smart palm framework and
details its different components. Section 4 sets forth the experimental settings of the different sensors
used for RPW detection and discusses the results of sensor data analysis. Finally, Section 5 draws
the main conclusions of this project and suggests some future works to extend it.

2. Related Works

In the literature, several works proposed solutions for smart farming and agriculture based on
sensors [7], drones [8], mobiles robots [9], and deep learning [10]. One of the main issues in smart
farming is the early detection of red palm weevil infestation and several research works have been
proposed to address this issue.

The cryptic feeding behavior of the larvae makes early detection of RPW infestation extremely
hard because neither RPW larvae nor damage can be observed at this stage. Although detection of
RPW infestation at early stages is not so easy, yet it is the basic step in controlling this killer pest [11–13].
The following Infestation symptoms are visible at later stages: (1) presence of galleries in the trunk of
the tree, (2) oozing out of brownish viscous material with a fermented odor, (3) collection of chewed
fibers between leaf bases around the trunk, (4) hearing of the feeding larvae sounds when the ear
is placed close to the palm trunk, (5) presence of empty RPW cocoons and dead adults underneath
the infested date palm tree, and finally (6) the falling of date palms by breaking down of the palm
trunk parts [14].

So far, different methods have been tested to detect the RPW infestation in date palms
in early stages. These include visual inspections and acoustic sensors [15–17], sniffer dogs [18],
pheromone traps [19], transcriptome analysis [20], Laser-Induced Breakdown Spectroscopy (LIBS) [21],
Near Infrared Spectroscopy (NIRS) technique [22], thermal imaging [23], TreeRadarUnitTM (TRU),
and resistograph. However, none could prove desired results. Scientists are still making efforts to
discover some effective, efficient and environmentally safe method for RPW early detection [24].

Visual examination of a tree is one of the regular methods that farmers perform by looking for
heavy brown liquid on the palm trunk or the existence of regular or semi-regular holes on the trunk [25].
Pheromone traps are also widely used to determine the presence of RPWs in certain areas, although
this method does not specify the exact infested palms [19]. For best results, the pheromone traps need
to be examined regularly including a collection of the weevils, cleaning of the traps and replacement
of the exhausted pheromone. The visual inspection and pheromone trapping, as well as the other
traditional approaches, are the main techniques used currently for RPW detection and monitoring.
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However, many limitations are facing these techniques that include financial difficulties, trained
human resources, and farmer’s conception that RPW adults are attracted to their healthy farms
through the presence of pheromone traps. Moreover, the poorly maintained, neglected old orchards
and date palm plantations in countryside and in parks are not under the surveillance programs which
sometimes act as a source of a secondary infestation.

Technological techniques are emerging in response, such as acoustic sensors [15,17].
Acoustic technology measuring the spectral and temporal patterns of sounds produced by feeding
and moving larvae has the potential to enable early detection, mainly because the insect sounds
often can be distinguished from agricultural or urban background noise. In [13], the authors have
proposed a bioacoustic sensor for the early detection of Red Palm Weevil. It consists of a sound probe,
a microphone, a processor for local computation, solar panel for energy, and a wireless interface for
sending the data to a control station. Extensive experiments showed that the sensor can detect with
an accuracy of 90%. Similarly, [17] used an optical-fiber-distributed acoustic sensor (DAS) that can
detect 12-day old RPW larvae feeding sounds, in trees that were placed in a closed room. Nevertheless,
currently available acoustic systems have seen limited use because they require skilled operators.

Near-Infrared Spectroscopy (NIRS) technique [22] has been extensively used for non-destructive
analysis and monitoring of biological systems. In NIRS, the specific chemical composition of an object
excites molecules to absorb light in the NIR region and vibrate at unique frequencies. Insect borers
cause stress to the plants interfering with transpiration stream by ingesting plant stem tissues. Similarly,
when RPW infest date palm, it starts eating internal tissues of the tree and induces stress that can
be detected through the NIRS technique. A preliminary study was carried out in Saudi Arabia
by measuring absorbance spectra for control, wounded and RPW infested fresh date palm leaves
samples through spectrophotometry. Preliminary results are promising and provide evidence that
the NIRS technique has the potential for RPW detection at early stages. Infrared cameras are in use to
detect temperature increase in infested palms. Currently, available literature on this aspect suggests
that baseline information on temperature profiles of RPW infested date palms are available for
developing a real-time sensor. Two models of IR Thermal Cameras were tested in the field in different
seasons (summer and winter) to assess their efficacy in identifying the RPW damaged palms. When
the thermographs of healthy and damaged palms were analyzed in some cases, the differences
in the color spectrum was clear and easy to mark the damage. However, it was not easy when
the surface temperature and inside temperature were not much different.

The Laser-induced breakdown spectroscopy (LIBS) technique was applied on the soil surrounding
the trunk of the RPW infested date palm [21]. Results of this study showed that the presence of different
elements—such as Ca, Mg, Na, C, K, and OH and CN molecules—could be used as indicators of
possible differentiating factors between infested and healthy samples. The study showed that the Mg
and Ca atomic lines intensity in LIBS spectra increases rapidly with the growth of the population of
the pest. These results indicate that the LIBS technique as a non-destructive method has the potential
to be used as early detection for RPW infestation.

The X-Ray is a widely used technique for medical imaging, but its use in agriculture for
the detection of insect pest infestation is relatively limited. Preliminary studies carried out under
laboratory conditions revealed promising results. Results indicated images of the larval stages and
the galleries created by RPW larvae inside the date palm trunk. Further studies are needed to improve
the methodology for imaging the tree and devising a system that is compatible with date palm tree
imaging under field conditions.

Near-infrared detection experimentation will hasten the use of drone-based early detection if such
sensors are made based on the results of these experiments. Also, experimentation for the creation of
a portable Laser-induced breakdown spectroscopy-based technology would be a handy tool in the early
detection of RPW on the ground. Furthermore, in this matter, high-frequency radar and X-ray
technology experiments have some promises based on preliminary experiments.
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Moreover, proteomics methods have been widely used for detecting human infections and
diseases. A few plant-related proteomic studies would encourage the use of these methods for
detecting RPW infestation at early stages of date palms infestations. The production of diagnostic
molecular markers to be used as early detection of RPW infestation tools would work if these protein
molecules would show a modulated response. This response can be used if changes in these date
palms are linked with the presence of infestation by RPW. Also, experiments with proteomics strategies
carry a high potential for developing future kits for early detection.

Based on the above, it can be concluded that none of such technological approaches prove desired
results. Scientists are still making efforts to discover some effective, efficient, and environmentally safe
method for RPW early detection. The use of a framework that collects different data from multiple
sensors would help in early detection success of RPW infestations.

If an infested palm is discovered at an early stage, the efficacy of treatment is higher; which raises
the significance of timely detection of RPW infestation. As long as the heart of the palm is not yet
damaged and the trunk is still stable, the palm can be treated and usually recovers [26]. The RPW
treatment by preventive physical, biological, or chemical means is still under research [27]. However,
severely infested trees, once detected, must be destroyed [28] and completely removed as no efficient
treatment process currently exists [29].

3. Smart Palm Architecture

In what follows, we present the general system architecture of the smart palm system and
we discuss in detail its different components. A demonstration of the monitoring prototype is available
on [30].

3.1. General System Architecture

The system is decomposed into several layers (Figure 1):

Figure 1. Smart Palm Architecture.



Agronomy 2020, 10, 987 5 of 21

• The Palm Farm Layer: This layer is the data source layer that contains all the palms distributed
in multiple farms. Every palm is equipped with a sensor that captures vital information of
the palm, including temperature, humidity, PH level, in addition to weevil detection sensors,
namely a sound sensor (i.e., microphone) and a vibration sensor. This information is sent
periodically from the sensor node to the cloud system through the gateway. The sensor nodes are
equipped with a LoRA shield to allow very long-range communication with the gateway. Several
studies show that LoRA achieves distances up to 20 km, but with low data rates. In the smart
palm application, the data rate is very small as data contain small number of bits and will be sent
after long periods of time. As a farm can be very large, it may be decomposed into several clusters
of palms, where every cluster connects to one particular LoRA gateway. In fact, a LoRA gateway
can handle a limited number of connections, thus, it is necessary to have multiple clusters for
farms of very large sizes. The configuration of the number of clusters per farm is a design choice.

• The LoRA Gateway Layer: this layer is the collection point of the data coming from different palms.
Given that the LoRA communication range is very large, the gateway will collect data from many
nodes, and then forwards them to the next Edge layer. The gateway is just a simple forwarder
of messages. It does not perform any kind of processing on the data. It receives the palm vital
data from its LoRA interface and forwards it to the edge through its IP Interface. Usually, both
Ethernet and WiFi can be used to transmit data to the IP network.

• The Edge Layer: Data coming from palms should be transmitted to the cloud. However,
as the number of palms increases, which can reach millions of palms, sending all data collected
from palms directly to the cloud leads to higher storage requirements at the cloud, in addition
to a higher computation complexity. This approach would lead to high management costs at
the cloud in addition to possible degradation of the quality of service due to increased latency.
To overcome this problem, we use an edge layer, which is an intermediate layer between the farm
system and the cloud, and the edge will be responsible for a subset of data, will do local
processing and send only a digest to the cloud through aggregation, thus reducing the load
on the cloud and improving the QoS through reduced latency as it is closer to the devices. Edge
are typically distributed in nature, and they are in a region close to where the data is originated
from. This solution is more scalable and more energy efficient from the cloud perspective. An edge
can be a local server or machine specific to a region or a city. For small systems, the edge layer
can be ignored.

• The Cloud Layer: The cloud layer is the main central system that ensures storage and processing of
collected data and the communication between the different entities of the system. The cloud layer
contains a messaging middleware system (Kafka, RabbitMQ) that allows the exchange of messages
between data sources and user applications. It can be accessed through different software API and
communication protocols, namely MQTT, WebSockets, REST Web Service interfaces, and COAP.
The cloud layer also contains big data analytics tools to perform computation and analysis of
the collected data and implement advanced machine learning algorithms for the detection of
the weevil infestation, and provide useful insights to the farmers.

• The End-User App Layer: The end-user applications layer contains the mobile and web applications
that allow users to remotely monitor the status of the their farms in real time. A user-friendly
dashboard provides the users with a comprehensive view about the state of their farms, namely
the number and location of infected palms, insight on the propagation of the infestation over
time, in addition to the vial data for the palms. The user can select information for a particular
palm either historical or in real time. He can also display information about the whole farm and
particular clusters.



Agronomy 2020, 10, 987 6 of 21

3.2. Software Architecture

3.2.1. Software Component Flow Diagram

In this section, we present the software architecture of the system. The UML flow diagram
presented in Figure 2 shows the interaction between the components of the system.

Figure 2. Flow diagram of the software system.

The process starts when the nodes receive the data from their sensors. The nodes forward
the data to a gateway through their LoRA protocol interface. Then, the gateway sends the data to two
destinations. The first destination is the edge where local computation is performed to get intermediate
results, as explained in the general architecture section. These results are then sent to the cloud.
The second destination is the cloud itself to keep the data stored for later usage and data analytics.
The edge receives the data from the gateway through a WebSocket interface, while the cloud receives
them through HTTP or CoAP. However, since the gateways are not constrained devices, the data is
sent through an HTTP request. Finally, the cloud sends the data received from the sensors through
a WebSocket to the Web Server, which in turn sends them to the client-side after doing some filtering
based on the client requirements.

3.2.2. Data Exchange Protocols

Figure 3 presents the UML sequence diagram for the interaction between the user, the server,
and the cloud. First, the Web Server must be authenticated with the cloud, which is, in our case,
is the ELM cloud platform [31]. The system was designed to be easily deployed on any cloud platform
using Web services and abstract software interfaces. Then, the server connects to the cloud through
a WebSocket interface and listens to the data, and it sends to the cloud the list of devices from which
it wants to receive their sensor readings in real time. In response, the cloud starts sending the readings
of these specified devices continuously in real time to the server. Finally, the user can view these data
by providing his credentials to be able to open the dashboard.
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Figure 4 represents the sequence diagram that shows the order in which the data is traveling
between the nodes, edges, and the cloud. The nodes send all the data without exception to both
the edge devices and the cloud. However, the edge machines perform local analysis on these data and
finally send the results to the cloud, which stores them to be used later for further analysis. The edge is
responsible for making local processing of data such as, for example, machine learning algorithms for
RWP detection before sending it to the cloud. The data is also sent to the cloud in batches for permanent
storage of the historical data for further processing, visualization, and analytics. The objective behind
using edge-based processing is to reduce the load on the cloud and make the system more scalable.

Figure 3. Sequence diagram of the Web Server, the cloud and the user.

Figure 4. Sequence diagram of the nodes, edges and the cloud.

4. Data Collection and Analysis

4.1. Experimental Study

In this section, we present the experimental study that consists of using different sensors to detect
the weevil insect in a palm tree. Then, we present the data analysis, discuss the findings, and present
the final recommendations.

First, we present the experimental settings of the different sensors used for weevil detection,
and then we explain the data collection process. We also present the different experimental
scenarios, the type of sensors used, and the different parameters of the collection process. Second,
we present different types of performance metrics used for weevil detection. Then, we analyze and
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compare the results, using the proposed metrics. Finally, we discuss the findings and provide some
recommendations based on the results.

4.1.1. Experimental Settings

Sensor Selection

The selection of the appropriate sensor for weevil detection was a tedious and challenging
process. In fact, the vibration and sounds generated by the weevil are found to be very small and
minimal, which makes their detection through the palm tree a challenge. We have tested around 7
types of sensors ranging from vibration sensors, accelerometer sensors, and sound sensors. Among
them, the accelerometer sensors were found to be the most effective. We tried different sensors
with different sensitivities, and we investigated which one provides a better response to the activity
of the red palm weevil. For the Arduino-based acoustic sensor (Grove Loudness Sensor based on
LM2904 amplifier and a built-in microphone, and Grove Sound Sensor LM386 amplifier and an electret
microphone) that we have used, we found them nonsensitive to the noise generated by the red
palm weevil, so we discarded them. Moreover, it is more challenging to separate/filter the ambient
noise from the real signal related to the activity of the red palm weevil. We have also tried different
types of accelerometers (e.g., 3-axis Accelerometer module is based on MMA7660FC) and vibration
sensors (e.g., Grove Piezo Vibration Sensor, based on PZT film sensor LDT0-028 (Manufactured by TE
Connectivity, Schaffhausen, Switzerland)) and among them, the Grove 3 Axis Digital Accelerometer
±16 g Ultra-low Power BMA400 (Manufactured by Bosch Sensortec, Reutlingen, Germany) was
providing the best signature to the activity of the red palm weevil, which is the reason of its selection
for the study.

After investigation of these sensors, the experimental data collection was done using the sensor
Grove 3 Axis Digital Accelerometer ±16g Ultra-low Power BMA400, as shown in Figure 5.

Figure 5. Grove 3 Axis Digital Accelerometer ±16g Ultra-low Power BMA400 Sensor.

The specification of the Accelerometer sensor is shown in Table 1. Additional information about
this sensor can be found at [32].

It has to be noted that this BMA400 accelerometer sensor was selected among several other
sensors, because it was found to be more sensitive than other tested sensors models, such as the Grove
Vibration Sensor [33], which was not sensitive enough to the vibrations made the weevil insect, and also
the microphone sensors. In fact, the vibrations and sound signals resulting from the infestation are
very small and do not propagate well through the thick trunk of the palm tree. However, the Grove 3
Axis Digital Accelerometer was found to be sensitive to the vibrations of the weevil insect activities
much better than all other types of sensors that we have tested.



Agronomy 2020, 10, 987 9 of 21

Table 1. Specification of the Grove 3 Axis Digital Accelerometer Sensor.

Item Value

Operating Voltage 3.3V/5V

Power Consumption
18uA @5 V
14uA @3.3 V

Operating Temperature −40 °C ∼ +85 °C

Acceleration Range ±2 g, ±4 g, ±8 g, ±16 g

Sensitivity

1024LSB/g @±2 g
512LSB/g @±4 g
256LSB/g @±8 g
128LSB/g @±16 g

Interface I2 C

Size L: 40 mm W: 20 mm H: 10 mm

Weight 3.2 g

Package size L: 140 mm W: 90 mm H: 10 mm

Gross Weight 10 g

Data Collection Process and Scenarios

The experimental study was performed on a real date palm tree brought in a container inside
the premises of the Robotics and Internet-of-Things Lab.

The collection process was done at two different locations/heights that are close to the palm
trunk base (around 1 meter above the ground). In fact, based on the feedback from experts, the red
weevil infestation usually happens at the bottom of the tree. We have used two sensors with different
orientations at each location, as shown in Figure 6.

Figure 6. Sensor Placement on the Palm Tree. The bottom figure corresponds to the first scenario with
one sensor inside and one sensor outside. The top figure corresponds to the second scenario with two
sensors outside.

In the first scenario, the sensor node is located at the height of 35 cm and has two Accelerometer
sensors. The first Accelerometer sensor was inserted inside the palm on the depth of 4cm, and the second
was put on top of the trunk after removing the old stems. The reason behind trying two different
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placements is to assess the sensor response when it is located inside the palm and when it is located on
top of the trunk.

In the second scenario, the sensor node was located at 20 cm height. In this scenario, we put
both Accelerometer sensors outside the palm tree because we needed to collect more sensor data
from outside the palm to check the consistency of collected data with the previous scenario. Figure 7
illustrates scenario 2 and shows a larva just inserted inside the tree.

Figure 7. Position of the sensors to detect Red Palm Weevil (Outside Sensors).

We have inserted the larvae inside the tree and starts monitoring its activity. The selected red palm
weevil larvae were around 1.5 to 2 months old, because the larvae are most active at this stage before
becoming a pupa. We inserted four larvae at the first location and one at the second location. The data
was collected and logged at both locations for six days before and after the insertion of the larvae to
analyze the differences. To collect the baseline data, the data gathering process started before adding
the Red Palm Larvae for 1 h 24 min using a sensor outside the palm, and for two days using a sensor
inside the palm. After inserting four larvae (three of 2 months old and one of 1.5-month old), the data
was recorded inside and outside the palm for three days (2 days, 23 h, and 11 min). For phase two and
after inserting a 1.5 months old larva, the data was recorded with two sensors outside the palm tree.
After collecting and logging the data, it was cleaned by removing the outliers, which are the values
above 17 g and the values under 6 g. The data was collected with a delay of 10 ms (100 Hz frequency),
and it included the acceleration on the X, Y, and Z axes, their magnitudes, the date, the time and
the number of the packets sent. Figure 8 shows a sample of larvae used in the experiments.

Figure 8. Larvae used in experiments.

The experimental settings used for data collection are summarized in Table 2.
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Table 2. Experimental Settings for Data Collection.

Location Height (cm) Sensor (s) Positions Number of Larvae

1 35 BMA400 Inside, Outside 4

2 20 BMA400 Outside 2

4.1.2. Performance Metrics

The objective of this experimental study is to investigate the possibility of extracting signatures of
the infestation of the red palm weevil insect from the data collected in the previously described
experimental scenarios. For this purpose, we have analyzed the collected data using different
techniques, namely signal processing methods, and statistical methods. In what follows, we present
the metrics of interest.

• Signal processing techniques: We used two approaches. The Fast Fourier Transform (FFT),
which converts a time series from the time domain to the frequency domain. The objective of
this technique is to investigate if the infestation of the palm would lead to different frequencies
than in the case of a non-infested palm. Data were sampled at 100Hz. The second approach is
the estimation of Power Spectral Density (PSD) using Welch’s method, which is also sampled at
100Hz and 2048-length for each segment. Hanning window was applied on both FFT and PSD to
reduce leakage. The average value of the magnitude peaks is calculated based on the normalized
threshold equal to 0.6 to evaluate both FFT and PSD plots.

• Statistical techniques: For the statistical techniques, we have considered the box-plot
representation, which summarizes six statistical values, namely the maximum and minimum
of all the values, the median value, the standard deviation, and the 25% and 75% percentiles.
We have also considered the cumulative distribution functions and compared them against each
other for different scenarios. Moreover, we have studied the Histogram representation, which
provides the implicit distribution of the datasets.

4.2. Results Analysis

In this section, we analyze the collected data using signal processing techniques and statistical
techniques. We consider the two cases where the sensors are deployed outside of the tree, and the case
where the sensors are deployed inside the tree. The data values were split to hours approximately
(instead of days) since RPWs cause minor changes on accelerometer readings, which make their
signatures harder to observe in very large datasets. Data were collected for the first six hours. The plots
were based on the combined acceleration through the X, Y, and Z axes all together (magnitudes).
We considered the combined acceleration because all axes contribute to the detection process and it is
independent of the placement of the sensor.

4.2.1. Signal Processing Techniques

Time series for outside and inside sensors are shown in Figures 9 and 10, where y-axis is magnitude
value and x-axis is the index (data order in the six hours). The time domain does allow us to observe
the signature easily, which is why we use signal processing and statistical techniques to analyze
the collected data.

By applying the FFT technique, the data for the outside and the inside sensors are shown
in Figures 11 and 12, respectively along with peaks average difference (between after, and before
infestation). We can observe that when the sensor is placed inside the tree, the signature of the insect is
more observable in the FFT plots as compared to outside sensor placement. In the case of the inside
sensor, it is clear that most of the FFT values remain lower than 0.004 before infestation, whereas they
become higher than this threshold after infestation.
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Figure 9. Time domain plot for data collected from outside sensor before and after inserting Red Palm
Weevils through hours.

Figure 10. Time domain plot for data collected from inside sensor before and after inserting Red Palm
Weevils through hours.

By applying the PSD technique, Figures 13 and 14 show the data for outside, and inside sensors,
respectively, through hours along with peaks average difference (between after, and before infestation)
(PAD) for the whole data values. The first 10 frequencies (0Hz–10Hz) were plotted since RPWs
movements are difficult to detect at high frequencies (more than 10Hz). First, for the outside sensor
figure, we can find that PSD has very small values as compared to those of the inside sensor data.
Also, the outside sensor mean peaks differences fluctuate for before and after infestation. However,
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the PSD of the inside sensor placement shows a clear difference in the signal between the case before
infestation and the case after infestation.

Figure 11. FFT Frequency domain plot for data collected from outside sensor before and after inserting
Red Palm Weevils through hours.

Figure 12. FFT Frequency domain plot for data collected from inside sensor before and after inserting
Red Palm Weevils through hours.
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Figure 13. PSD Frequency domain plot for data collected from outside sensor before and after inserting
Red Palm Weevils through hours.

We can conclude from these two observations that outside sensor placement is more prone to
external environment noise as compared to the inside sensor placement; Therefore, the inside sensor
placement allows us to find RPWs signature more clearly. Also, In the inside sensor placement, we can
find that PSD values for data collected after infestation are much larger than data collected before
infestation, and the RPW signature can be seen easily in Figure 14.

Figure 14. PSD Frequency domain plot for data collected from inside sensor before and after inserting
Red Palm Weevils through hours.



Agronomy 2020, 10, 987 15 of 21

4.2.2. Statistical Techniques

In this section, we present the results of the statistical analysis of the collected data. We first
start by analyzing the statistical properties through box plots, then by comparing the cumulative
distribution functions of the collected data before and after the insertion of red palm weevil. Table 3
summarizes the central tendency and the shape of distribution for all datasets.

Table 3. Measures of Central Tendency.

Data-Set Sample
Size Mean Standard

Deviation Median Minimum 25th
Percentile

50th
Percentile

75th
Percentile Maximum Duration

(in Minutes)

Outside sensor
before insertion 28,299 10.04 0.06 10.04 9.77 10.00 10.04 10.08 10.27 60

Outside sensor
after insertion 18,712 10.08 0.06 10.08 9.82 10.04 10.08 10.12 10.28 60

Inside sensor
before insertion 24,077 9.74 0.25 9.73 8.29 9.58 9.73 9.89 11.67 60

Inside sensor
after insertion 17,614 9.94 0.37 9.93 8.20 9.71 9.93 10.15 12.64 60

Statistical Measures

We collected data before and after infestation using outside and inside sensors. Figures 15 and 16
present the box plots corresponding to the collected data for outside and inside sensors for one
hour respectively.

We can observe that for any sensor placement, the mean and the variance of the infestation use
case is larger than the case of no infestation. This is due to a more signal variation of the time series due
to the acceleration induced by the motion of the insect. In the case before infestation, both the mean
and the median are equal at 10.04, which indicates that the distribution is symmetric. However,
in the case after infestation, we can notice how the outliers have more variety in their values. Moreover,
they are much similar in case of equality between the median and the mean, with a 0.04 increase,
to become 10.08.

On the other hand, the data collected from the inside sensor (see Figure 16) has noticeable results.
The subtraction between the maximum value (Third Quartile value + 1.5*IQR) and the minimum
value (First Quartile value-1.5*IQR) for the case before the infestation is 1.2169, but for the case after
the infestation has increased to 1.7720. After all, relying on the difference between maximum and
minimum seems like a promising conceivable result.

Figure 15. Box-plot graph for the outside sensor, before and after infestation for the first hour.
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Figure 16. Box-plot graph for the inside sensor, before and after infestation for the first hour.

Probability Distributions

Figures 17 and 18 demonstrate the Histogram graphs for inside sensor and outside sensor for six
consecutive hours. We experimented with the datasets using a different number of bins. We found out
that 50 bins are more suitable to use.

It is clear that the distribution of data follows a Gaussian distribution for both the inside and
the outside sensor placements. However, we can observe that after infestation, the bell-shape of
the normal distribution becomes more spread as compared to before the infestation case. This is
reasonable as data has more variation in case of infestation due to the insect motion, and thus
the variance is more significant. This is even confirmed in the results of Table 3. Also, we can observe
that the peak values are shifted to the right in the case of infestation as the mean is larger.

The results are consistent for all the observation windows in the six plots, where each plot
represents one hour of the time window, as mentioned.

Figure 17. Histogram representation for the outside sensor, before and after inserting the RPWs for
the first six hours.
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Figure 18. Histogram representation for the inside sensor, before and after inserting the RPWs for
the first six hours.

Cumulative Distribution Functions

Figures 19 and 20 present the Cumulative Distribution Function (CDF) for both outside and
inside sensors only for the first hour. The results confirm those of the probability distribution since
the CDF before infestation and after the infestation is different. The after-infestation CDFs are lower
than the before infestation CDF. This is because the data has more variance after infestation.

Figure 19. Cumulative Distribution Function for the outside sensor, before and after inserting the RPWs
for the first hour.
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Figure 20. Cumulative Distribution Function for the inside sensor, before and after inserting the RPWs
for the first hour.

4.3. Lessons Learned

In the end, we conclude that the accelerometer sensor is useful in the early detection of the red
palm weevil infestation in palm trees. Our initial results confirm the possibility of finding a clear
signature of the infestation using both signal processing and statistical techniques. The results of
the inside sensor placement seem to be more robust than those of the outside placement, very likely
due to more immunity against external noises. It is recommended to develop a conic metallic material
that can be inserted well inside the palm tree and gets attached to an accelerometer and vibration
sensor to be able to improve the features of the infestation signals. Moreover, the IoT system that is
developed in the context of this project provides a full-stack prototype for the real-time monitoring of
palms trees, which, combined with signal processing results of the infestation, contributes uniquely to
early detection of infestations.

5. Conclusions

In this paper, we proposed SmartPalm, an integrated Internet-of-Things system for the monitoring
of palm trees’ farms, and the early detection of the red palm weevil. We presented the system
architecture, and we implemented it using the IoT platform of Elm company. SmartPalm provides
the farmers with an effective means to monitor and manage their palm tree farms. Moreover,
using advanced signal processing and probabilistic methods techniques, the system allows detecting
with accuracy the infestation of the palm tree with the red palm weevil. The system was deployed on
a real-palm tree, and results were validated.

There are several challenges in what concerns the research on the red palm weevil. The most
critical challenge is the finding of a proper sensor that can identify with accuracy the activity of the red
palm weevil. Although there are a few solutions in the market, there is still a need to investigate more
robust and reliable sensing technologies. Furthermore, the filtering of the signal and the extraction
of useful data from the noise is another challenge. One attractive research area is to apply machine
learning and deep learning models for the analysis of the activity signal and its classification. However,
these approaches require the collection of a considerable amount of data, which is quite challenging.

We are currently working on extending the SmartPalm system in several ways for the sake of its
commercialization. First, we are making further investigations on developing additional sensors for
the early detection of red palm weevil based on acoustic signals and chemical signals. The chemical
sensor is aimed to detect the pheromone odor of the red palm weevil. Furthermore, we aim at
investigating the use of the multi-spectral camera with Internet-connected drones (e.g., [34–36]) for
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the health monitoring of the palm trees, and their counting and geolocation [37]. We are also looking
at securing the communication at the sensor level by using encryption and authentication of the sensor
data [38] to avoid security threats and attacks.
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