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Abstract: New needs have arisen from member states and paying agencies (PA) to achieve the
compliance assessment from farmers in the frame of the European Common Agricultural Policy
(CAP). Traditional field inspection (on-the-spot checks) and computer-aided photointerpretation
(CAPI) carried out by each PA over a sample of 5% of the applicants are being replaced by a 100%
sample Copernicus satellite-based system (checks by monitoring, CbM). This new approach will be
an integral part of the Area Monitoring System that will be part of the Integrated Administrative
Control System (IACS) in the post-2020 CAP. Among all the aid schemes having to be analyzed,
there are some specific aids in which the detection of irrigation of certain crops can result in a no-
compliance resolution. Apart from that, the knowledge of the truly irrigated area in each campaign
has always been data of great interest in irrigation planning, crop yield statistics, and water
management, and now more than ever. Although several sources of information exist, there is no
consensual methodology for estimating the actual irrigated area. The objective of this study is to
propose a methodological approach based mainly on Copernicus Sentinel and IACS data not only
to detect the surface of herbaceous crops that have been actually irrigated but also to derive a
product suitable to be incorporated into the CAP monitoring process system. This methodology is
already being used operationally during the ongoing campaign 2020 by Castile and Leén PA.

Keywords: CAP monitoring; checks by monitoring; crop classification maps; irrigation detection;
irrigated crops area estimation; remote sensing; Sentinel-2 images; supervised learning

1. Introduction

As of 22 May 2018, the European Commission (EC) adopted new rules [1] as a movement to
simplify and modernize the EU’s Common Agricultural Policy (CAP) allowing for the first time the
usage of a range of modern technologies when carrying out checks for CAP payments. Particularly,
these new rules enable data from the EU’s Copernicus Sentinel satellites and other Earth Observation
(EO) platforms to be used as evidence when checking farmers’ fulfillment of requirements under the
CAP for area-based payments, either direct payments to farmers from European agricultural
guarantee fund (first pillar of the CAP) or rural development support payments (second pillar of the
CAP). This includes the possibility to completely replace physical checks on farms, the so-called on-
the-spot Check (OTSC), with an automatic-check system based on EO data analysis. It is worth noting
that this OTSC system only checks 5% of the dossiers randomly selected from the whole of applicants,
either with field visits or computer-aided photointerpretation (CAPI). Opposite to this resource and
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budget consuming procedure is the capability of monitoring almost 100% of the dossiers by means
of what have been called Checks by Monitoring (CbM). This new procedure not only should support
the control of those area-based payments but also the cross-compliance requirements, which set
environmental and other commitments that farmers must address to receive subsidies. The new CAP
paradigm requires the competent authorities, member state, or paying agency (PA), to develop a
system to gradually substitute the current OTSC system with the new control by monitoring
procedure by phase-in CbM. This transition period or phase-in period should be limited in time to
ensure equal treatment of beneficiaries [1].

In this context, the PA of Castile and Ledn (Spain) has been involved since the very beginning
of the setting out of the new CAP monitoring approach, in 2018. Therefore, a new system of controls
has been set to be applied to the main aid lines from the first pillar of the CAP in which irrigation is
not a determining factor, such as basic payment subsidies (BPS) and its derivates, Young Farmers
Scheme, Greening, and all Voluntary Coupled Support schemes. In all, it addressed eight first pillar
schemes in 2019. This meant that in Castile and Leon over 5000 holdings covering almost 340,000 ha
were checked by monitoring, which turned out that more than 63 million euros were paid to farmers
in the phase-in area thanks to CbM. This first experiment was large enough to draw conclusions for
next year.

Among other products and strategies, one of the key base information layers on which this
system relies on is the Castile and Leon crops and natural land map (MCSNCyL, Spanish acronym)
which is a land cover layer, updated twice a year, at the middle of the agricultural campaign, in July,
and, at the end of the campaign, in October [2]. The project began in 2013, and since then, layers have
been generated annually from 2011 to 2019. From 2017 on, this regional land cover map is generated
with 10 m ground sampling distance (GSD) spatial resolution, thanks to the pair of satellites S-2A
and S-2B of the constellation Sentinel within the Copernicus program. This spatial resolution is
optimal for agricultural land monitoring since it has been reported that fine spatial resolutions of 10—
30 m are ideal for regional-scale monitoring purposes [3]. Recently, there have been several studies
proving its good performance of using Integrated Administrative Control System (IACS) data for
crop type mapping [4]. There are other sources to extract the crop type information, such as the global
ESA-CCI Land Cover product which distinguishes irrigated cropland or post-flooding areas [5].
Unfortunately, their spatial resolution is far from being convenient for this purpose since its spatial
resolution of 300 m GSD is so coarse that it is ineffective for agricultural monitoring at parcel level.
Using the ESA-CCI crop map to identify irrigation, most of the plots smaller than 9 ha would be
ignored, which account for over 95% of all agricultural plots in Castile and Ledn, where the average
plot is 2.4 ha. Other global irrigation datasets are the United Nations Food and Agricultural
Organization (FAO) and Rheinische Friedrich-Wilhelms—-University deriving Global Map of
Irrigation Areas version 5 [6] with a spatial resolution of 7 km in this area, and the Global Irrigated
Areas Mapping from Institute Water Management Institute (IWMI) at 750 m spatial resolution [7].

In contrast, the MCSNCyL can detect plots greater than 0.01 ha, thus most of the plots in the
region can be identified. The overall accuracy achieved and that obtained in each crop category
considered in this crop map [8] were highly acceptable and enables it to be used in the crop
identification to determine whether the declared crop was reliable or not. This has been demonstrated
after the first experience using CbM in the region over the phase-in area. As an extra validation
process, field visits were carried out to verify the grade of reliability and the result was also successful
(not shown here) and proved that this regional crop map met some of the basic requirements for the
CAP control system, such as crop type identification, agricultural activity control or crop
diversification assessment.

However, following the EC regulations regards to phase-in period [1] the aids control system in
Castile and Ledn should gradually keep on developing towards the control aids in the second pillar
of the CAP (rural development policy). This type of aids implies the need to establish a system that
allows determining if the plots are actually irrigated since some of these lines establish limitations in
relation to the use of water. In addition, the cross-compliance of the CAP (a set of basic rules that
farmers must respect in order to receive EU income support), which until now has not been subject
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to monitoring controls, also implies that irrigation should be carried out only in plots that have rights
to do so. Cross-compliance fulfillment control is expected to be addressed also in the near future.
Thus, any support offered to the decision-making system in terms of irrigation identification is going
to be an essential part of the Area Monitoring System with the current regulation and especially with
the new CAP post-2020.

Thus, under this background, it is necessary to study and assess different methodological
approaches to offer a product that distinguishes irrigated plots from the non-irrigated ones. To
achieve this objective, in this study two strategies are presented, assessed, and discussed in order to
offer a solution in the first place to our own PA, and in second place to the rest of the interested
community, other PAs, and stakeholders.

The importance of the implementation of a methodology to detect irrigated crops also lies in the
current limitation of knowing the cropland area actually irrigated [9], as well as its annual variation,
particularly with regards to herbaceous or arable crops. Based on our experience in CAP controls, the
data recorded in the farmers” aid application forms are related mainly to the possibility to irrigate
that parcel, regardless of the actual regimen of the current crop in the plot. For this reason, the study
presented here provides information of great interest not only for the future CbM, but also for
irrigation planning and modernization, crop yield statistics, and water management. The irrigated
area estimation and identification of irrigated crops have been the subject of numerous research
works [10-12] precisely because of the importance of having as much knowledge as possible of the
use of water in an increasingly water-scarce world. Therefore, the ultimate goal to be achieved is to
have a better understanding of the use of water for agriculture in our region and thus be able to
achieve the objectives proposed by the European guidelines for more efficient agriculture and
sustainable water resources.

Given the relevance of this issue, in the last decade, several studies have addressed this issue
and have proposed different methodologies to map and monitoring irrigated areas using remote
sensing data. Ambika et al. (2016) [11] developed annual irrigated area maps at a spatial resolution
of 250 m for the period of 20002015 in India using the normalized difference vegetation index
(NDVI) data from the moderate resolution imaging spectroradiometer (MODIS). Vogels et al. (2019)
[13] proposed a methodology with a semi-automatic classification using image segmentation and
variables such as shape, texture, neighbor, and location apart from commonly used spectral variables
obtaining excellent results over a small area (669 km?), but requiring visual interpretation to label the
training and validation dataset. The extent of our study area is 140 times larger than that, and visual
interpretation is not feasible for operational classification over such a large area. More recently, there
has been a plethora of works addressing this issue [13-17]. A special interest has been focusing on
radar data, especially on Sentinel-1 or the synergy between Sentinel-1 and Sentinel-2 to propose more
methodological approaches to detect irrigated areas [15-17].

However, what the checks by monitoring require is a methodology to assess the regular or
continuous irrigation on a certain plot, or the probability of having been watered at some point
during the development of the crop, by means of an automatic classification without any visual
interpretation, since the vast extension we need to address it would be a very time-consuming data
preparation process. Timing is a key point to consider if we want to check farmer’s applications on
the ongoing agricultural campaign. Besides, the average size of an agricultural plot in Castile and
Ledn is about 2.4 ha, thus we need a resulting map with a fine spatial resolution over 20 m GSD to
have a minimum quantity of pixels per plot, which also allows us to know its intra-parcel variability
to let us detect no irrigation, homogeneous irrigation, or occasional irrigation.

Considering the above, in 2019 it was carried out a work to investigate if the traditional
methodology employed to elaborate annually the MCSNCyL was also suitable to detect herbaceous
irrigated crops. This research gave, as a result, a work presented in the Congress of the Spanish
Association of Remote Sensing in 2019 [18]. In this work, the performance of the MCSNCyL approach
for detecting irrigated agriculture was assessed obtaining very satisfactory accuracies. As examples,
the ranges of F-score values obtained in the four irrigated crops with the most dedicated area in
Castilla y Ledn were (96.8-98.2), (62.7-77.8), (76.7-84.9), and (92.3-94.9), for maize, irrigated wheat,



Agronomy 2020, 10, 867 4 of 23

irrigated alfalfa, and sugar beet, respectively, during 2016, 2017, and 2018. Thus, it was proved that
our method based on a decision tree algorithm and IACS data as reference data gave very accurate
results for detecting irrigated agriculture over a national-scale area and even considering more than
one hundred of land cover classes. It is reasonable to presume that, if the number of classes detected
was decreased or the study area was smaller, the accuracy measures would be even higher. We also
researched this assumption in 2019, but the results were never disseminated. That year, the CAP
monitoring system designed in Castile and Leén was expected to check farmer’s applications in a
phase-in area covering 8239 km?, because our region was one of the 15 regions committed to carrying
out the checks by monitoring from 2019 onwards. Thus, the same classification method was applied
in the phase-in area, but only addressing 37 classes in order to improve the final accuracy. The overall
accuracy and kappa index obtained were 94.60% and 0.93, respectively, in the phase-in area.
Therefore, the MCSNCyL methodology with a reduced number of classes could meet the need for
detecting irrigated cropland in order to support the checks by monitoring. However, this new
approach of the traditional methodology would have a constrain regards to the minority crops that
are not represented within the 37 classes directly derived from MCSNCyL 2019, and so, they will not
be detected as irrigated, if necessary. That was the starting point to consider that it would be more
convenient to get a binary classification map, where there were not land cover classes, but rather a
pixel identification as irrigated or rainfed. That way, it would be possible to detect irrigated pixels in
any land cover if full or partial watering had been applied. Ambika et al. (2016) [11] derived irrigated
area maps according to agroecological zones using the NDVI threshold with satisfactory accuracies
since Ozdogan, et al. (2008) [10] previously had demonstrated that the NDVI threshold approach was
promising for identifying irrigated areas. Therefore, we consider including in the methodology a
variable determining different agroclimatic areas in order to consider that crops show phenological
differences depending on which agroclimatic area they are developed. We also include in both
approaches the NDVI images on certain key dates.

Therefore, the main aim of this study is to present a new variant derived from the MCSNCyL
methodology to obtain the regional crop map [18] which provides us with irrigated binary maps.
This new approach uses the same classifier, reference data, and satellite images. The difference
between them is the ancillary data and the classes definition. The reference data for irrigated crop
maps will require to reclass the very detailed legend with more than one hundred classes to just two:
irrigated or not irrigated class. The comparison of the results of the two variants of the same
methodology (aland cover map of 121 classes versus a binary irrigation map) to detect irrigated crops
in Castile and Leén will be analyzed to determine which one is more convenient to be implemented
in the checks by monitoring in the phase-in area of Castile and Leon. Besides, a detailed
implementation methodology to include the irrigated binary maps results into the CAP monitoring
system will be described in order to let it be operational in this ongoing year 2020.

2. Materials and Methods

2.1. Different Methodological Strategies Tested

As was mentioned in the introduction, in this study two approaches derived from the same
methodology [2,18] are tested to assess the irrigation in each declared plot by farmers in the CAP
subsidy application.

e High detailed thematic map (HDTM) including irrigated and/or rainfed crop classes: It
distinguishes 121 land cover classes, including 45 specific crop types. The list and descriptions
of these classes can be found in Table A3 of Appendix A.

e Irrigation binary map (IBM): This map only has two categories showing irrigated or non-
irrigated pixels.

The core of the methodology used is based on the US crop data layer [19] and the US National
Land Cover Database (NLCD). This product takes advantage of supervised classification systems
based on machine learning algorithms with huge amounts of satellite images. Machine learning
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allows computers to become more accurate in predicting outcomes without explicit programming,
using algorithms that iteratively learn from data. At its core, machine learning is the process of
automatically discovering patterns in data. In particular, the decision trees algorithm used here has
proved to be efficient for land cover classification [20]. This methodology [19] originated the
MCSNCyL project [2] which is a dynamic and public operational service since 2013 that produces a
land cover layer twice a year, a provisional version in July and a definitive and more accurate version
at the end of each year. All annual products generated from 2011 are published on the ITACyL
website [2] where a data viewer exists to retrieve the information and to allow the download printable
high-resolution maps and the raw data to let expert users handle these data.

2.2. Study Area

The study area covers the whole region of Castile and Leén (Spain). This region is in southern
Europe (Figure 1a) and has an extent of 94,224 km?, representing one fifth of the total area of Spain.
It consists mainly of a dry and wide basin defined by the Duero river and its contributors with an
average altitude of 800 m, surrounded by mountains.
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Figure 1. (a) Geographical location of the region of Castile and Leon in Europe; (b) Digital Elevation
Model (DEM) of the study area. Coordinate system: ETRS89 UTM Zone 30 N.

The territory is composed mainly of areas of extensive herbaceous crops or natural vegetation.
Most of the arable land (55,000 km?) is located in the center of the basin (Figure 1b), where rain
averages 500 mm per year. Dryland farming is based in winter crops such as cereals, namely wheat
or barley, and also forage. Ten percent of the arable land is irrigated in summer with water stored in
reservoirs. The main irrigated crops are maize, barley, wheat, sugar beet, alfalfa, and potato. Among
permanent crops, vineyards are the most important.

2.3. Data

The data sources have been divided into three groups: Satellite images, representing the core of
the independent variables in the machine learning for both strategies, NDVI images, and ancillary
data which are different in each approach.

2.3.1. Satellite Imagery

The Copernicus program of the EC with its implementation of a free and open access policy for
the Sentinel data provides an excellent opportunity for the scientific community and public
administration to develop a plethora of products to support them in a lot of issues. Specifically, the
fine spatial resolution of the Sentinel-2 optical sensors ranging from 10 to 60 m and its 5 days revisit
time with Sentinel 2A and 2B satellites combined, allow us to generate land cover maps with 10m
GSD. Sentinel-2A and Sentinel-2B are a constellation of two identical optical sensors with 13 spectral
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bands. The Sentinel-2 images used in this work are the Level-2A products that are atmospherically
corrected using Sen2Cor processor and provide bottom of atmosphere (BOA) reflectance in
cartographic geometry. These products are currently processed by ESA and have been downloaded
from the Copernicus Open Access Hub (https://scihub.copernicus.eu/).

Processing large amounts of images such as the Sentinel-2 archive is a computationally
demanding task. The European Space Agency (ESA) provides the Sentinel-2 L2A images in 100 x 100
km tiles. There are three Sentinel-2 orbits: R037, R137, and R094 containing 33 tiles covering the
Castile and Leon region (Figure 2). The total amount of available images covering the whole study
area from January 2019 until September 2019 was 1797 tiles, although only approximately 50% of
them were completely downloaded, accounting for over 1.5 TB of data used in the study. Table 1
summarizes the orbit and number of tiles used in this study

Due to the large extension of the study area, we opt for creating relatively cloud-free images
composite of each orbit and date instead of a composite with tiles from the 3 orbits and different
dates. The selection criteria for optimal images to create the composites were based on the analysis
of the metadata of all the granules that cover the study area in each orbit. When most of the tiles
included in each orbit and day have less than 25% cloud cover, the tiles are downloaded and the
composite is generated. Due to the need to have images over the whole region covering the period of
maximum interest of all crops in order to facilitate their classification, some image composite per
orbit may slightly exceed the cloud cover threshold established by including granules with more
clouds than desired.
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Figure 2. (a) All Sentinel-2 granules covering Castile and Ledn (94,224 km?). (b) Sentinel-2 orbits over
the study area: R037, R137, and R094.

Table 1. Sentinel-2A and Sentinel-2B images available and downloaded covering the study area.

Relative Orbit Tiles Covering CyL Total Tiles Available Tiles Downloaded

R0O37 10 540 290
R094 8 432 192
R137 15 825 420
Total 33 1797 902

For this study, 81 Sentinel-2 tiles composite per orbit and day images were processed, 40 from
Sentinel-2A and 41 from Sentinel-2B. The selection of the bands was carried out one year before by
means of a sensibility analysis of different band combinations and the accuracy of the resulting land
cover map considering all land cover classes (more than one hundred). The relevance of each band
as an independent variable in the classifier was determined by assessing the resulting files of the See
5 Classifier process, where there is information letting us know how each individual band contributes
to the classifier. Thus, a multiband image with 6 bands (B2-B4-B8-B5-B11-B12) was generated after
processing each original L2A Sentinel image. The spectral region of blue, red, and near-infrared (NIR)
corresponding to bands B2 (490 nm), B4 (665 nm), and B8 (842 nm) have a spatial resolution of 10 m
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but the spectral bands B5 (705 nm), B11 (1910 nm), and B12 (2190 nm) have 20 m, corresponding to
red-edge and shortwave-infrared (SWIR1 and SWIR?2) respectively. As the final maps to be generated
will be at 10 m GSD, a pan-sharpening process using a Geospatial Data Abstraction Library (GDAL)
script, in particular a bilinear resampling (gdal_pansharpen.py), was applied to the 20 m bands to
convert them into 10 m. First, we created a reference image from the 10 m bands B04 and B0S, to use
it as it was a panchromatic band. Afterward, we resampled the 20 m bands to 10 m on the basis of
this previously created reference image. Note that only the 20 m bands B05, B11, and B12 are used in
this study.

Concerning the number of images, as a rule of thumb, we recommend disposing of at least one
cloud-free image per month for every orbit composite to be included. That way, we were able to have
enough spectral information to detect the phenological changes in the crops during the agricultural
campaign.

NDVI Images

Numerous studies have included vegetation indexes into land cover classification [4,10,11,13—
17,21]. Regarding the detection of irrigated crops and areas, six NDVI composite images have been
created to be included as independent variables in the classifier. NDVIimages were computed using
the GDAL script (gdal_calc.py) from the 10 m Sentinel-2 bands B04 and B08. Actually, two relevant
dates to distinguish irrigated crops in our region have been carefully selected according to the orbit
composite availability and that the three selected orbit composites for the same date were cloud-free.
The dates of the images selected are shown in Table 2. The first date had to be around the end of
March and the second date at the beginning of June. With both NDVI dates the differences given in
the NDVI peak value in winter crops irrigated and non-irrigated are evidenced, as illustrated in
Figure 3 where the histogram of NDVI values of irrigated pixels are compared to rainfed pixels in the
R137 orbit image on two different dates, 23th March and 1st June, for two representative crops in the
region, barley and alfalfa. The summer crops in our region are mostly or even exclusively cultivated
in irrigation regime. Besides, in the first approach, six out of the seven crop classes with irrigation
discrimination are winter crops, except sunflower.

Table 2. Dates of the NDVI (Normalized Difference Vegetation Index) mosaicked images generated.

R037 R137 R094
Middle growing season 26-mar.-2019  23-mar.-2019  30-mar.-2019
Ending growing season 30-may-2019 14§un.-2019 3-jun.-2019
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Figure 3. Histogram of NDVI (Normalized Difference Vegetation Index) values of irrigated (in green)
and non-irrigated (in yellow) crops. The two right-hand figures showing Alfalfa values, and on the
left hand are the figures depicting barley values. There are two different dates illustrated: 23rd March
(upper plots) and 1st June (lower plot).

2.3.2. Ancillary Data

Besides satellite imagery, it is possible and advisable to include more ancillary data in order to
aid the classification algorithm to determine the class properly. These datasets constitute a
complement and most of them might be available with the pan-European Copernicus land services.
These data are considered very stable and therefore could be used for the ongoing year. However,
since we have access to a lot of regional datasets with high-quality and updated information, we do
not need to use external sources.

We used the following complementary data in the first approach to generate the HDTM:

e Land cover class information from Spanish Land Parcel Information System (LPIS) for each
ongoing year.

e Digital Elevation Model (DEM) and its derivate Slopes and Aspect.

e Averaged precipitation map (over the last 30-year period, 1981-2010).

e Vegetation height and canopy cover fraction layers derived from LIDAR (Light detection and
ranging). This dataset is available at the local level and improves considerably in the forest and
natural vegetation discrimination. Therefore, for crop class discrimination, it is complementary
but absolutely dispensable.

On the other hand, the following ancillary data are employed to derive the IBM:

e  Regional crops and natural land map for the studied year, in this case, the MCSNCyL of 2019
(2].

e C(Castile and Ledén agroclimatic zoning derived from 3 variables related to accumulated
precipitation at key periods of phenological development of winter and summer crops, that is,
in spring and summer, and with the average temperature of the warmest month. Four different
zones have been obtained, zones with a value equal to 1, those with the highest precipitation in
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spring and summer and milder temperatures during July, and zones with a value of 4 that
receive less precipitation and have higher temperatures during July.

2.3.3. Reference Data

IACS database containing CAP farmers’ applications is the keystone from which we obtain the
reference data for our crop classification system. From 2017 on, the farmers make their application
claims by means of the Geo-Spatial Aid Application (GSAA) allowing the administration to get
directly the geographical features with alphanumerical associated information. This database is
compiled by the local PA and contains an invaluable source of training cases for crop identification
due to the degree of detail and the truth contained in farmers’ applications regarding the declared
crop. Thus, this database is a perfect reference dataset for a crop map classification. GSAA also
includes an attribute about the nature of the water availability (irrigated or rainfed) in the parcel. This
data could be considered more as an attribute regarding the right to use the water than an actual sign
of water allocation within the parcel during that campaign.

The GSAA is the geographical farmer’s declaration based on cadastral references, which means
that these GSAA does not fit exactly with the agricultural plots. Thus, from these GSAA containing
the required crop type information, a preprocessing has been done to merge those GSAA belonging
to the same holding and declaring the same crop. That way, we work with minimum management
units as similar as possible to the agricultural parcels on the land. These new entities are the features
of interest (FOIs) and are the reference data where the training cases are extracted from.

Concerning irrigated crops, rigorous filtering from all FOIs declared has been done in order to
select the most reliable training cases. This selection is carried out thanks to two complementary
sources of information, the Spanish LPIS (SIGPAC) and a shapefile of irrigation districts provided by
the Spanish part of the Duero River Basin Authority. LPIS provides us information about the
irrigation coefficient (IC) of each parcel ranging from 0% to 100%, meaning the percentage of the plot
that is actually irrigated. The vectorial layer of irrigation districts tells us what areas have good
infrastructure and cheap water allocation. This only implies that a crop cultivated there is more likely
to be irrigated but not that it was actually irrigated. On one hand, we assure that all FOIs declared as
irrigated for the CAP subsidies are actually irrigated when they have been assigned an IC of 100%
and are located within an irrigation district. As opposed, concerning the selection of rainfed crop
training cases, only those with an IC of 0% were candidates. Besides, we only select those plots located
at least 2 km away from an irrigable area to make sure that the parcels are more likely to be without
irrigation structures.

Regarding natural and semi-natural land cover cases, they have been provided by regional
public administration responsible for natural resources management and control (Direccion General
del Medio Natural). As for forest types they rely on two data sources: the Spanish National Forest
Inventory plots (except for Populus spp., Pinus radiata, Eucalyptus spp., Castanea sativa, and Quercus
robur, for which we have generated training datasets manually with aerial photography and ancillary
information), and LIDAR data.

In the first highly detailed regional land cover layer obtained, there are seven crop classes that
can appear in both regimes, irrigation and rainfed. The remaining of the crop classes can only be
presented in one of the systems either irrigated or rainfed. For training cases in the binary
classification, the latter reference data were reclassified into just two categories, irrigated or not
irrigated.

2.4. Classification Algorithm

The classification has been performed using a pixel-based approach. This classification is carried
out by using the data-mining tool C5.0, distributed freely under the GNU General Public License
(GPL) [22]. This C5.0 is an improvement on the previous C4.5 algorithm used to generate decision
trees from a set of reference data.

Before using this algorithm, it is necessary to randomly sample the reference data to obtain the
training pixels on which the creation of decision trees will be based on. This step has been done with
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the NLCD sampling tool implemented in ERDAS imagine 2018 [23]. By this tool, we select a random
and stratified sample from the reference dataset that will be the training cases and set aside a smaller
sample of the remaining reference data to validate internally the decision tree creation process. The
amount or percentage of cases/pixels used by the algorithm and the internal test cases are predefined
by the user in the NLCD tool. In this study, we set 560,000 cases for training the classifier and 240,000
for internal validation of the model, establishing a minimum number of samples per class to 2000
cases. Afterward, the algorithm C5.0 is run on a Linux terminal and needs to set some parameters
before being run in order to customize the process of decision tree creation. The setting is established
to acquire a boosted classifier using tests that require two branches with at least two cases implied
and with a pruning confidence level of 25% preventing the overfitting of the decision tree learning
algorithm. Once this step is finished, the final generated decision trees are applied to all pixels of
every satellite images and ancillary data, obtaining the land cover classification of the whole region
in a unique step. The final image classification using the previously created decision trees has been
done using the See Classifier tool of the NLCD plugin incorporated in ERDAS.

Postprocessing

Normally several postprocessing steps take place after classification in order to provide a more
easily interpretable map: simplify (grouping) the mapped classes if required due to accuracy
problems and crop identification requirements and elimination of speckle artifacts, or the “salt and
pepper,” an effect common to pixel-based classifications of fine spatial resolution imagery. The
procedure is carried out using the sieve command from GDAL. For this study, the original version
without grouping has been issued for the highly detailed land cover map in order to assess the ability
to detect irrigated croplands versus the irrigation binary maps.

2.5. Classification Accuracy Assessment

In order to assess the performance of the two approaches studied in this work and to have some
knowledge about how much confidence each one provides, the same dataset is required for the
validation process of both approaches. This dataset belongs to the same reference data gathered from
IACS data, the only caveat being that it must not be involved in the learning process of the classifier.
Therefore, the training cases used for the classifier were discarded from the reference data, keeping
the rest of the data for validation. The resulting validation dataset covers over a million hectares,
which comprises over 10% of the whole region and almost 30% of the total arable cropland in Castile
and Leon. The nature of both approaches implies that the validation dataset should be postprocessing
to be able to validate the irrigated crop map. Thus, a reclassification process will be needed to make
it usable to validate the irrigation binary maps. Afterward, an independent validation was done by
comparing the predicted crop types or category (irrigated/non-irrigated in the case of binary maps)
with the known crops (or category) using the validation dataset. This validation process has been
carried out employing the module rkappa [24] including in Geographical Resources Analysis
Support System (GRASS) which is a free and open-source geographic information system (GIS)
software suitable for advanced management and analysis of geospatial data under the GNU GPL.
This module r.kappa computes the confusion matrix and returns accuracy measures obtained of
pixel-based classification in a plain text file, such as kappa coefficient [21,25] for overall and each class
and commission errors, a complement of the user’s accuracy (UA), and omission errors, a
complement of the producer’s accuracy (PA). UA (also called precision) evaluates how well the
predicted crops agree with the known reference data (i.e., the IACS field data), while PA (also called
recall) measures the agreement between the reference data and the prediction [4]. OA assesses the
overall performance of a model and is the ratio of correctly predicted crops and the total number of
predicted crops. We also compute the widely used F-score, which is the harmonic mean of UA and
PA.

The assessment of the high detailed thematic map with 121 classes brings us also class-specific
metrics. However, this map will be converted into a binary classification through a reclassification
process so that the results of both strategies are analogous and comparable. In the context of
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evaluating the precision of a binary classification with unbalanced classes (more rainfed pixels than
irrigated pixels in our case), a more suitable alternative metric has recently been proposed for these
cases, the Matthews correlation coefficient (MCC) [26]. It might be useful to consider the normalized
MCC, defined as nMCC (see Table 3), and linearly projecting the original range into the interval [0,1],
being value 0.5 the average value for the coin-tossing classifier, and 1 for perfect classifiers. Using
this latter measure, all metrics computed are comparable among them. All the accuracy metrics
calculated are depicted in Table 3.

Table 3. Summary of the confusion matrix obtained and other accuracy measures adopted.

Reference Data

Class Mapped 1 2 Row Sum
Precision/UA*
* * TP + FP
! B FP * TP/TP + FP
2 FN* TN* FN+TN
Col Sum TP +FN FP+TN TP+FP+FN+TN
Recall/PA*
S::;itévity Specificity Overall Accuracy
TP/TP + FN TN/FP+TN TP+TN/TP+FP+FN+TN
F1 score
2 X Precision X Recall/Precision + Recall
nMCC Matthews correlation coefficient (MCC)
MCC +1/2 TP X TN — FP X FN /(TP + FP)(TP + FN)(TN + FP)(TN + FN)

* TP = True Positives; FP = False Positives; FN = False Negatives; TN = True Negatives; UA = User’s Accuracy;
PA =Producer’s Accuracy

2.6. Implementing Process in the CAP Monitoring System

As was previously explained, the shift of the CAP controls towards the new paradigm of CbM
means that every parcel that claims any CAP subsidy has to be monitored and assessed in terms of
agriculture activity evidence [1]. Within the CbM framework, the concept of Marker has been
adopted. A Marker is a binary state of the monitored parcel that informs whether a certain
requirement for a subsidiary schema is accomplished or not. The combination of two or several
markers allows the CAP control system to make a judgment on the compliance of the parcel for that
schema. In this sense, the binary irrigation map generated in this work along with the S2 NDVI series
and the MCSNCyL [2], might be very useful to characterize a parcel in terms of decision about
presence/absence of crop, compatible vegetation development with the declared crop, or even
irrigation/no-irrigation activity as a novelty this year.

Besides the information derived from EO data, to perform the above-mentioned judgment, the
CAP control system needs the boundaries of the parcel in vector format which are provided by the
FOIs previously created along with the declared crop in the GSAA. Once all the FOIs within the
region boundaries (2,126,124) are inserted into the CAP control system database, all of them will be
intersected with the irrigation map selected as the best strategy. Several scripts in python programing
language have been developed to carry out the extraction of all this information and populate the
CAP control system database. The scripts made intensive use of specific libraries for geospatial
information managing such as gdal, rasterio, shapely, and fiona. Other libraries were also needed to
compute some statistics, these mainly were numpy, scipy, and pandas. Apart from the libraries
themselves, the scripts were developed to take advantage of all the available computer resources by
distributing the process over all the processors in the machine and to avoid memory overload that
could lead to a reduction in the performance.

In regards to the aim of creating a specific irrigation-based marker for each FOI, the information
required is going to be collected from the irrigation identification map proposed in this work.
Basically, it is the count of pixels belonging to each class (irrigated/non-irrigated) within the
boundaries of each FOI and the percentage that it represents over the overall counting. So, some
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conclusions are gathered about the potential of its use on a regional scale. Nonetheless, the final
decision to be made in the aid control system on whether or not a parcel is detected as irrigated using
this irrigated binary map will require further analysis. A certain threshold could be set for each crop,
after which each plot will be considered irrigated only if it exceeds that percentage of pixels detected
as irrigated. As an example, a table will show the percentage of plots of each declared crop that will
be considered irrigated depending on the threshold that was established. Nevertheless, the
application of that threshold might imply that an aid application was proposed to be amended by the
farmer, therefore how this decision should be taken by the competent authority is out of the scope of
this study. This work just focuses on proposing a tool to ease for them this complex final decision, in
which more factors, such as economical issue, might play a key role.

3. Results

3.1. Assessment of the HDTM: Highly Detailed Thematic Map Including Irrigation Discrimination

The overall accuracy obtained in the first approach (HDTM) was 87.13% and a kappa coefficient
of 0.85 (see Appendix A Table A1) considering a great number of land cover classes, 121 land cover
classes, including 44 crops: 19 rainfed arable crops, 21 irrigated arable crops, and 4 permanent crops.
For the sake of a better visualization in Figure 4 the classes are depicted grouped into the main land
cover types.
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inigated Crops [N Fruit rees % e g
Rockyareas [ Foresta - . u —
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Figure 4. Crop and natural land classification map over the study area of Castile and Leén for 2019
obtained with the Highly Detailed Thematic Map (HDTM). A reduction in the legend classes has been
applied for better visualization of the main land cover classes grouped. (a) Detail of a large irrigated
area dedicated mainly to maize in Ledn province. (b) Detail of a predominately rainfed area
dominated by winter cereals, such as barley, but where some irrigated field can be detected (in blue).

The two more representative crop classes within the region are by far wheat and barley (see
Appendix A Table A2), representing more than half of the arable land of Castile and Ledn. Both
winter cereals obtained high-performance measures, an F-Score of 88.4 and 91.4, respectively, even
though both are very similar botanically and the phenology and life cycle of the two species were
basically similar. This is one of the key achievements of this map version since, in most of the
published works with crop types classification, there is not a distinction between these two similar
types of cereal [21,27] which are so important in a cereal area, such as Castile and Ledn. Another
milestone achieved in this approach is to be able to separate irrigated wheat and irrigated barley as
well as independent classes, among others, reached acceptable accuracies, F-score of 84.8 and 62.3,
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respectively. However, it is worthy to highlight that there is misclassification among winter cereals
are due to the same reason, for the similar botanic characteristics and phenology. In fact, it can be
observed that all the winter cereals (wheat, barley, rye, oats, and triticale) in the classified map
account for around 90%-98% of all the training cases for these classes. Likewise, the summer cereals,
maize and sorgo (this being a very minor cereal in our region) can be misclassified mainly between
them because they are the most similar to each other. We have not seen that these errors are
concentrated in any specific area. The errors are spatially distributed equally over the region.

In order to compare both strategies, the HDTM is reclassified into an irrigated/non-irrigated
binary map. The irrigated class comes from all irrigated herbaceous crops (21 classes) and the rest of
crops are labeled as non-irrigated. The accuracy measures of this layer are shown in Table 4. After
the reclassification process, the validation provides a significant improvement in the overall accuracy
comparing to the very detailed land cover map due to the drastic reduction of the number of classes.
OA, kappa index and F-score were 98.53%, 0.9258 and 0.9341 respectively. As was previously
explained, we also compute the normalized Matthews correlation coefficient (nMCC) which is more
convenient for binary classification with unbalanced classes as is our case, with a higher percentage
of non-irrigated areas than irrigated. The nMCC reached a value of 0.9635.

Table 4. Contingency table of the validation of the Highly Detailed Thematic Map (HDTM)
reclassified as an irrigation binary map at pixel level.

Reference Data

Class mapped Irrigated Non-irrigated Row Sum Precision
Irrigated 10,484,519 231,762 10,716,281 0.9784
Non-irrigated 1,247,632 88,622,758 89,870,390
Col Sum 11,732,151 88,854,520 100,586,671
Recall 0.8937 F1 score 0.9341
Overall Accuracy 98.53% MCC 0.9270
Kappa 0.9258 nMCC 0.9635

3.2. Assessment of the IBM: Irrigation Binary Map

Figure 5 depicts the IBM generated by the second approach, where it is possible to identify the
main irrigation areas in Castile and Leon due to the fact that most of the detected irrigation fields are
concentrated in those areas (Figure 5a). Otherwise, Figure 5b shows an area dominated by rainfed
agriculture, where some pivots can be identified with a regular irrigation system.

The OA, kappa index, and F-score obtained in the binary approach (IBM) were 98.47%, 0.9228,
and 0.9314, respectively. The normalized MCC was 0.9621 (Table 5). There is no significant difference
with the results obtained by the HDTM. Therefore, on the basis of these accuracy measures, both
maps would be sufficient enough to detect the main irrigated plots in Castile and Leon. However, as
it will be explained later in the Discussion section, the IBM will be eventually chosen by addressing
the irrigated minority crops as well. Therefore, it detects a slightly larger area, 360,478 ha, whereas
the HDTM detected 349,216 ha as it can observed in Table 6. This table shows the estimation of the
irrigated arable crops areas, as well as a summary of the main accuracy measures obtained in each
approach.
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Figure 5. Irrigation Binary Map (IBM) over the study area of Castile and Ledn for 2019 obtained with
the binary classification strategy to detect irrigation. (a) Detail of a large irrigated area dedicated

mainly to maize in Le6n province. (b) Detail of a predominately rainfed area dominated by winter

cereals, such as barley, but where some irrigated fields can be detected (in blue). To achieve a better

understanding of the extent of arable crops in the region, a mask obtained from the Land Parcel

Information System (LPIS) layer containing only the land use defined as arable land, has been applied

to this map.
Table 5. Contingency table of the validation of the IBM.
Reference Data
Class mapped Irrigated Non-irrigated Row Sum  Precision

Irrigated 10,428,685 232,623 10,661,308 0.9782

Non-irrigated 1,303,466 88,621,897 89,925,363

Col Sum 11,732,151 88,854,520 100,586,671
Recall 0.8889 F1 score 0.9314
Overall Accuracy 98.47% MCC 0.9242
Kappa 0.9228 nMCC 0.9621

Table 6. Summary of the irrigated arable crops areas and accuracies measures obtained in the two

approaches (HDTM and IBM).

. O.A. Irrigated Arable
Approaches to Detect Irrigated Arable Crops (%) Kappa Index Crops Area (ha)
HDTM-High detailed themat.1c .land covermap .. 0.85 349,216
(121 classes, among them 21 irrigated classes)
HDTI.VI-'reclassdled toa b'ln'f\ry map 98.53 0.93 349,216
(2 classes: irrigated crops/ non-irrigated crops)
IBM-Irrigation binary map
98.47 0.92 360.478

(2 classes: irrigated crops/ non-irrigated crops)

The irrigated area estimations were extracted from both maps after the filtering process ‘sieve’.
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3.3. Results from the Implementation of the Best Performance Approach in the CAP Monitoring System

The results of the intersection between the agricultural parcels declared in the IACS data as
irrigated and the irrigation map chosen in this work, are shown in Figure 6.

(a) Arable crops that are usually cultivated on rainfed agriculture
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(c) Arable crops that are cultivated in irrigation
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Figure 6. Distribution of parcels declared as irrigated in the Integrated Administrative Control System
(IACS) according to the percentage of pixels detected as irrigated in the Irrigation binary map (IBM).
The x axis represents the percentage of the pixels irrigated within each plot grouped in 10% steps, and
the Y axis depicts the percentage of plots declared as irrigated that falls into each group. (a) Arable
crops that are usually cultivated on rainfed agriculture; (b) Arable crops that can be cultivated in both
irrigated and rainfed system; (c) Arable crops that are normally irrigated crops.

Some comments must be considered in order to get a better understanding of the results. The
crops represented in Figure 6 are grouped according to our expert knowledge on the crops that are
commonly grown in the region under regular irrigation, or generally as rain-fed crops or in both
systems. Observing the Figure 6a, it is possible to see that most of the plots declared in the IACS
system as irrigated with a commonly rainfed crop, do not have almost any pixels detected in
irrigation, except the forage crops. In Figure 6b, it is proved that the crops combining both
irrigated/rainfed systems are detected by the binary map, since about half are detected as completely
irrigated and the other half where almost no irrigated pixels are detected. Finally, Figure 6¢c shows
that most of the crops that are usually cultivated under irrigation in our region, are detected because
of the high percentage of irrigated pixels. The information extracted by this method might be easily
exploited into the decision-making chain for subsidies compliance. It also might be useful to establish
a threshold above which we could consider a parcel to be irrigated. This threshold can be set, for
instance, as the percentage of pixels within the FOI boundaries that belongs to the irrigated class.
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Table 7 shows the percentage of the irrigated declared parcels that could be identified as such
depending on the established threshold.

Table 7. Percentage of plots confirmed as irrigated according to the threshold proposed in each crop
type for the Geo Spatial Aid Application (GSAA) declared as irrigated by the farmer.

Threshold (% Pixels Irrigated to Consider the Plot as Irrigated)

Crop type 20 30 40 50 60 70 80 90
Alfalfa 7919 7726 7519 7343 7168 6932 6599 59.79
Barley 50.04 4574 4154 3728 3351 2901 2378 17.19
Beans 93.15 9246 91.53 90.22 8897 8729 848 80.31
Chickpeas 20.77 1841 1576 134 1193 957 781 515
Green peas 2246 1985 17.62 1634 1451 12.09 981 648
Maize 99.1 9898 9885 98.66 9847 9819 97.63 96.2
Oats 35.13 3192 2892 2596 23.67 21 17.75 13.95
Other forage crops 55.76  53.58 50.05 46.52 43.53 40.15 3563 29.92
Poppy 96.05 9539 9342 9145 9079 8882 875 7895
Potato 90.73 897 88.46 8693 8525 8291 7899 72.08
Rapeseed 40.26 3637 3216 28.08 2513 21.61 184 13.32

Rye 27.08 2312 1938 1587 1331 106 7.73 4.5

Sugar beet 97.74 9742 9715 9685 9643 9571 9427 91.02

Sunflower 51.33 48.06 4497 4186 3851 3536 3135 2596
Vetch 26.73 2327 20.69 1827 1598 13.6 11 8.28
Wheat 55.91 5326 50.69 4823 4571 4292 39.26 338

4. Discussion

Both irrigation maps derived from the two procedures applied in this work have yielded similar
results, not only regarding the accuracy measures but also in the allocations of the irrigated areas.
Most of the irrigated plots detected are concentrated in the well-known irrigable areas in Castile and
Leon (Figures 4 and 5). Nevertheless, we can also detect, in both strategies, some rainfed fields within
the irrigation areas, and on the contrary, we can detect sparse irrigation plots in the predominantly
rainfed area (Figures 4 and 5).

It is important to bear in mind that summer crops in irrigation agriculture are easier to identify
due to the agroclimatic conditions existing in our region, given that crops such as corn, beet, and
potato, among the most representative, are only cultivated in that season under irrigation. However,
discriminating winter crops that can take place in both systems of cropping systems (irrigation and
rainfed agriculture) is the real challenge, since the difference in spectral response between the two
systems in spring is not as pronounced as in summer when water stress conditions cause rainfed
crops to react to such stress [28]. For that reason, from the remote sensing approach, solving this
situation is complicated. However, the methodology proposed has been effective for this purpose, as
it can be seen in Table A1, which shows the discrimination of the irrigation system in the most
representative winter crops in the community of Castile and Ledn, for instance, wheat which
represents approximately 11% of the total area of the region (see Appendix A Table A2).

The discrimination between irrigated crops and rainfed crops that the methodology here
presented offers, is of special relevance in the context of the CAP, since as we have already explained
in the introduction, not only the crop identification is interesting but also the verification of
compliance with some type of conditionality or cross-compliance. This is due to the fact that there
are specific aids associated with certain crops that are only granted in a certain system, rainfed, or
irrigated. Such is the case of aid associated with protein crops, specifically for alfalfa, which requires
the crop not to be irrigated.

It should be noted that until now this technique has only been applied for the discrimination of
certain herbaceous crops under irrigation. Meadows and woody crops (also permanent crops),
among which the vineyard is the only significant one in Castile and Ledn, have not been evaluated
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for several reasons that are explained. Firstly, the vineyard in this region is exclusively oriented to
production under quality figures that impose restrictions on yield. Under these conditions, deficit
irrigation is used to ensure the quality of the grapes, and therefore the differences between rainfed
and irrigated are less. Furthermore, in vineyard cultivation, the soil/plant ratio is high, and therefore
it is more difficult to detect changes in the hydric state of the crop by remote sensing.

Regarding the location and area estimation derived from both approaches, the results show
similar figures. It is important to mention that we can also observe irrigation in minority crops in the
IBM product. Figure 7 depicts the results of the total of irrigated and non-irrigated arable crops
obtained from both strategies. In order to standardize results from both maps, some postprocessing
steps have been carried out. A reclassification was done for the first approach map (HDTM) and the
application of a mask of arable land extracted from the LPIS to both maps for representing only the
herbaceous crops.
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Figure 7. Comparison between the results of the total of irrigated and non-irrigated arable crops
obtained from both strategies: (a) irrigated, non-irrigated, permanent crops, and non-crop areas
detected using the High detailed thematic map (HDTM). Note that permanent crops, mainly vineyard
in our region, have been separated into a separate class to differentiate them from rainfed crops. (b)
irrigated, non-irrigated, and non-crop areas detected employing the Irrigation binary map (IBM).

These large-area land cover maps also provide a clear added value for water allocation statistics
in order to derive an estimation of the total irrigated agricultural area. It is important to keep in mind
that the surface obtained by remote sensing refers to “effective” irrigation (actually watered surface),
where satellite images objectively detect the pixels that behave as watered (Figures 4 and 5). As has
been reported previously [8,18], there is no unique and feasible source of information about this
actual irrigated area. The comparison between the irrigated and non-irrigated arable cropland areas
detected from both strategies, with similar area estimations (Figure 7 and Table 6), along with the fact
that there is not a significant difference among the accuracy measures obtained from both maps show
us that any of these maps might be a candidate to be implemented into the CAP monitoring system
to detect if a declared field is actually irrigated. However, we can see an important advantage in using
the IBM approach to support the aid control system, since the irrigation detection is not limited to
the major crops previously defined in the reference dataset what occurs in the HDTM. Otherwise,
any pixel can be identified as irrigated, regardless of the type of crop it belongs to. This allows us to
identify irrigation even in minor crops, underrepresented on a regional scale, and therefore have not
been included as data to train the classifier. This is also the explanation why the irrigated area
estimation by the IBM is greater than that detected by the HDTM. Therefore, the map that has been
chosen to be implemented into the regional aid control system has been the IBM.

Furthermore, thanks to the implementation methodology into the aid control system, there will
be a marker related to irrigation in each claimed plot. Besides, it will inform about what percentage
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of pixels are identified as irrigated during the whole monitoring period within the agricultural parcel.
The latter will allow us to have a more accurate estimation in the plots irrigated regularly. This is
because we can detect not only if a plot is irrigated or not, but also if it has been irrigated on a regular
basis and homogeneous way, or contrarily when an occasional irrigation event has been applied. The
first case can be observed easily when most of the pixels inside the plot are detected as irrigated.
However, when a low percentage of the pixels inside the plot has been detected as irrigated and there
is an effect of “salt and pepper” within a plot, this usually indicates that there has been some
occasional irrigation event to save the crop, for example when it suffers from water stress. Therefore,
when a crop has been irrigated regularly is highly likely to be detected by this approach. On the other
hand, when a crop has been watered occasionally, it might be that the change in its phenology may
be unnoticed, and consequently also its detection. This will depend on several factors, the irrigation
event date, the water consumption employed, and the timing when the irrigation has occurred.
However, a further analysis was carried out to assess the difference between the number of parcels
declared in the IACS as irrigated and the number identified as such in the IBM according to the
percentage of pixels identified as irrigated within the agricultural parcel (Table 7). This could be very
useful for agricultural statistics rather than to help CAP’s aid control system. To this end, an opposite
analysis must be made. It must be seen if parcels declared in dryland farming have actually been
watered. This is what really has an implication in the control of CAP’s aids, either because that plot
did not have the right to use water for irrigation or because it is a specific requirement for some aids.

There is going to be an urgent need to implement a feasible methodology into any European
CAP monitoring system to detect irrigation in the declared cropped fields to get some of the CAP
subsidies. In the case of the Paying Agency of Castile and Ledn the methodology here proposed as
the second approach is going to be implemented this ongoing year 2020. Nevertheless, further
research is required to improve accuracy results. We will certainly continue to pursue that aim, thus,
for this year we are exploring the chances of introducing the Sentinel-1 images in the classification,
and also, we are studying more vegetation indexes as the normalized difference moisture index
(NDMI) or the normalized difference water index (NDWI) [4,16,17]. Another strategy we are going
to research in the 2020 land cover classification is the stratification approach. Experimental results
indicated that in large territories, a classification based on the stratification method achieved higher
accuracies in the intensively cropped areas while the traditional method achieved higher accuracies
in low or non-agricultural areas [29]. Therefore, we will make use of the agroclimatic zones raster
prepared for the generation of the IBM, and we will use each zone as a stratum.

5. Conclusions

The results of this work are intended to support the CAP Integrated Administrative Control
System in irrigation-related issues by means of intensive use of Sentinel-2 and decision tree
supervised classification strategies. The proposed methodology allows us to perform a binary
classification using information mainly contained in the IACS itself without specific fieldwork with
very high accuracy (0.92 kappa index). The derivation of an irrigation binary maps is meant to be a
relevant source of information for the CAP decision-making system and the eligibility of the farmers’
application. Besides, the methodology to implement that information into the CAP control system
makes it suitable to be operational into the aids control system as suggested by the European Court
of Auditors.
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Table A1. Class-specific accuracy measures obtained after validation of the land cover map with high

thematic detail (HDTM of 121 classes) distinguishing irrigated arable crops from rainfed arable crops

and permanent crops, over the whole region of Castile and Leon. Natural and semi-natural vegetation

and other coverages are not shown here for sake of brevity.

Land Cover Class Description CI* User’s Comission. CI* Producer’s Omission  F- Kappa

Type Accuracy Error (%) Accuracy Error (%) Score

Wheat 84.77 £ 0.12 15.23 92.29 £ 0.09 7.71 88.37 0.80

Barley 89.39+0.1 10.61 93.56 +0.08 6.44 91.43 0.86

Rye 83.01 +0.42 16.99 58.19 £ 0.46 41.81 68.42 0.82

Oats 71.16 +0.43 28.84 59.45 + 0.43 40.55 64.78 0.70

Triticale 85.86 +1.15 14.14 2258 +0.71 7742 35.75 0.86

Fallow 86.47 £ 0.15 13.53 94.28 +0.1 5.72 90.21 0.84

Sunflower 92.3+0.15 7.70 90.32 £0.17 9.68 91.30 0.92

Rapeseed 95.99 + 0.63 4.01 65.92 +1.27 34.08 78.16 0.96

Green peas 78.69 +0.58 21.31 76.9 £ 0.59 23.10 77.79 0.78

Rainfed Arable Lumps 45.88 + 5.56 54.12 93.37 £3.96 6.63 61.53 0.46

Crops Chickpeas 82.89 +1.22 17.11 64.73 +1.37 35.27 72.69 0.83

Lentils 84.67 +1.02 15.33 72.09 +1.17 27.91 77.87 0.85

Vetch 76.06 +0.39 23.94 752+0.4 24.80 75.63 0.75

Ervils 84.82+1.5 15.18 46.93 +1.55 53.07 60.42 0.85

Alfalfa 88.4+0.36 11.60 84+0.4 16.00 86.14 0.88

Other forage crops 75.47 +1.37 24.53 33.34+1 66.66 46.25 0.75

Esparceta 81.38 +1.66 18.62 524117 47.59 63.76 0.81

Raygrass 77.01+1.34 22.99 47.11+1.24 52.89 58.46 0.77

Lathyrus cicera 72.62+1.83 27.38 55.96 +1.78 44.04 63.21 0.73

Locust beans 54.38 +2.67 45.62 7418 +2.74 25.82 62.76 0.54

Maize 98.92 +0.09 1.08 98.98 +0.09 1.02 98.95 0.99

Sorghum 40.99 + 8.58 59.01 95.06 +5.76 4.94 57.28 0.41

Bean 21.72+11.16 78.28 97.77 + 8.49 223 35.54 0.22

Irrigated wheat 90.09 + 0.42 9.91 79.01 +0.54 20.99 84.18 0.90

Irrigated barley 89.01 +0.79 10.99 47.86 +£0.93 52.14 62.25 0.89

Irrigated alfalfa 92 +0.54 8.00 88.99 +0.62 11.01 90.47 0.92

Irrigated sunflower 92.12+0.75 7.88 63.87 £1.12 36.13 75.44 0.92

Irrigated rapeseed 87.69 £2.11 12.31 95.01 +1.46 4.99 91.20 0.88

Irrigated rye 7243 +3.44 27.57 79.45+3.26 20.55 75.77 0.72

. Irrigated oats 83.42+1.93 16.58 63.94+2.18 36.06 72.40 0.83

[rrigated Irrigated triticale 5327 +4.24 46.73 85.12+3.82 1488 6553 053

Arable Crops

Sugar beet 97.56 +0.45 2.44 93.66 0.7 6.34 95.57 0.98

Potatoes 92.07 £1.01 7.93 92+1.01 8.00 92.03 0.92

Poppy 76.24 +5.12 23.76 98.49 +1.67 1.51 85.95 0.76

Strawberries 84.73 £3.17 15.27 95.78 +1.88 4.22 89.92 0.85

Pumpkin 69.1+8.08 30.90 95.38 +4.31 4.62 80.14 0.69

Garlic 66.23 + 3.62 33.77 94.27 £2.12 5.73 77.80 0.66

Onion 73.72 +3.57 26.28 92.93 +2.34 7.07 82.22 0.74

Carrot 73.08 +3.38 26.92 91.67 +2.36 8.33 81.33 0.73

Leek 54.92 +5.92 45.08 95.72 +£3.18 4.28 69.80 0.55

Horticultural crops 68.54 +5.96 31.46 85.57 +5.04 14.43 76.11 0.69

Vineyard 99.2+0.16 0.80 94.11 £ 0.42 5.89 96.58 0.99

Permanent Olive groves 99.14 + 0.64 0.86 99 £0.69 1.00 99.07 0.99

crops Almond trees 97.08 +1.03 2.92 82.25+2.16 17.75 89.05 0.97

Peaches trees 69.67 +9.27 30.33 99.28 +2.04 0.72 81.88 0.70

Overall accuracy (%) 87.13
Kappa index 0.85

* CI: Confidence Interval of the estimate for a 95% confidence level.
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Table A2. Area covered (hectares) by each class in the classified map, reference data, training data

and validation data in the first classification approach (HDTM of 121 classes) in the entire region of

Castile and Leon. Non-crop classes are not shown here for sake of brevity.

Land Cover Type Class Map Area Map Area Ref.Data Ref.Data Train. Data Validat. Data
Description (%) (ha) (%) (ha) (ha) (ha)
Wheat 10.02 943,829 22.26 307,148 1245 305,903
Barley 9.21 868,332 23.67 326,642 1324 325,318
Rye 0.89 84,174 3.16 43,605 177 43,428
Oats 1.37 129,485 3.67 50,656 205 50,451
Triticale 0.07 6357 0.97 13,354 54 13,300
Fallow 8.67 816,624 13.82 190,718 773 189,945
Sunflower 3.02 284,781 8.82 121,773 494 121,279
Rapeseed 0.12 11,712 0.39 5388 22 5366
Green peas 0.45 42,481 1.42 19,563 79 19,484
. Lumps 0.01 851 0.01 172 20 152
Ramfcei;mble Chickpeas 0.08 7803 0.34 4670 20 4650
Lentils 0.09 8478 0.41 5704 23 5681
Vetch 1.13 106,821 3.33 45,962 186 45,776
Ervils 0.04 3770 0.29 4004 20 3984
Alfalfa 0.82 77,531 2.39 32,933 133 32,800
Othjrrof;:age 0.08 7928 0.62 8570 35 8535
Esparceta 0.06 6084 0.24 3320 20 3300
Raygrass 0.22 20,584 0.45 6260 25 6234
Lathyrus cicera 0.05 4714 0.22 2993 20 2973
Locust beans 0.03 2557 0.07 1001 20 981
Maize 1.44 136,100 3.90 53,857 218 53,639
Sorghum 0.01 877 0.00 74 20 54
Bean 0.01 518 0.00 32 20 12
Irrigated wheat 0.63 59,301 1.59 22,005 89 21,916
Irrigated barley 0.23 21,923 0.81 11,114 45 11,069
Irrigated alfalfa 0.40 37,573 0.72 9884 40 9844
Sﬁ:gzz\e’jr 0.16 15,271 0.52 7144 29 7115
r;f:ij 005 1617 0.06 879 20 859
Irrigated rye 0.07 6475 0.04 611 20 591
Irrigated Arable Irrigated oat 0.05 4430 0.14 1886 20 1866
Crops Irrigated triticale 0.03 2702 0.02 353 20 333
Sugar beet 0.22 21,003 0.34 4675 20 4655
Potatoes 0.19 18,250 0.20 2772 20 2752
Poppy 0.02 1918 0.01 225 20 205
Strawberries 0.03 2640 0.03 458 20 438
Pumpkin 0.01 727 0.01 111 20 91
Garlic 0.03 2525 0.03 482 20 462
Onion 0.03 2990 0.03 483 20 463
Carrot 0.05 4912 0.04 547 20 527
Leek 0.02 1562 0.01 176 20 156
Horticultural 0.03 2902 0.01 207 20 187
crops
Vineyard 0.92 86,246 0.88 12,164 49 12,115
Permanent crops Olive groves 0.12 10,972 0.06 812 20 792
Almond trees 0.10 9087 0.09 1223 20 1203
Peaches trees 0.20 18,487 0.00 86 20 66
Total 100.00 9,422,714 100.00 1,381,745 7356 1,374,389
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Table A3. List of the 121 classes distinguished in the High Detailed Thematic Map (HDTM) grouped
by the type of coverage to which they belong. The percentages in the forest classes indicates tree

density: very sparse (10-40%), sparse (40-70%), and thick (>70%).

Class Description Grouped by Coverage Type

Rainfed Arable Crops: Irrigated Arable Crops:
Wheat Maize
Barley Sorghum

Rye Bean
QOats Irrigated wheat
Triticale Irrigated barley
Fallow Irrigated alfalfa
Sunflower Irrigated sunflower
Rapeseed Irrigated rapeseed
Green peas Irrigated rye
Lumps Irrigated oats
Chickpeas Irrigated triticale
Lentils Sugar beet
Vetch Potatoes
Ervils Poppy
Alfalfa Strawberries
Other forage crops Pumpkin
Esparceta Garlic
Raygrass Onion
Lathyrus cicera Carrot
Leek

Locust beans

Other land cover areas:
Artificial and Urban areas
Rocky areas
Waterbodies

Horticultural crops

Natural and Semi-natural vegetation:
Mesoxerphytic basophilic grasslands
Southwestern Mediterranean perennial and Iberian summer pastures
Rushes
Weed and subnitrophilous grass and crucifer communities
Gullies
Nardus grasslands and other non-cryoturbed pastures of the high
mountain
Mesophyll basophilic grasslands
Nardus grasslands of the High mountain
Subalpine cryoturbated-soils grasslands
Atlantic and sub-Atlantic lowland and submontane hay meadows
Rosemary (Rosmarinus officinalis)
Gipsophilic bush
Lavender (Lavandula stoechas)
Mixed thyme
Grassy dwarf-shrub garrigues
Thymes-dried grass
Silicaphillic scrubland with creeping juniper
Basophilic juniper field (Juniperus communis) and/or Juniperus
thurifera
Gorse (Genista sp.).
Hedgehog-heaths dominated by Genista hispanica
Hedgehog-heaths dominated by Erinacea anthyllis or Genista pumila
cushion

Echinospartum dominated hedgehog-heaths and Genista and Astragalus

heaths

Gorse thickets of Ulex spp.

Whiteleaved rock roses
Gum rock roses
Cytisus purgans piornal
High mountain Genista piornal
Open formations with Cytisus scoparius
White-flowered broom fields (Cytisus multiflorus) and related

Deciduous thorny forest

Permanent crops:
Vineyard
Olive groves
Almond trees
Peaches trees

Forest Areas:
Pinus sylvestris (>70%)
Pinus sylvestris (40-70%)
Pinus sylvestris (10-40%)

Pinus nigra (>70%)

Pinus nigra (40-70%)
Pinus pinaster (>70%)
Pinus pinaster (40-70%)
Pinus pinaster (10-40%)
Pinus pinea (>70%)
Pinus pinea (40-70%)
Pinus halepensis (>40%)
Pinus radiate (>70%)
Pinus radiata (40-70%)
Juniperus thurifera (>40%)
Juniperus thurifera (10-40%)

Quercus ilex (>70%)

Quercus ilex (40-70%)
Quercus ilex (10-40%)

Quercus faginea (>70%)

Quercus faginea (40-70%)

Quercus faginea (10-40%)
Quercus pyrenaica (40-70%)
Quercus pyrenaica (>70%)
Quercus pyrenaica (10-40%)
Fagus sylvatica (>70%)
Populus plantation (40-70%)
Populus plantation (10-40%)
Eucalyptus camaldulensis (40-70%)



Agronomy 2020, 10, 867 22 of 23

Juniperus phoenicea scrub Eucalyptus camaldulensis (>70%)
Juniperus scrub Eucalyptus globulus (>70%)
Hydrophilic heaths Populus plantation (>70%)
High thick heaths Quercus rubber (>70%)
Low thick heaths Quercus rubber (40-70%)
Low sparse heaths Castanea sativa (>70%)
Heaths-rock roses (Cistus ladanifer) Castanea sativa (40-70%)
Bearberry Pinus sylvestris (>70%)
References
1.  European Union. DG AGRI. Commission Implementing Regulation (EU) 2018/746 of 18 May 2018

10.

11.

12.

13.

14.

15.

16.

17.

amending Implementing Regulation (EU) No 809/2014 as regards modification of single applications and
payment claims and checks. Off. J. Eur. Union 2018, 125, 1-7. Available online:
http://data.europa.eu/eli/reg_impl/2018/746/0j (accessed on 10 April 2020).

Castile and Leon Crops and Natural Land Map (MCSNCyL). Available online:
http://mcsncyl.itacyl.es/en/inicio (accessed on 10 April 2020).

Pareeth, S.; Karimi, P.; Shafiei, M.; De Fraiture, C. Mapping agricultural landuse patterns from time series
of Landsat 8 using random forest based hierarchial approach. Remote Sens. 2019, 11, 601.

Kyere, I; Astor, T.; Graf3, R.; Wachendorf, M. Multi-Temporal Agricultural Land-Cover Mapping Using
Single-Year and Multi-Year Models Based on Landsat Imagery and IACS Data. Agronomy 2019, 9, 309.
ESA-CCI Land Cover Product. Available online: http://maps.elie.ucl.ac.be/CCl/viewer/index.php (accessed
on 10 April 2020).

Siebert, S.; Henrich, V.; Frenken, K.; Burke, J. Global Map of Irrigation Areas Version 5; Germany/Food and
Agriculture Organization of the United Nations; Rheinische Friedrich-Wilhelms-University: Rome, Italy,
2013; Available online: http://www.fao.org/aquastat/en/geospatial-information/global-maps-irrigated-
areas/latest-version (accessed on 10 April 2020).

Thenkabail, P.S.; Biradar, C.M.; Turral, H.; Noojipady, P.; Li, Y.J.; Dheeravath, V.; Cai, X.L.; Velpuri, M.;
Vithanage, J.; Schull, M.; et al. A Global Irrigated Area Map (GIAM) using time-series satellite sensor,
secondary, Google Earth, and Groundtruth data. Int. J. Remote Sens. 2009, 30, 3679-3733. Available online:
https://waterdata.iwmi.org/Applications/GIAM2000/ (accessed on 10 April 2020).

Gomez, V.P.; Medina, V.D.B.; Bengoa, J.L.; Garcia, D.A.N. Accuracy assessment of a 122 classes land cover
map based on Sentinel-2, Landsat 8 and Deimos-1 images and ancillary data. In Proceedings of the 2018
IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Valencia, Spain, 22-27 July 2018;
pp. 5453-5456.

Bea Martinez, M.; Rodriguez Esteban, J.A.; Montesinos Aranda, S. Uso de técnicas de informacion
geografica para la discriminacion de superficies regadas. Rev. Int. Cienc. Tecnol. Inf. Geogrifica 2013, 13, 220—
245.

Ozdogan, M.; Gutman, G. A new methodology to map irrigated areas using multi-temporal MODIS and
ancillary data: An application example in the continental US. Remote Sens. Environ. 2008, 112, 3520-3537.
Ambika, A K.; Wardlow, B.; Mishra, V. Remotely sensed high resolution irrigated area mapping in India
for 2000 to 2015. Sci. Data 2016, 3, 160118.

Conrad, C.; Fritsch, S.; Zeidler, J.; Riicker, G.; Dech, S. Per-field irrigated crop classification in arid Central
Asia using SPOT and ASTER data. Remote Sens. 2010, 2, 1035-1056.

Vogels, M.E,; De Jong, S.M.; Sterk, G.; Addink, E.A. Mapping irrigated agriculture in complex landscapes
using SPOT6 imagery and object-based image analysis—A case study in the Central Rift Valley, Ethiopia.
Int. ]. Appl. Earth Obs. Geoinf. 2019, 75, 118-129.

Xiang, K;; Ma, M.; Liu, W.; Dong, J.; Zhu, X.; Yuan, W. Mapping Irrigated Areas of Northeast China in
Comparison to Natural Vegetation. Remote Sens. 2019, 11, 825.

Ferrant, S.; Selles, A.; Le Page, M.; Herrault, P.A; Pelletier, C.; Al-Bitar, A.; Mermoz, S.; Gascoin, S.; Bouvet,
A_; Saqalli, M.; et al. Detection of irrigated crops from Sentinel-1 and Sentinel-2 data to estimate seasonal
groundwater use in South India. Remote Sens. 2017, 9, 1119.

Bazzi, H.; Baghdadi, N.; Ienco, D.; El Hajj, M.; Zribi, M.; Belhouchette, H.; Escorihuela, M.].; Demarez, V.
Mapping Irrigated Areas Using Sentinel-1 Time Series in Catalonia, Spain. Remote Sens. 2019, 11, 1836.
Demarez, V.; Helen, F.; Marais-Sicre, C.; Baup, F. In-season mapping of irrigated crops using Landsat 8 and
Sentinel-1 time series. Remote Sens. 2019, 11, 118.



Agronomy 2020, 10, 867 23 of 23

18.

19.

20.

21.

22.

23.

24.

25.
26.

27.

28.

29.

Paredes-Gomez, V.; Del Blanco-Medina, V.; Gutiérrez-Garcia, A.; Nafria-Garcia, D.A. Seguimiento y
evaluacion de la capacidad de discriminacion de cultivos herbaceos en regadio a partir de imagenes de
satélite en el periodo 2016-2018, In Teledeteccion: Hacia una visién global del cambio climatico. In
Proceedings of the XVIII Congress of the Spanish Association of Remote Sensing, Valladolid, Spain, 24-27
September 2019; pp. 15-18.

Boryan, C,; Yang, Z.; Mueller, R.; Craig, M. Monitoring US agriculture: The US Department of Agriculture,
National Agricultural Statistics Service, Cropland Data Layer Program. Geocarto Int. 2011, 26, 341-358.
Pal, M.; Mather, P.M. An assessment of the effectiveness of decision tree methods for land cover
classification. Remote Sens. Environ. 2003, 86, 554-565.

Inglada, J.; Arias, M.; Tardy, B.; Hagolle, O.; Valero, S.; Morin, D.; Dedieu, G.; Sepulcre, G.; Bontemps, S.;
Defourny, P.; et al. Assessment of an operational system for crop type map production using high temporal
and spatial resolution satellite optical imagery. Remote Sens. 2015, 7, 12356-12379.

Quinlan, J.R. C4.5: Programs for Machine Learning; Morgan Kaufmann Publishers Inc.: San Francisco, CA,
USA, 1993.

Oukrop, C.M,; Evans, D.M,; Bartos, D.L.; Ramsey, R.D.; Ryel, R.]. Moderate-Scale Mapping Methods of Aspen
Stand Types: A Case Study for Cedar Mountain in Southern Utah; Gen. Tech. Rep. RMRS-GTR-259; US
Department of Agriculture, Forest Service, Rocky Mountain Research Station: Fort Collins, CO, USA, 2011.
GRASS GISS (Geographic Resources Analysis Support System) Module R.Kappa. Available online:
https://grass.osgeo.org/grass74/manuals/r.kappa.html (accessed on 10 April 2020).

Cochran, W.G. Sampling Techniques, 3rd ed.; John Wiley & Sons: Hoboken, NJ, USA, 1977.

Chicco, D.; Jurman, G. The advantages of the Matthews correlation coefficient (MCC) over F1 score and
accuracy in binary classification evaluation. BMC Genom. 2020, 21, 6.

Griffiths, P.; Nendel, C.; Hostert, P. Intra-annual reflectance composites from Sentinel-2 and Landsat for
national-scale crop and land cover mapping. Remote Sens. Environ. 2019, 220, 135-151.

Reddy, AR, Chaitanya, K.V.; Vivekanandan, M. Drought-induced responses of photosynthesis and
antioxidant metabolism in higher plants. ]. Plant Physiol. 2004, 161, 1189-1202.

Boryan, C.G.; Yang, Z. A new land cover classification based stratification method for area sampling frame
construction. In Proceedings of the 2012 First International Conference on Agro-Geoinformatics, Shanghai,
China, 2—4 August 2012; pp. 1-6.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
@ @ \ article distributed under the terms and conditions of the Creative Commons

Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).



