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Abstract: The quality of plants is often enhanced for diverse purposes such as improved resistance
to environmental pressures, better taste, and higher yields. Considering the world’s dependence
on plants (nutrition, medicine, or biofuel), developing new cultivars with superior characteristics
is of great importance. As part of the ‘omics’ approaches, metabolomics has been employed to
investigate the large number of metabolites present in plant systems under well-defined environmental
conditions. Recent advances in the metabolomics field have greatly expanded our understanding of
plant metabolism, largely driven by potential application to agricultural systems. The current review
presents the workflow for plant metabolome analyses, current knowledge, and future directions
of such research as determinants of cultivar phenotypes. Furthermore, the value of metabolome
analyses in contemporary crop science is illustrated. Here, metabolomics has provided valuable
information in research on grain crops and identified significant biomarkers under different conditions
and/or stressors. Moreover, the value of metabolomics has been redefined from simple biomarker
identification to a tool for discovering active drivers involved in biological processes. We illustrate
and conclude that the rapid advances in metabolomics are driving an explosion of information that
will advance modern breeding approaches for grain crops and address problems associated with crop
productivity and sustainable agriculture.
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1. Introduction: The Genotype × Environment × Phenotype (G × E × P) Relationship

Progress in genomic technology has provided incomparable access to information contained in the
genomes of cultivated crops (e.g., 1000 Plant Genomes Project). The metabolome can be described as
the apogee of the omics trilogy, reflecting the final stage of biological information flow and determining
the phenotype. It is well known that complex traits can often result from interactions between the
genotype and the environment, with the former also able to prime multiple phenotypes. Moreover, the
said interaction can result in different success rates in reproduction and subsequently cause alterations
in the genotype, hence the triangular association (Figure 1) reiterates the interrelationship among
these [1].
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Figure 1. Abridged illustration of the genotype-environment-phenotype (G × E × P) interaction,
demonstrating the interrelationship among the various components. Growth and development of
plants and phenotypic plasticity are greatly influenced by the genetic composition, environmental
factors and genetic x environment interactions [2,3]. The metabolome represents the final recipient of
biological information flow and determines the phenotype.

Several studies have illustrated the impact of environmental changes on the plant phenotype
through remodeling of gene expression [3]. This interrelationship has been used as a basis to study
complex traits and how they are influenced by environmental variations and genotype interactions [4,5].
These studies provided insights that can be applied in plant breeding during selection and in the
development of cultivars with desirable traits. Although genomic selection is commonly used in
plant breeding, it is important to note that multiple genetic variants linked to different traits only
account for a small fraction of variety between different cultivars of the same species. Additionally, a
specific, desirable agronomic trait can be multi-genic, supported by more than one gene or a network
of interacting genes. Furthermore, the multi-factorial nature of stress response mechanisms, combined
with the distinct influence of the environment and the intricacy of gene x environment interactions, are
vital factors that need to be taken into account to understand and predict how the genotype translates
into specific phenotypes. To this extent, integrative approaches have attempted to construct a full causal
relationship from the genotype to the phenotype, taking into consideration possible environmental
effects that might perturb this connection [6,7]. As part of these approaches, metabolomics is a
fast-growing field contributing to the elucidation and understanding of plant biological processes.
Metabolomics can provide a more in-depth evaluation of phenotypic variation following environmental
changes and hence establish good criteria of selection for desirable traits. In the current review the
use of metabolomics in crop science, with a focus on small grains, will be discussed to highlight its
potential benefits and growing importance.

2. Plant Metabolomes as Responsive and Dynamic Entities

Plant metabolites are reactants, products, or intermediates of enzymatic and other chemical
reactions occurring within a biological system [8]. These small molecules can be categorized as primary
or secondary metabolites. Generally, the former is directly involved in plant growth, development,
and reproduction; and includes sugars, lipids, amino acids, and intermediates of photosynthesis,
energy sources, tricarboxylic (TCA) cycle, and glycolysis. The latter, on the other hand, is not
directly implicated in plant growth, nonetheless is involved in plant x environmental interactions, and
particularly in responses to biotic and abiotic stresses, as well as adaptation to environmental factors.
The absence of secondary metabolites may not be fatal to the plant; however, it does jeopardize the
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defense system of the plant. Secondary metabolites have their origins in primary metabolic pathways
and include phenylpropanoids/phenolics [9,10], glucosinolates [11], terpenes, and alkaloids [12,13].
These secondary metabolites play an important role in signaling, enzyme activation, catalytic activity,
plant x environment interactions, and plant defense [14]. They are often genus- or species-specific and
also responsible for phenotypical characteristics (taste, color, and aroma) of the plants [15].

Plant metabolites are frequently perturbed following interaction with environmental stresses
responsible for poor plant growth, reproduction, and crop yields [16]. In fact, approximately 30%
of all pre- and post-harvest yields are affected by these factors and cause production losses [17].
Abiotic stresses include heat, cold, drought, waterlogging, toxicity, alkalinity, and salinity among
others [18,19], while biotic stresses comprise pathogens (fungi, bacteria, nematodes, and viruses)
and various herbivores [17]. Some plants naturally develop a resistance or tolerance against these
environmental factors. However, plant breeders often manipulate the production of metabolites and
provide information necessary for the development of new plant cultivars, carrying resistance against
abiotic and biotic factors. The pool of metabolites in plants, in comparison to other organisms, is the
most abundant and diverse. This complexity is attributed to the diversity in structural compositions
and the physico-chemical differences in terms of volatility, solubility, quantity, polarity, size, and
stability of the compounds found therein [13,20]. Therefore, with the current methodologies and
technologies, complete extraction and analysis of all metabolites in a biological system is still extremely
challenging. A more holistic perspective of biological systems has been achieved by the use of
‘multi-omics’ approaches [21].

3. Potential of Metabolomics in Crop Science: Big Data, Big Expectations

Plant biology has become more explicit through the progress of ground-breaking systems biology
approaches which involve the ‘omics’ technologies [22]. These technologies include genomics,
epigenomics, transcriptomics, proteomics, metabolomics, and phenomics [23]. Recently, fluxomics (the
study of the total set of fluxes occurring in a metabolic network) has been included and has shown great
relevance in the field [24]. Among the ‘omics’ technologies, metabolomics is remarkably increasing
in popularity, with the focus on quantitative and qualitative analyses of the whole set of exogenous
and endogenous metabolites (metabolome) of a biological system under defined environmental
conditions [13,22]. The metabolome reflects the dynamic responses of the plant to physiological,
pathophysiological, and environmental stimuli (Figure 2). It has become evident that these small
molecules, (metabolites, ≤1500 Da in size) affect cellular physiology through feedback modulation
of other ‘omics’ levels. Metabolomics is thus a powerful platform that can provide a comprehensive
understanding of the biochemical status of an organism, e.g., to inform on the processes involved in
disease progression or environmental adaptation, and hence assist in monitoring gene function [25].
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Figure 2. A systems biology view of biological information flow from genome to phenotype.
Metabolomics offers a broad view of an organism’s biochemical and physiological status, and altered
metabolomes are a reflection of changes at the genome, transcriptome, and proteome levels. The
metabolome is thus considered the underlying biochemical layer reflecting all information expressed
and modulated throughout the other omics layers, making it the closest link to the phenotype.

Experimentally, metabolomic studies can be designated as (i) metabolite profiling, defined as
the analysis (identification and quantification) of a large group of metabolites; (ii) metabolomic
fingerprinting, a rapid high-throughput analysis method providing phenotype characterization and
distinction between specific metabolic states [26–28] and (iii) metabolic foot-printing, the analysis of
metabolites secreted or excreted by an organism [20,27]. These strategies can be used independently,
or in combination for a broader understanding of the metabolome, as they provide a point-in-time
chemical map of a biological system [20].

Furthermore, metabolomic strategies can be targeted, semi-targeted or untargeted approaches.
In a targeted approach, a well-defined specific hypothesis is tested, providing deeper insights
and absolute quantification of selected metabolites related to a specific metabolic reaction or
pathway [20,27,29]. Thus, in this type of approach preliminary knowledge is required [30].
In semi-targeted analyses, the hypothesis is often undefined; however, the list of metabolites is
predefined and quantitatively and tentatively identified [8]. Lastly, the untargeted approach profiles a
multitude of metabolites in a sample and can be applied to measure relative concentrations in different
conditions or across a population [8,30,31]. Although this approach offers the opportunity for finding
new metabolites, one of the limitations is the correct annotation and identification of the unknown
metabolites [30].
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4. Experimental Designs, Workflows and Analytical Platforms Used in Plant Metabolomics

For a well-designed metabolomics study, experimental characteristics such as sample preparation,
instrumental optimization and data acquisition, data analysis (data mining), and data interpretation
have to be cautiously considered (Figure 3) [20,32]. The choice of the experimental design depends on
the biological question; furthermore, due to the complexity of the plant metabolome, the coverage is
restricted by sample preparation methods, sensitivity, and selectivity of the analytical technique. Hence,
the use of combined extraction methodologies and analytical platforms to provide a comprehensive
understanding of the plant metabolome is often required [12,33,34].

Figure 3. Basic multi-step workflow of plant metabolomics: sample preparation, data acquisition, and
data analysis form the backbone of metabolomic analysis. Analytical platforms include liquid – or
gas chromatography coupled to mass spectrometery (LC/GC-MS), capillary electrophoresis coupled to
MS (CE-MS), nuclear magnetic resonance (NMR) spectroscopy, and near-infrared (NIR) and Fourier
transform (FTIR) spectroscopy. These steps are interrelated and funnel into biological interpretation
where the goal is to analyze the intricate networks and pathways for a broad view of the metabolome.

In general, a fast, nonselective, and reproducible method is required to extract a large spectrum
of plant metabolites [35]. Extraction methodologies include liquid extraction (temperature- or
pressure-assisted), solid-phase extraction and microwave-assisted extraction. The choice of the sample
preparation procedure is determined by the plant material used, metabolites of interest, and the
chemical properties of the solvent [33,36]. Environmentally safe extractants such as natural deep
eutectic solvents, pressurized hot water extraction, and aqueous two-phase extraction solvents are also
available [37,38].

Following sample preparation, various analytical platforms are available for data acquisition and
are often based on mass spectrometry (MS) or nuclear magnetic resonance (NMR) techniques [39].
Fourier transform infrared spectroscopy (FTIR) is also gaining popularity in the metabolomics field, due
to its ability to rapidly and simply analyze and characterize complex building blocks simultaneously [40].
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Again, the selection of the right platform depends on the extracted metabolite class(es). Sensitivity
and selectivity are important factors to consider when selecting the ideal technique for a given
experiment. For more sensitive and selective qualitative and quantitative analyses, MS in combination
with liquid – and gas chromatography platforms (LC-MS and GC-MS) are commonly employed [41].
NMR spectroscopy has the advantage of providing a rapid, highly reproducible, and non-destructive
high-throughput method with minimal sample preparation [41].

Although these instrumentation systems are undoubtedly main analytical platforms in
metabolomics studies, there are several limitations related to their analytical capabilities. NMR, for
instance, is restricted by low sensitivity and resolution affecting the number of identifiable metabolites.
Such limitations have considerably been improved through developments in two-dimensional (2D)
and multidimensional (nD) NMR [39,42]. Despite its longer run time, nD-NMR is able to provide
insightful structural and functional information on biomolecules and even raw material. Ultra-fast
(UF) 2D NMR was recently developed to reduce the long run time associated with conventional
nD-NMR and has shown success in the collection of various spectra in a single scan [13,39,42]. NMR
also has the advantage of being a versatile platform capable of analyzing solid, gel, and liquid
samples. A new development is the comprehensive multiphase (CMP) NMR capable of analyzing the
three states (solid, liquid and gels samples) simultaneously with minimal changes in the overall run
time [42–44]. This CMP-NMR has been applied for basic structural elucidation in seeds and during
plant growth [43,44].

Mass spectroscopy (MS), on the other hand, is often coupled to various chromatography systems
in either one or two dimensions [45]. Ion mobility MS has gained increased popularity because
of its ability to rapidly analyze samples, remove interferences, separate isomers and isobars; and
its ability to identify compounds based on both ion size-to-charge and ion mass-to-charge (m/z)
ratios [46]. Two dimensional liquid chromatography (LC) and gas chromatography (GC) as well as
multidimensional LC/GC technologies are increasingly gaining popularity as analytical techniques
in which two or more columns having different stationary phase selectivity are combined to provide
greater resolution and higher peak capacities [47]. This newly established system allows for the
simultaneous analysis of both the metabolome and lipidome. Furthermore, the development of
hyphenated techniques such as LC-MS-NMR; 2D-LC-MS; 2D-GC-MS, 2D-GC-Q-Orbitrap-MS, among
others, offers improved spectral resolution and metabolite identification capabilities [45,48].

MS-based platforms have thus been invaluable in the detection and identification of metabolites
by providing spectral data, including accurate mass information and fragmentation patterns, which
are essential in computing molecular formulae and structural elucidation of measured m/z ions.
However, despite the technological advancements in these analytical platforms, metabolite annotation
and identification still remain a bottleneck in metabolomics research. Furthermore, due to the
multidimensionality and complexity of metabolome, there is no single analytical system that can cover
the whole (extracted) metabolome. These are some of the limitations in (untargeted) metabolomics,
which impact on the comprehensive analysis of the metabolome and biological insights generated.

5. Handling and Mining of Metabolomic Data

Data acquired from metabolomic experiments are often large-scale, complex, and require advanced
data analytical tools for efficient analysis. Statistics, cheminformatics, and bioinformatics are essential
for a comprehensive assessment of these datasets [30]. Data mining, a crucial step in metabolomic
workflows, can be carried out in two different approaches. The first is a chemometric approach:
the compounds are not firstly identified (or annotated), but their spectral patterns are statistically
evaluated to extract relevant spectral features that relate to key questions of the study. The second
is a targeted profiling approach: most of the metabolites are firstly annotated (or identified) and
then various statistical methods are applied to extract information related to the study, changes
and/or valuable biomarkers. The choice of the approach to follow would depend on the study
design and availability of resources. However, it is worth pointing out that independently of the
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approach used, extracting information from metabolomics data is a multistep task that involves data
pre-processing and pre-treatment, chemometrics, and statistical analyses, and compound annotation,
and identification. Data pre-processing methods include noise filtering, peak detection, and peak
alignment [49]. In addition, data pre-treatment or data correction comprises data normalization,
centering, scaling, batch effect correction, and data integrity checking [20,49,50]. Both pre-processing
and pre-treatment assist in data cleaning in order to emphasize only relevant biological information.
These steps inevitably determine the quality and quantity of the information obtained and subsequently,
the biological knowledge acquired [20,49].

Statistical analysis (either univariate or multivariate) is an important step in extracting information
from the dataset obtained. Univariate data analysis (analyzing a single variable) can be applied to
multidimensional data in order to independently assess the significant variation of metabolites among
the different samples analyzed [49,51,52]. Examples of univariate statistical tests include Student’s
t-test; analysis of variation (ANOVA) and Kruskal–Wallis test. Multivariate data analysis (MVDA) on
the other hand are used to explore and extract meaningful information by analyzing multiple variables
simultaneously [53,54]. MVDA can be achieved through machine learning methods, being either
unsupervised or supervised [49,50,52]. Machine learning is a type of artificial intelligence enabling
computers to use different algorithms in order to detect patterns and predict baseline behaviors or
properties through training and observation [55]. In the case of unsupervised learning methods,
underlying patterns and trends within the dataset can be identified without detailed or explicit
inputs (unlabeled data) from the user [55–57]. Many unsupervised algorithms have been designed to
uncover the complexity of multitudinous datasets. Common examples include principal component
analysis (PCA), a linear method, often used to reduce the multi-dimensionality of the dataset; and
hierarchical clustering (HCA) which operates based on a distance measured to group data by assessing
the similarity and dissimilarity of the observations [20,57]. Other examples of unsupervised models
for dimensionality reduction include locally linear embedding, isomap, and independent component
analysis [58] and clustering models include K-means [59].

The supervised methods, on the other hand, are often regression-based methodologies and are
applied for classification analyses to evaluate the difference between pre-defined (by the user) classes
or groups. These methods include the projection to latent structures-discriminant analysis (PLS-DA),
the orthogonal projection to latent structures-discriminant analysis (OPLS-DA), k nearest neighbor
(KNN) clustering, and more [49,50,52,56]. Of course, the tuning and validation of these models is
mandatory, evaluating performance estimates, model bias, and predictability, to ensure statistical
significance, reliability, and validity of the generated models. Some of these validation procedures
include cross-validation methods and permutation tests [60,61]. The detailed description of these
methods is beyond the scope of this review but can be found in literature cited herein. The selection of
the appropriate statistical or chemometrics methods to apply in handling and mining metabolomics
data depend on the aim and design of the study, the type and size of the collected data, and to some
extent, the availability of the resources. Proposed minimum reporting standards for data analysis in
metabolomics [62] provide key guidelines and aspects to consider when handling metabolomics data;
and detailed explanations and examples of chemometric models (e.g., PCA, HCA, and OPLS-DA) and
the applications thereof can be obtained from the cited literature [9–12,20,21].

Although statistical analyses account for existing connections between variables based on their
mathematical criteria, it does not take into account any pre-existing correlation originating from
biological origin [30]. Thus, it is often recommended to employ several statistical or data mining
techniques. Computational and bioinformatics tools as well as resources for metabolomic analysis
have therefore been developed and recently improved significantly. Some of these platforms comprise
licensed and non-licensed resources, such as MetaboAnalyst [63], Metabox omicsX [64], MetaCore
omicsX [65], InCroMAP [66], SIMCA (soft independent modeling of class analogy) [67] and XCMS [68].
Depending on the algorithm packages in these workflows, the nature of data at hand, and intended
analyses, these tools and resources can be used in combination [30,52,60].
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The biological meaning and information from metabolomics data depend inevitably on assigning
metabolite names or chemical formulae to measured spectral features. This step, namely, metabolite
annotation and identification, is a critical step in metabolomic studies and one of the bottlenecks in
maximizing the value of metabolomics data [61]. Different analytical methodologies and computational
workflows have been developed and established for metabolite annotation and identification. This is
an ongoing effort in the metabolomics community; and with technological advancements in analytical
platforms, improvements, and exploration of machine learning and computational tools, the repertoire
of annotated or identified plant metabolites is gradually expanding. An elaborated presentation and
discussion of the metabolite annotation and identification procedures and methods is beyond the
scope of this review. However, it is worth pointing out that annotated (or identified) metabolites and
generated MVDA models or any statistical description of metabolic changes are key fundamentals
in deriving information from metabolomics data. MVDA models can enable the identification of
significant features or signatory markers characterizing the biological state(s) or alterations observed at
a specific time point under controlled conditions [69]. Currently, there are a number of free libraries and
databases often used in the annotation of compounds, such as PubChem, Massbank, Metlin, KEGG,
ChEBI, MetaboID among others [70–76]. Thus, biological interpretation–formulating knowledge from
metabolomics information–depends on annotated (or identified) metabolites and correctness of MVDA
models and statistical descriptions.

6. Biological Interpretation: From Metabolite to Metabolic Pathways and Networks

One of the main objectives of metabolomics studies is to generate biological insights related to the
research question, providing an understanding of the biological system under consideration based
on measured (and statistically described) qualitative and quantitative metabolic changes. Thus, the
biological interpretation of metabolomics data relies not only on compound identification but also
on functional analysis. As part of the latter, mapping and visualization of identified metabolites on
general biological networks and metabolic pathways [15] provide insight into their functions and
mechanisms under stated conditions. This can be achieved manually by summarizing the information
collected from each metabolite (using literature and databases) into a coherent biological explanation.
The manual approach is clearly time-consuming as it focuses on each metabolite individually, and
it is very limited as it lacks the computation of organized framework for a visual representation of
the biochemical network of an organism. In order to overcome such limitations, computer-based
approaches have been developed over the past years for data interpretation [77,78].

Recently, a chemo-enrichment analysis approach has been described [79], to overcome the setback
in biological interpretation by directly predicting biological activities from spectral features and
generating metabolic pathways and networks of all possible metabolite matches. The generated
pathways are then compared to pinpoint possible enhanced biological processes within the plant. This
approach has the potential to reduce the time and labor associated with metabolite identification and
could, in turn, provide greater insight into the functioning of the plant and aid in the identification of
agronomically important traits that can be used to construct models for breeding studies applied to
grain crops [80]. Additionally, such innovative approaches could broaden comprehension of the plant
metabolome due to the fact that current understanding stems mainly from previous studies done on a
handful of model plants, which subsequently confines the knowledge to those particular pathways and
limits our understanding of pathways absent in those plants [81]. The possibilities for metabolomics
research, based on the current trend of advancements, are infinite. Expectedly, the future in this field
could surely provide a great number of constructed metabolic pathways and a more holistic view of
plant metabolome.

7. Metabolomics Applied to Cultivar/Variety Identification and Cultivar-Specific Responses

Plant breeding is the deliberate manipulation of plant attributes to enhance specific traits, it is
an old technology that goes back to the domestication of the first plants; approximately 10,000 years
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ago [82,83]. These alterations ranged from unintentional changes at the beginning of agricultural
domestication to intentional changes through the use of molecular-based tools for precision breeding.
In any case, plant breeding is driven by the need to improve plant characteristics through the creation
of desired genotypes and phenotypes in new cultivars. With the breakthrough of Mendel’s work in
1900 on the law of inheritance, the scientific basis of the technology was established [84]. This led to the
modern era of plant breeding which has tremendously evolved since then. Advancements involved
the introduction of different techniques such as double haploid technology, hybrid breeding, wild
crosses, introgression of traits from wild relatives, embryo and ovule rescue, mutagenesis, protoplast,
and plant cell/tissue/organs cultures and regeneration [85,86].

The integration of metabolomics with genomics, transcriptomics, proteomics, and genetic
modification has been applied in studies focused on crop yield and quality improvement. Furthermore,
in grain crop breeding, it has been applied for the selection of agronomically important traits, thereby
aiding in the improvement of cultivars and varieties [81,87,88]. Both terms ‘varieties’ and ‘cultivars’
are sometimes interchangeably used, although having different meanings. A ‘variety’ (taxonomically
ranked after subspecies) is a naturally occurring form of the same species of a plant and a ‘cultivar’
(derived from ‘cultivated variety’) refers to a plant selected for specific attributes preserved through
propagation [83]. Plant varieties and cultivars resulted from the domestication of ancestral wild plant
species. Since the domestication, modern plants have lost valuable traits due to the reduction of
genetic diversity. The limited adaptability of crops to the ever-changing environment, climate change,
and increasing food demands has resulted in growing pressure on plant breeders. Fortunately, many
important traits, particularly those associated with abiotic and biotic resistance, are still conserved
in wild relatives of crops such as rice, maize, wheat, barley, and oats [89,90]. Therefore, breeders are
increasingly using wild relatives, with a process known as prebreeding, to reintroduce some of these
traits and enhance genetic diversity. The insertion of wild relative traits into modern cultivars can be
achieved by conventional breeding or by molecular breeding technologies [89–91].

Identification of cultivars and varieties are extremely important steps during grain crop breeding,
registration, trade, inspection, and seed production. A rapid and effective fingerprinting method is
required for early cultivar identification which is important for the protection of breeders’ intellectual
property rights [92,93]. To date, studies in grain crop breeding have employed marker-assisted
selection (MAS) for cultivar identification and crop improvement. The selection involves biochemical,
morphological-, cytological- and DNA-based markers [94]. Since the development of molecular
markers, key challenges in conventional crop improvement programs have been addressed [95]. The
selection of desired traits in grain crop breeding is an example of such a challenge, although the
presence of a gene does not always imply its full expression [96]. These studies are therefore paving the
way for predicting favourable traits with the potential of creating superior hybrids in crop breeding.
The plant metabolome, being a representation of the phenotype, thus allows for the application of
metabolomics in crop breeding to become a valuable tool for the rapid detection of new traits, the
identification of cultivars, and differentiation among cultivars [97].

The concept of applying metabolomics for grain crop breeding studies was previously explored [98].
Although metabolomics was, at the time, still an emerging field, a cost-effective integration with
genome sequencing allowed its application in crop breeding programs. These earlier studies paved the
way for metabolomics in plant breeding, and in recent reviews [99,100] it is apparent just how much
metabolomics research has progressed to its current position. These reviews elaborated on studies
that pointed out how metabolomics had enabled the selection of a greater number of desirable traits
through technological advancements, allowed the construction of improved metabolic networks, and
identified biomarkers for unravelling function and contribution toward improving plant yield, quality,
and shelf life.

As we now know, the emergence of metabolomics is highly promising for the prediction of a
variety of agronomically important phenotypes and particularly for discovering signature metabolites
or metabolic markers (biomarkers) linked to traits of interest [88,101]. In plants, a metabolic marker
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can be described as an objectively measured characteristic, used as a predictor for plant phenotypical
properties. Several studies have evaluated the predictive power and heritability of metabolic markers
for the purpose of crop breeding [102]. In a study on maize hybrid crops, metabolic markers were
compared to molecular markers and showed that 130 metabolites were nearly equivalent, in terms of
predictive power, to 38,000 single nucleotide polymorphisms (SNPs) [103]. Additionally, metabolic
inheritance patterns in various plants such as foxtail millet [104], Arabidopsis thaliana (thale cress) [105],
and maize [106] have been studied with the purpose of determining the mode of inheritance (i.e.,
additive, non-additive, dominant and/or overdominant). For the successful implementation of
biomarkers, two requirements have to be met: that the predictive ability be robust under varying
environmental conditions and that the biomarker be applicable in different plant populations other
than the population of origin [107,108]. Additional studies describing the use of metabolomics to
identify signatory biomarkers with the aim of differentiating between plant cultivars have been
reported [104,109–115].

The current review highlights the use of metabolomics for the purpose of small grain/cereal cultivar
identification and differentiation through metabolic markers for crop improvement (Table 1). Small - or
cereal grains, or simply cereals, are seeds belonging to the monocotyledonous family of Poaceae, also
referred to as the Gramineae family. Cereal grains include rice, wheat, oats, maize, barley, rye, sorghum,
and millet, which have been used as staple food for the world since domestication. These are essential
crops for human and livestock nutrition and possess nutraceutical properties attributed to the wide
array of phytochemicals therein [114,116,117]. The main phytochemicals produced in cereal grains are
flavonoids [118], phenolic acids [119], phytic acid [120], coumarins [121], and terpenes [122]. These
compounds are often produced by plants as part of defense response mechanisms to the environment
and have health benefits for humans, including anti-oxidant, anti-inflammatory, and anti-diabetic
properties to list a few [123].

It is important to understand that the phytochemical content in plants depends not only on
the genotype, but also on a range of factors such as biotic and abiotic influences. Additionally,
phytochemical production is not only plant-specific but can also be species-specific and even variety or
cultivar-specific [124]. These differences can be exploited for the identification or differentiation of
cultivars and varieties. Here we have elaborated on how metabolomics was applied in crop science for
the differentiation or improvement of a range of cereal crops (as outlined in Table 1). The research
applications discussed below were selected to illustrate the various approaches in which metabolomics
tools were utilized in order to address fundamental and applied research questions in crop science.
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Table 1. List of plants/crops where metabolomics was applied as a tool in cultivar identification or improvement.

Crops and Cvs. Stage of Development Plant Organ Analytical
Platforms

Data Analysis
Models

Main Discriminatory Metabolites or
Classes of Metabolites References

Rice
(Oryza sativa L.)

Flowering and early grain
filling stages

Leaves,
spikelets, seeds

GC-MS
(Untargeted) PCA

Primary and secondary metabolism: amino
acids, succinic acid, sinapic acid, citric acid,

ribitol, malic acid, glycolic acid, arabitol,
putrescine, erythritol, and vanillic acid.

[113]

Rice
(Oryza sativa L.)

Panicle formation, heading,
milk ripe, dough and full

ripe stages
Leaves and grains

1H NMR and 1H
HR-MAS NMR

(Targeted)
PCA, OPLS-DA Primary: saturated and unsaturated fatty

acids, organic acids, amino acids. [111]

Rice
(Oryza sativa L.) 24 months Seeds GC-MS

(Untargeted)
PCA, OPLS-DA, VIP

plots.

Primary: sugar-related compounds, amino
acid-related compounds, free fatty acids,

tricarboxylic acid (TCA) cycle intermediates.
[125]

Rice
(Oryza sativa L.) Not specified Rice grain UHPLC-MS/MS

(Untargeted) PCA

Primary: aromatic amino acids,
carbohydrates, cofactors and vitamins,

lipids, oxylipins, nucleotides. Secondary:
benzenoids.

[126]

Rice
(Oryza sativa L.) Maturition Mature seeds

UHPLC-MS-MS and
GC-MS

(Untargeted)

PCA, network-based
analyses

Primary: amino acids and derivatives,
carbohydrates, lipids, cofactors, prosthetic
groups and electron carriers, nucleotides.

Secondary: benzenoids.

[127]

(Oryza sativa L.) Not specified Mature Seeds
HPLC and GC-MS

(Targeted and
untargeted)

Not specified
Primary: carbohydrates and lipids.

Secondary: α-carotene, β-carotene, and
lutein.

[128]

Rice
(Oryza sativa L.) Six-week-old Leaves GC and LC-ToF-MS

(Untargeted) PCA, PLS

Primary: amino acids (arginine, ornithine,
citrulline, tyrosine, phenylalanine and

lysine), fatty acids and lipids, glutathione,
carbohydrates. Secondary: rutin,

acetophenone, alkaloids.

[129]

Barley
(Hordeum vulgare) Germination Seeds MALDI-MSI,

LC-QToF-MS Not specified
Primary: glycero(phospho)lipids, prenol

lipids, sterol lipids, methylation. Secondary:
polyketides.

[130]

Barley
(Hordeum vulgare) Two-leaf stage seedlings Leaves LC-ESI-MS/MS

(Targeted)
PLS-DA, VIP plots,

PCA, HCA

Primary: amino acids and derivatives,
organic acids, nucleotides, and derivatives.

Secondary: flavonoids, absiscic acid.
[115]

Barley
(Hordeum vulgare) Three-leaf stage Leaves HPLC-DAD-MSn and

UPLC-PDA-MS/MS
ANOVA, Correlation

networks

Secondary: flavones, chlorogenic acids,
hydrocinnamic acid derivatives, and

hordatines and their glycosides.
[131]

Barley
(Hordeum vulgare)

Three-leaf stage and flag leaf
stage Leaves

HPLC-ESI-MSn;
UPLC-MS/MS

quadrupole-Orbitrap
MS) and NMR

Not specified
Secondary: phenolic compounds,
flavonoids, hydroxycinnamic acid

glycosides, esters, and amides.
[132]
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Table 1. Cont.

Crops and Cvs. Stage of Development Plant Organ Analytical
Platforms

Data Analysis
Models

Main Discriminatory Metabolites or
Classes of Metabolites References

Barley
(Hordeum vulgare) During grain filling Seeds GC-MS

(Untargeted)

ANOVA, PCA, ASCA,
PLS, PLS-DA, VIP

plots

Primary: TCA organic acids, aldehydes,
alcohols, polyols, fatty acids, carbohydrates,

mevalonate.
Secondary: phenolic compounds,

flavonoids.

[133]

Barley
(Hordeum vulgare) Four months Leaves ESI-MS (Targeted and

untargeted) PCA
Primary: carbohydrates, free amino acids,

carboxylates, phosphorylated intermediates,
antioxidants, carotenoids.

[134]

Barley
(Hordeum vulgare)

One - three
weeks old Leaves and roots

GC-MS
(Untargeted and

targeted)
HCA, PCA Primary: amino acids, organic acids, and

sugars. [135]

Sorghum
(Sorghum bicolor) Four-leaf stage Leaves UHPLC-HDMS

(Untargeted) PCA, OPLS-DA

Primary: amino acids, carboxylic acids, fatty
acids,

Secondary: cyanogenic glycosides,
flavonoids, hydroxycinnamic acids, indoles,
benzoates, phytohormones, and shikimates.

[114]

Sorghum
(Sorghum bicolor) Four-leaf stage Leaves UHPLC-HDMS

(Untargeted)
PCA, HCA,

OPLS-DA, VIP plots

Secondary: 3-Deoxyanthocyanidins,
phenolics, flavonoids, phytohormones,
luteolinidin, apigeninidin, riboflavin.

[136]

Sorghum
(Sorghum bicolor) Around 26 days Roots and leaves FT-IR spectroscopy

GC-MS (Untargeted) PCA, PC-DFA Primary: sugars, sugar alcohols, amino
acids, and organic acids. [137]

Sorghum
(Sorghum bicolor) Four-weeks old Grain and biomass GC-MS

LC-MS Z-score, PCA, O2PLS Primary: organic acids. Secondary:
phenylpropanoids. [138]

Wheat
(Triticum aestivum) Not specified Leaves UHPLC-MS

(Untargeted) PCA, PLS-DA

Primary: sugars, glycolysis and
gluconeogenesis intermediates, amino acids,
nucleic acid precursors, and intermediates.

Secondary: chorismate, polyamines,
L-pipecolate, aminoadipic acid,

phenylpropanoids, terpene skeleton,
ubiquinone.

[139]

Wheat
(Triticum aestivum) Physiological maturity Leaves LC-HRMS

(Untargeted) PLS-DA

Primary: amino acid metabolism, sugar
alcohols, purine metabolism, glycerolipids,

guanine.
Secondary: shikimates, anthranilate,

absiscic acid.

[112]
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Table 1. Cont.

Crops and Cvs. Stage of Development Plant Organ Analytical
Platforms

Data Analysis
Models

Main Discriminatory Metabolites or
Classes of Metabolites References

Wheat
(Triticum aestivum) Maturation Matured kernels LC-MS/MS One-way ANOVA

Primary: fatty acids, sugar, nucleic acids
and derivatives. Secondary: phenolamides,
flavonoids, polyphenols, vitamins, organic

acids, amino acids and derivatives,
phytohormones, and derivatives.

[140]

Wheat
(Triticum aestivum) Not specified Grain

1H-NMR
(Targeted)

PCA Primary: osmolytes, glycine betaine, choline,
and asparagine. [141]

Wheat
(Triticum aestivum) Not specified Seeds UPLC-ToF-MS

(Untargeted)
PCA,

OPLS-DA

Primary: sterols, fatty acyls, long chain fatty
acid derivatives, glycerol (phospho) lipids.

Secondary: polyketides.
[142]

Maize
(Zea mays) R6 stage Grains GC-MS

(Targeted)
PCA, PLS-DA,

HCA, heat maps Primary: sugars, sucrose, glucose, fructose. [109]

Maize
(Zea mays) Physiological maturity Kernels

UPLC-MS-MS
GC-MS

(Untargeted)

PCA, PLS-DA,
heatmaps

Primary: central metabolism pathways and
partial secondary pathways; glycolysis, TCA

cycle, starch, amino acids. Secondary:
alkaloids, benzenoids, fatty acid and sugar
derivatives, flavonoids, phenylpropanoids,

and terpenoids.

[143]

Maize
(Zea mays) Eight months Kernels

1H-NMR
fingerprinting

GC-MS
(Untargeted)

PCA
Primary: glucose, fructose, sucrose,

tocopherol, phytosterol, inositol, asparagine,
glutamic acid, pyroglutamic acid.

[144]

Maize
(Zea mays) Eight-visible-leaf stage Leaves

LC-ESI-QToF-MS and
NMR

(Untargeted)

PCA,
OSC-PLS-DA

Primary: choline, inositol, sugars, raffinose,
rhamnose, TCA cycle, amino acids,

trigonelline, putrescine, quinate, shikimate,
Secondary: hydroxycinnamates, flavonoids,

and benzoxazinoids.

[145]

Maize
(Zea mays) Seedling stage Entire seedling UPLC-HRMS

(Untargeted) PCA
Primary: amino acids, lipids, carboxylic
acid. Secondary: alkaloids, terpenoids,

flavonoids, alkaloids, benzenoids.
[146]

Maize
(Zea mays) Physiological maturity Kernels LC-ESI-MS/MS

(Targeted) Not specified Secondary: flavanones, flavones,
anthocyanins, and methoxylated flavonoids. [147]

Oats
(Avena sativa) Not specified Grains GLC-MS Not specified

Primary metabolism: malic, gluconic, and
galacturonic acids, fatty acids, palmitic acid

and linoleic acid.
[110]

Oats
(Avena sativa)

Seedling stage
(three-week-old) Leaves DI-ESI-MS

HPLC-ESI-MS/MS PCA, DFA
Primary: malonate, hydroxypyruvate,

succinate, cysteine, oxaloacetate, ornithine,
and glucose. Secondary: cadaverine.

[148]
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Table 1. Cont.

Crops and Cvs. Stage of Development Plant Organ Analytical
Platforms

Data Analysis
Models

Main Discriminatory Metabolites or
Classes of Metabolites References

Foxtail millet (Setaria
italica) 60 Days Shoots NMR PCA, HCA,

heat maps

Primary: fructose, glucose, gluconate,
formate, threonine, 4-aminobutyrate,
2-hydroxyvalerate, sarcosine, betaine,

choline, isovalerate, acetate, pyruvate, TCA
organic acids, and uridine.

[149]

Foxtail millet (Setaria
italica) Three to five leaves stages Leaves LC-ESI-QTRAP-MS PCA, HCA,

PLS-DA

Primary: glycerophospholipids, amino
acids, organic acids. Secondary: flavonoids,
hydroxycinnamic acids, phenolamides, and

vitamin-related compounds.

[104]

ANOVA: Analysis of variation; ASCA: ANOVA-simultaneous component analysis; DAD: Diode-array detector; DFA: Discriminant function analysis; ESI: Electrospray ionisation;
FT-IR: Fourier transform infrared; GC: Gas chromatography; GLC: Gas liquid chromatography; HCA: Hierarchical clustering; HDMS: High definition mass spectrometry; HPLC: High
performance liquid chromatography; HR-MAS: High resolution magic angle spinning; HRMS: High resolution mass spectrometry; LC: Liquid chromatography; MALDI: Matrix assisted
laser desorption/ionization; MS: Mass spectrometry; MSI: Mass spectrometry imaging; MS/MS and MSn: Tandem mass spectrometry; OPLS-DA: Orthogonal projections to latent structures
discriminant analysis; O2PLS: Two-way orthogonal projection to latent structures; 1H NMR: Proton nuclear magnetic resonance; OSC-PLS-DA: Orthogonal signal correction partial
least square discriminant analysis; PCA: Principal component analysis; PC-DFA: Principal component discriminant function analysis; PDA: Photodiode array detector; PLS-DA: Partial
least squares discriminant analysis; QToF: Quadrupole time-of-flight; UHPLC: Ultra-high performance liquid chromatography; UPLC: Ultra performance liquid chromatography; TCA:
Tricarboxylic acid; ToF: Time-of-flight; VIP: Variable importance in projection.
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7.1. Rice

The world’s reliance on rice as a food crop has led to the development of a large number of
new varieties/cultivars that differ genetically and phenotypically [150]. Different strategies are often
employed for the improvement of rice and some examples include conventional hybridization, heterosis
breeding, and genetic engineering. One example of the latter is the development of genetically modified
(GM; transgenic) cultivars well illustrated in the case of “golden rice” in Asia [151]. Wild type rice does
not contain vitamin A and its precursor beta-carotene. This deficiency significantly affects populations
using rice as a major staple food. A multi-gene biochemical pathway was incorporated into the rice
genome to express beta-carotene that can be metabolized by humans to produce vitamin A [151,152].
The argument around the development of such cultivars is often based on unintended changes that may
occur due to pleiotropic effects, mutation, and inactivation of endogenous genes in the transgenic plant;
resulting in an unintended difference in the phenotype [153]. However, these unintended changes
may not always have a negative impact on the genome. The metabolic regulation and adaptation of
“golden rice” following genetic manipulation of phytoene synthase (Psy) and phytoene desaturase
(crtI) were comprehensively studied [128]. Seeds of homozygous transgenic golden rice and the
non-transgenic counterpart were extracted for proteomics and metabolomics studies. HPLC results
revealed high levels of carotenoids in the GM line due to the expression of the Psy and crtI genes. Using
a GC-MS protocol [154] alterations in the carbohydrate metabolism pathway were detected in response
to the genetic manipulation. High levels of galactose, fructo furanose, D-glucoronate, and D-sorbitol
were found in the GM rice. Interestingly, proteomics data correlated with metabolomics results as
higher activity of pullulanase and UDP-glucose pyrophosphorylase were observed in the transgenic
line. Both enzymes play important in the carbohydrate metabolism linked to the biosynthesis of
carotenoids and interconnected to diverse metabolic pathways [128,155]. Moreover, increased activity
of the pyruvate, phosphate dikinase (PPDK), a key enzyme in the biosynthesis of pyruvate (a precursor
in the pathway leading to carotenoid biosynthesis) was also observed in the GM lines [128]. Despite the
argument around the development of golden rice, the crop has been approved in numerous countries.

Another study highlighting the role of metabolomics in assessing rice grains and leaves crop
quality was conducted by [111]. Using NMR-based metabolomics, the metabolic quality of two
cultivars of rice was evaluated. Distinct metabolic traits in leaves and grains of early and late maturing
rice cultivars (EMC and LMC) at all growth stages were successfully identified. Cultivar-specific
metabolism was observed until the milk ripe growing stage, through the over- and down-expression
of sucrose in leaves of LMC and EMC respectively. It was suggested that the rapid decrease of sucrose
in the EMC, probably led to the production of other metabolites namely phenylalanine, leucine, and
isoleucine. In the rice grains, remarkably higher quantities of sucrose, amino acids, and fatty acids
were found in EMC as compared to LMC. It was concluded that grains from the EMC rice were more
nutritious than those from the LMC [111]. Relatedly, the investigation of rice bran from 17 cultivars
across 7 different countries revealed a core metabolome and groups of metabolites differentiating
them. An average of 411 metabolites was annotated per cultivar, and 71 metabolites were found to
discriminate among them. From the cultivar-discriminating metabolites, 34 were associated with 15
metabolic pathways, linked to approximately 1500 genes in total. Gene-metabolite relationships with
medicinal and nutritional importance were identified and provided information of great relevance for
rice bran improvement [126]. A study was published illustrating the significant differences between
cultivars of rice sub-species (Oryza sativa, spp. ‘indica’ and ‘japonica’) [127]. Among the 92 metabolites
showing statistically significant variations, 66 were up-regulated in ‘japonica’- and 26 in ‘indica’ cultivars.
According to the Random Forest ranking, asparagine was found to be the most discriminant metabolite
with higher levels in ‘indica’. The metabolites responsible for differentiating the two sub-species
were found to be linked to nitrogen metabolism, inorganic nutrition storage, translocation, and
stress responses.

Abiotic stresses are major contributors to the decrease in crop production. A GC-MS metabolomics
approach was used to demonstrate the effects of drought and heat on the metabolite distribution of
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rice cultivars and organs at different developmental stages. More than 50% of metabolites identified in
the flag leaves at the flowering stage were significantly different in at least two of the three cultivars
(‘Anjali’, ‘Dular’, and ‘N22′). The highest levels of these metabolites were found in the most drought-
and heat susceptible cultivar ‘Anjali’. In the flowering spikelets, the highest levels of the polyols,
myo-inositol and glycerol, were found in the drought- and heat-tolerant ‘N22’. In the developing seeds,
while putrescine and two unknown metabolites levels were the highest in ‘N22’, compounds such as
vanillic acid, arabitol, 4-hydroxy-benzoic acid, arbutin, and hydroquinone were the highest in ‘Dular’
(drought tolerant and heat sensitive) and only erythritol and myo-inositol were the highest in ‘Anjali’.
Moreover, common and cultivar-specific responses to mild or severe stress were observed in different
organs and at different development stages. For instance, in different developmental stages of flag
leaves, nine metabolites including phenylalanine, threonine, raffinose, and others were found in all
three cultivars. These metabolites were then considered to be specific to the general response to severe
drought and heat pressures [113].

Seed storability is an important agronomic trait associated with seed longevity after harvest and
storage [156]. This trait was investigated in two hybrid rice cultivars, ‘IIYou 998′ (low) and ‘BoYou
998′ (high) [125]. With the help of an untargeted MS-based metabolomic, it was possible to reveal
the difference between the ‘IIYou 998′ and ‘BoYou 998′ cultivars as well as the difference among each
cultivar before and after 24-months of storage. An increased level of soluble sugar and sugar-related
compounds were found in ‘IIYou 998′ prior and post-storage. In addition, all amino acids detected
were more prominent in the same cultivar suggesting their contribution to storage sensitivity. The
differential occurrence of these metabolites between the two cultivars also suggested their use as
discriminatory markers to distinguish rice cultivars with regard to the storability.

An example of a multi-omics and multi-platform stress response study on rice cultivars following
bacterial infection is that of [129]. Prior treatment with the Xanthomonas oryzae pv. oryzae strain
PXO99, the metabolic distribution of the two genotypes ‘TP309′ (the parent genotype susceptible
to PXO99) and ‘TP309_XA21′ (the transgenic variety resistant to PXO99) was different in terms of
TCA intermediates, miscellaneous compounds, and sugar alcohols. Combining transcriptomics and
metabolomics, mechanisms affected by the challenges were highlighted. Significantly, different genes
and metabolites were compared to look for possible correlation in the response. The over-expression of
glutamate decarboxylase in both challenged cultivars and particularly in the resistant one, correlated
with a decrease of glutamate observed on GC-MS data and an increase of GABA observed in LC-MS data.
Similarly, a correlation between phenylalanine ammonia lyase (PAL) transcript levels, significantly
up-regulated in the resistant cultivar, and an elevated amount of phenylalanine was observed. PAL is
a stress-responsive defense-related enzyme linking primary – and secondary metabolism, leading to
synthesis of phenylpropanoids. The study provided important insights into rice infection and immunity.

7.2. Barley

Barley is a fast-growing crop with great adaptation ability. Although mainly used for animal
feeding and malt and beer production, barley remains an important source of high nutritional
compounds in human foods [157]. As mentioned before, researchers are constantly investigating
strategies for the development of cultivars resistant to environmental stresses and possessing high
nutritional content. In a study [115], the effect of salinity on two Tibetan cultivars of hulless barley was
investigated with a targeted metabolomics approach. The response observed varied with the stress
duration and was cultivar specific. Several compounds were identified in both cultivars; however,
nine metabolites including the flavonoids hesperetin and chrysoeriol, were characterized as main
biomarkers correlated to salt-tolerance. The time- and cultivar-dependent response observed was in
agreement with data from rice cultivars under similar stress conditions [158].

The spatial distribution of metabolites and various elements in seven varieties of barley during
germination was investigated in another salt stress study [130]. Using MALDI-MS imaging (MSI),
authors tentatively annotated different classes of lipids (e.g, fatty acyls, sphingolipids, and sterol lipids),
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in seeds of two barley varieties, Mundah and Keel. In both cultivars, the main perturbation in the
lipid profile was glycerophospholipids, however, the percentage of alteration was different in each
variety. In addition to the lipids, a flavonoid (gaiconin F, identified by LC-QToF-MS) was found to be a
discriminant metabolite in both varieties. The study reiterated the role of flavonoids in salt-stressed
plants and also the power of using multiple platforms in metabolomics studies.

Three analytical platforms (two LC-MS and NMR) were employed to detect and identify the
phenolic compounds present in nine spring varieties of barley leaves [132]. A total of 152 compounds
corresponding to different classes of phenolic metabolites were annotated. The study provided
extensive coverage of barley metabolites and the fragmentation patterns of hordatines ions and their
glycosylated forms were revealed for the first time [132]. A subsequent study [131] revealed the
presence of drought-related phenolics such as derivatives of sinapic acid and ferulic acid, polyamines,
hordatines and derivatives, and blumenol terpenoids. Polyamines were also found as biomarkers
following metabolite profiling of two cultivars of barley, ‘Clipper’ (boron-intolerant) and ‘Sahara’
(boron-tolerant), after exposure to high concentrations of boron. This important micronutrient is
capable of affecting plant development at low or high concentrations. The results suggested a link
between the polyamine putrescine and boron since the metabolite tends to increase in the intolerant
cultivar and decrease in the tolerant one [135].

Metabolomics and transcriptomics approaches were applied to field-grown barley genotypes.
Among the four genotypes, two were transgenics (‘ChGP’ and ‘GluB’) that were developed from the
parental cultivars ‘Golden Promise’ (GP) and ‘Baronesse’ (B). Alterations in the leaf metabolomes
and transcriptomes resulting from the presence of transgenes, and interaction of the cultivars with
arbuscular mycorrhizal fungi, were provided. The results in the study revealed cultivar-specific
differences, and again highlighted the sensitivity of untargeted and targeted metabolomics employed
(as compared to transcriptomics) in uncovering minor differences observed between ‘B’ and ‘GluB’.
Moreover, differences resulting from the fungal infection were well-defined at a metabolic level but not
evident at a transcriptomic level [134].

In a study with a nutritional focus, barley mutants of the ‘Bombi’ cultivar were investigated
for the production of lysine-rich vegetable protein and for augmented β-glucan production. GC-MS
metabolomics methods demonstrated a much wider impact of the mutations with unique metabolic
patterns associated with the tricarboxylic acid cycle, shikimate-phenylpropanoid pathway, mevalonate,
lipid and carbohydrate metabolism in mutants. Furthermore, as an example of genotype x environment
x phenotype-relationships, growth temperature primarily affected shikimate-phenylpropanoid and
lipid metabolism. Low-temperature markers were benzoic acid, 3-OH-benzoic acid, pyroglutamic acid
and the methyl ester of hepta-2,4-dienoic acid, while high-temperature markers were glycerol and the
methyl ester of 4-OH-phenylacetic acid [133].

7.3. Sorghum

Sorghum is an important food and fuel crop, and the fifth most important cereal in the world.
Untargeted metabolomics was applied to characterize the biochemical variation existing between eleven
lines of sorghum (grain and biomass types) and to explore the associations of the metabolome with
physiological, morphological, and structural carbohydrate traits [138]. Although all metabolites were
not annotated, significantly high variation was observed among genotypes. About 84% of metabolites
detected from GC-MS and 76% from LC-MS fluctuated between the sorghum lines. Comparing grain
and biomass types, 27% of metabolites detected with both analytical platforms exhibited considerable
variation. Moreover, using univariate and multivariate methods such as Spearman’s rank correlation
and two-way orthogonal projection to latent structures (O2PLS) respectively, the relationship between
metabolites and morpho-physiological traits were pointed out. A positive correlation between the
glycosylated flavonoids and photosynthesis-related traits was noted. Chlorogenic acids were also
found to be positively correlated to photosynthesis, and negatively correlated to both growth rates
and biomass. In a recent study [159], three sweet sorghum cultivars with black, red, and white seeds
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were investigated to reveal cultivar-specific metabolites involved in the mechanism of color change.
Multivariate data analysis tools such as the OPLS-DA model using the variable importance in the
projection (VIP), with the consideration of the fold change or p-value allow the selection of discriminant
metabolites among the three cultivars. Different flavonoids and anthocyanins were differentially
identified in sorghum cultivars. The results revealed that more flavonoids were found in dark-colored
seeds in comparison to light-colored seeds, and anthocyanins were responsible for the largest variation
among the cultivars. These studies reiterated the close link between the metabolome and phenotype,
and the importance of metabolomics in understanding biological processes.

During agricultural production, the effect of abiotic and biotic stresses can have a devastating
impact on sorghum yield and growth. The development of new cultivars capable of withstanding
such pressures is of great importance and requires the understanding of the key compounds produced
and mechanisms occurring during plant x environment interactions. An untargeted metabolomic
approach was employed to investigate the metabolic and biochemical responses of two cultivars of
sorghum (Samsorg 17 and Samsorg 40) under drought stress [160]. A variation among the two cultivars
possessing different levels of drought resistance was observed in under-watered and moderate drought
conditions. However, the two cultivars seemed to respond similarly in extreme drought [137]. When
it comes to biotic stresses on sorghum, leaf stripe disease and anthracnose caused respectively by
the bacterium Burkholderia andropogonis and the fungus Colletotrichum sublineolum, are among the
most destructive diseases affecting crop yield [161]. In a recent study, an LC-MS based untargeted
metabolomics approach was employed to understand the interaction of different cultivars of sorghum
with B. andropogonis. Important cultivar-specific biomarkers such as metabolites from the isoflavonoid
and the phenylpropanoid pathways were identified as part of the metabolic reprogramming occurring
in sorghum after pathogen attack [114]. Similarly, integrated gene expression analysis was used with
metabolomics to not only identify signatory biomarkers but also to reveal potential metabolic pathways
associated with sorghum in response to C. sublineolum [136].

7.4. Wheat

Wheat, as a staple crop, is a close third to rice and maize in total world production and is an
important source of dietary fiber, micronutrients, and protein [141]. Several studies illustrated the
potential use of metabolites as markers in wheat breeding and the importance of metabolomics in
identifying quantitative trait loci (QTLs) associated with specific phenotypic traits [162–164]. Mature
kernels of 145 recombinant inbred lines were collected from the KJ-RIL population which derives from
the cross between Kenong 9204 and Jing 411, two elite wheat varieties. Using an LC-MS/MS analytical
platform, 1260 different metabolites were detected and quantified, out of which 351 metabolites were
putatively annotated and 116 structurally annotated using authentic standards. A large number of
metabolic pathways were revealed. These involved different classes of metabolites with important
agronomic functions and examples are phenolamides, flavonoids, polyphenols, fatty acids, vitamins,
sugar, organic acids, amino acids and derivatives, phytohormones and derivatives, and nucleic acids
and derivatives. Line-specific metabolite distribution was noted, and the highest variation was
observed with polyphenols and phenolamides. As mentioned before heritability is an important
characteristic of metabolic markers, and a factor to consider during trait selection. In this study,
the majority of annotated metabolites depicted high heritability with the highest observed being
flavonoids. Interestingly, 24 candidate genes were identified directly through quantitative trait loci
(QTL) mapping. One was confirmed to express UDP-glycosyltransferase (UGT) and flavonoids such
as luteolin, apigenin, quercetin, and kaempferol. The study highlighted the connection between
metabolomics and agronomic traits and its applications in genome-wide associations studies (GWAS)
to improve functional genomics in grains crop breeding [140].

Forty-five wheat cultivars from three U.S. market classes (tetraploid durum wheat, DW; hexaploid
hard wheat, HBW and soft bread wheat, SBW), were successfully distinguished in a metabolomics
study [142]. The comparison of DW and bread wheat (BW) revealed 16 metabolites positively correlated
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with BW and 19 in DW. The identified metabolites in BW were found to be polar lipids, and in the
case of DW nonpolar lipids. These metabolites included glycerolipids in BW and fatty acyls in DW
and were responsible for the discrimination between the classes. This profiling of wheat cultivars
provided invaluable information for the production of good bread quality as the lipid content of wheat
has an indirect effect on the dough properties. Similarly, [141] profiled the metabolite composition of
different BW genotypes and other wheat species types using high-throughput proton-nuclear magnetic
resonance (1H-NMR) screening developed for the analysis of non-purified extracts. The method was
successful to demonstrate the diversity within and between species and to quantify asparagine, glycine
betaine, and choline.

Integrative biochemical networks in wheat leaves responding to water-deficient conditions were
revealed by using a combination of proteomics and metabolomics approaches [139]. A clear sample
grouping was visualized between drought-susceptible (‘Bahar’) and drought-tolerant (‘Kavir’) on PCA
models, showing the water-deficit condition and control samples separately. A more pronounced
distinction was observed between control and drought-stressed samples in ‘Bahar’ showing that
the metabolites accounting for these differences are more discriminatory as compared to the ones
in ‘Kavir’. In response to drought, 14 and 16 metabolites (with VIP scores > 1) were respectively
selected as a discriminant in ‘Kavir’ vs. ‘Bahar’. Using metabolic pathway analysis (MetPA),
interesting drought-related pathways and networks were revealed. The main pathway involved in
the drought-tolerant cultivar was the metabolism of purine. Guanine and adenine were found to be
upregulated in the treated tolerant ‘Kavir’ plants as compared to the controls. In the drought-sensitive
‘Bahar’ cultivar, the top nine metabolic pathways were all correlated to the metabolism of amino
acids. This perturbation was characterized by the upregulation of amino acids during water-deficiency.
Proline, a well-documented biomarker of drought in plants, increased intensely in both cultivars and
was classified as a second variable of importance in ‘Bahar’ and fourth in ‘Kavir’. In addition, several
other metabolites and pathways potentially involved in drought responses were suggested in the study,
providing a foundation for future research. A similar study on heat stress of six wheat genotypes
demonstrated the link between genetic variability and altered metabolic levels [112]. High-resolution
LC-MS based metabolite profiling was used, and 64 known metabolites were identified to be affected
by heat stress. Among these metabolites, amino acids such as tryptophan, histidine, arginine, and
leucine were positively correlated; and threonine, aspartate, 4-aminobutanoic acid (GABA) and
phenylalanine were negatively correlated to the stress. Elevated levels of sugar, sugar alcohols, and
organic compounds were noted in plants experiencing heat stress. Furthermore, the study highlighted
several compounds differentiating heat-stressed plants from controls, and which could possibly be
applied as potential biomarkers for genetic improvement studies.

7.5. Maize

As described, the phenotype is strongly affected by genotype, environment, and interactions
between genotype and environment. The same is true for the metabolic composition of maize as
highlighted by [109], where non-genetically modified (GM) hybrids were used to metabolically
characterize the complexity of the genotype, environment, and interaction in hybrid seeds.
Six geographically diverse locations in North America were chosen for this purpose. Although
the polar metabolite content in maize seeds is usually low (around 5%), by choosing the appropriate
location and inbred line, an increase in the level of these metabolites were observed. A total of 45
different polar metabolites were reported in all samples, and their abundance across the different
hybrids and locations were compared. Ultimately it was shown that the environment had a greater effect
on the accumulation of polar metabolites compared to the different genotypes. Of the 45 metabolites
used for comparing the different lines and regions, sucrose, glucose, fructose, and two unidentified
metabolites (m/z 133 and m/z 189) contributed to most of the variation observed. Fructose stood out
as a major source of variation across the different lines and showed changes influenced by both the
environment and genotype.
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In a non-targeted study by [143], a comprehensive metabolomic investigation of maize kernels
was reported. Unlike the study by [109], [143] only compared 14 maize lines (of which 13 were inbred
and 1 hybrid) that were all planted in the same region. After chemometric - and statistical analysis, out
of 210 annotated metabolites, 75 metabolites contributed to the differentiation between the different
lines. Of these, the main metabolites involved included dihydrokaempferol, nicotinate ribonucleoside,
phosphoethanolamine, stigmasterol, and trans-4-hydroxyproline. Conversely, all eight glycolysis
metabolites were similarly expressed over the different lines including sucrose and fructose. Ultimately
the work provided insights into the maize kernel metabolome that would be useful for metabolic
engineering or molecular breeding studies to improve maize kernel quality and yield.

A similar study, involving genotype and environmental effects of GM (Bt) maize involved
four non-targeted analytical methodologies to detect unintended effects that result during genetic
manipulation [144]. Data collected over three growing seasons showed distinct differences in the
proteome and metabolite levels, suggesting that the effect of the environment strongly influenced
their production. Among the identified metabolites, fifteen (including glucose, fructose, tocopherol,
and inositol) were differentially produced throughout the three seasons. The generated data showed
that the growing season had a stronger influence on the metabolome, proteome, and transcriptome of
different maize genotypes compared to the genetic modification.

In a more recent study by [145], thirty genetically different inbred maize lines were
studied with the aim of identifying metabolite signatures for differentiating hybrid groups
based on their silage-earliness and sowing conditions. Interestingly, early sowing of the
hybrid lines, compared to normal sowing, had a greater effect on the leaf composition
where several metabolites associated with this response were identified. Metabolite-markers
associated with sowing conditions and applicable in breeding were suggested. Among these
markers were 2-hydroxy-7-methoxy-1,4-benzoxazin-3-one (HMBOA)-glucoside, caffeoylisocitrate,
tricin, 2-hydroxy-4,7-dimethoxy-1,4-benzoxazin-3-one (HDMBOA)-glucoside, coumaroylquinate B,
cyanidin-glucoside, and dihydroquercetin glucoside associated with chilling tolerance.

In grain crop breeding, the focus is usually on crop improvement particularly with regard to
disease resistance, grain size, grain quantities, and grain quality. As previously mentioned, due to
the domestication of crops, cultivars and varieties have lost some valuable traits due to intermittent
selection, this obstacle has however been overcome by reintroducing these traits and creating genetic
diversity through the crossing of wild relatives and cultivated varieties [89,91]. With this concept
in mind, [146] set out to identify and measure the abundance of metabolites that were targeted for
selection during maize domestication. Seedlings from different maize accessions, its wild relative
teosinte, and maize-teosinte cross populations were screened to compare their metabolic profiles and
assess the changes caused by domestication. A range of metabolites were detected among which lipids,
terpenoids and alkaloids differed greatly in the teosinte and tropical maize crops. Benzoxazinoids,
on the other hand, contributed to the differentiation between the tropical and temperate maize crops.
Additionally, a multi-omics approach was used where the genome, transcriptome, and metabolome
data were used to identify candidate genes that contributed to metabolic divergence seen in the
maize-teosinte cross populations. This study has provided novel insights on the use of metabolomics in
plant breeding and illustrated how the metabolome has changed during domestication in maize crops.
Furthermore, it can be seen as the foundation for upcoming studies to explore metabolic divergence
and how it relates to environmental influences.

Maize crops were also used for a more comprehensive understanding of the maize flavonoid
pathway by combining metabolic profiling with genetic mapping and gene regulatory network
analysis [147]. The authors explored flavonoid biosynthesis and various genetic influences by
integrating the genomic, transcriptomic, and metabolomic data. This allowed for the detection and
identification of potential candidate genes. Interestingly, when comparing the maize crops from
different environments and populations, they were able to recurrently detect 25 QTL that corresponded
to 23 different flavonoids. Among these, a number of flavonoids were consistently present across the
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six environments, many of which were apigenin, chrysoeriol, tricin, and naringenin based. This study
showed potential new prospects towards fully understanding the maize flavonoid pathway by moving
beyond QTL and normal association mapping.

7.6. Oats

The assessment of cultivars as germplasm for breeding purposes initially involves that the material
be analyzed for characteristics that will ensure resistance to biotic and abiotic environmental factors
and provide nutritional value in future cultivars. Metabolomic profiles of wild and cultivated varieties
of oats were therefore investigated in a study by [110] to compare metabolic changes that occurred
from the acculturation of wild varieties to cultivated varieties with respect to organic acids, fatty acids,
polyhydric alcohols, and sugars. The metabolic profiles revealed the content of various identified
metabolites in extracts from cultivated oats and wild varieties. From the identified metabolites, only a
few indicated high variation between the cultivated and wild types. Notably, the oleic acid content of
the cultivars was significantly higher than that of the wild types, while the latter had higher contents
of linoleic acid and monoacylglycerol. These metabolites contributing to the differentiation of the wild
and cultivated varieties are not only nutritionally important but are often associated with resistance or
tolerance to abiotic factors. Overall, the study concluded that many important compounds decreased
in cultivated forms due to evolution and breeding; however, an increase in the amino acid content in
the cultivated varieties was a favorable outcome.

In an abiotic stress study of selected oat cultivars by [148], key metabolites and metabolic pathways
were examined in order to define important processes involved in drought tolerance. Generally, the
metabolic pathways involved in the production of amino acids, sugars, amines, and sugar alcohols
are commonly affected in response to drought stress [165,166]. Metabolic profiles that resulted from
the comparison of two oat cultivars, ‘Flega’ (susceptible) and ‘Patones’ (tolerant), after exposure to
drought stress, indicated that changes in the photorespiratory pathway were sufficient in distinguishing
between the two. ‘Patones’ in this regard showed an increased abundance of metabolites involved
in the Calvin cycle, particularly, ribulose-1,5-bisphosphate and 2-phosphogycolate. ‘Flega’, on the
other hand, had lower amounts of glyceraldehyde-3P and other components of the Calvin cycle
compared to ‘Patones’. Moreover, a comparison of the glyoxylate levels indicated an earlier response
to drought stress in the tolerant line and lower antioxidant capacity and photorespiratory activity in
the susceptible line. Overall, the study produced models that can be used to suggest possible markers
for cereal breeding.

7.7. Millet

The effect of natural variation and species-specific accumulation of primary and secondary
metabolites on the metabolomes were predominant features in a study of foxtail millet and millet
hybrids [104]. Metabolic analysis indicated that compounds such as flavonoids, phenolamides,
hydroxycinnamoyl derivatives, vitamins, and lysophosphatidylcholines were developmentally
controlled and showed natural variation in different varieties. Variation was also observed through
the accumulation of secondary metabolites when millet and rice were compared. The research
thus provided insight into developing predictors for hybrid performance and future analysis of the
biosynthesis, and regulation, of relevant metabolic pathways in millet.

Millet is now also being explored for its potential as a biofuel source. To increase
biomass production, stimulation by plant growth-promoting bacteria (PGPB) and mycorrhiza were
suggested [149]. Upon metabolomic analyses, 28 metabolites were annotated in foxtail shoots after
inoculation with both PGPB and mycorrhiza. A significant increase in malate and other metabolites
associated with the TCA cycle was observed for PGPB treatment; additionally, in the mycorrhiza
treated groups, levels of 4-aminobutyrate, succinate, and asparagine were upregulated. In contrast,
downregulation of fructose and glucose was observed in most of the treated groups which the authors
described as metabolic shifts toward using more complex carbohydrates during the enhancement of the
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biomass. Hydroxyvalerate also showed a positive correlation to foxtail height and fresh, dry biomass
in groups treated with mycorrhiza only. The study ultimately showed that PGPB and mycorrhiza
treatments are beneficial for the enhancement of biomass and for boosting sugar yield.

8. Conclusions and Future Perspectives

Recent reports on plant metabolomics applied in the crop sciences demonstrate the progress in
using this omics strategy to understand how the phenotype correlates to the metabolome and, by
extension, to reveal the active role of metabolites in normal and stress physiology. Based on the current
review it is clear that metabolomics, although considered a relatively new field, is exponentially growing
in application and impact in various aspects of the plant sciences. To date, metabolomics has provided
valuable molecular information in research on grain crops and identified significant biomarkers under
different conditions and/or stressors. However, the value of metabolomics has been redefined from
simple biomarker identification to a tool for discovering active drivers involved in biological processes
and, therefore, metabolomics has not yet reached its ultimate potential. Gene-based marker-assisted
selection, currently a prime focus in grain crop breeding, has shown great success addressing key
challenges in crop improvement. However, one of the limitations of MAS is that the presence of genes
associated with disease resistance, abiotic stress resilience, or crop yields, do not always guarantee
effective expression of the trait. Therefore, the use of metabolic phenotypes in genetic variation
studies may provide insights into understanding crop physiology from a metabolomics point of view.
The integration of metabolomics with MAS should be explored as an alternative/supplementary tool
in grain crop breeding research to ensure greater coverage and confidence in the identification and
differentiation of cultivars, as well as varieties in the future. Moreover, the potential of metabolomics
as a field of study is continuously being improved by technical innovation of the analytical platforms,
promising further perfection for a broader, faster, and more cost-effective coverage of the metabolome.
The focus of grain crop breeding generally involves genotyping or phenotyping for trait selection
and for cultivar differentiation. In the future, more consideration needs to be given to the use of
metabolomics in understanding environmental factors (envirotyping) and how these factors contribute
to changes in the genome and ultimately the phenotype and vice versa. Additionally, with the growing
use of crop wild relatives to recover desirable traits and reintroduce genetic variation, the use of
metabolomics should be explored to accompany current methodologies in the identification of markers
for desired traits.
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