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Abstract: Statistical, data-driven methods are considered good alternatives to process-based models
for the sub-national monitoring of cereal crop yields, since they can flexibly handle large datasets
and can be calibrated simultaneously to different areas. Here, we assess the influence of several
characteristics on the ability of these methods to forecast cereal yields at the local scale. We look
at two diverse agro-climatic Italian regions and analyze the most relevant types of cereal crops
produced (wheat, barley, maize and rice). Models of different complexity levels are built for all
species by considering six meteorological and remote sensing indicators as candidate predictive
variables. Yield data at three different spatial aggregation scales were retrieved from a comprehensive,
farm-level dataset over the period 2001-2015. Overall, our results suggest the better predictability
of summer crops compared to winter crops, irrespective of the model considered, reflecting a more
intricate relationship among winter cereals, their physiology and weather patterns. At higher spatial
resolutions, more sophisticated modelling techniques resting on feature selection from multiple
indicators outperformed more parsimonious linear models. These gains, however, vanished as data
were further aggregated spatially, with the predictive ability of all competing models converging at the
agricultural district and province levels. Feature-selection models tended to elicit more satellite-based
than meteorological indicators, with a preference for temperature indicators in summer crops, whereas
variables describing the water content of the soil/plant were more often selected in winter crops.
The selected features were, in general, equally distributed along the plant growing cycle.

Keywords: crop yield forecasting; cereals; statistical models; lasso; ridge; elastic net

1. Introduction

Timely and accurate yield forecasts of the most relevant cereal species are essential for the correct
design, implementation and monitoring of major agricultural policies. In Europe, cereal yield forecasts
contribute, for instance, to the cereal supply balance sheets of the European Union, which help to
stabilize cereal prices and prevent market distortions within the European common market.

The spatial resolution of crop yield forecasts delivered by major operational forecasting systems
is at most the regional or NUTS2 level (NUTS2 refers to regions belonging to the second level of the
EU’s Nomenclature of Territorial Units for Statistics). Greater spatial detail of these forecasts would be
desirable to adapt relevant agricultural policies to more specific target areas. However, the design of
spatially resolved yield forecasting systems poses some challenges, which can be broadly classified
into two categories: data-related and methodological. On the one hand, crop yield forecasting at the
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sub-regional level requires reliable and near real-time agro-climatic data, able to cover extensive areas
with high temporal frequency. On the other hand, modelling methods are required to be flexible and
computationally manageable tools.

The proliferation of agricultural farm-level yield datasets, the increase in the amount and resolution
of Earth observation (EO) products and observed higher quality of meteorological gridded datasets
help us to address data-related limitations. In recent years, the use of EO indicators has become very
popular in agricultural applications. These products have been used to complement climate-based
indicators in the calibration of crop models. [1] compared the accuracy of EO-based indicators against
crop model indicators implemented in the crop growth monitoring system (CGMS) [2] for crop yield
forecasting in Europe, and showed that EO-based biophysical indicators produced more accurate
yield estimates in specific countries. The validity of EO products as yield predictors has been further
confirmed with studies at the regional [3,4], and the sub-regional scale [5].

Current operational yield forecasting systems use either process-based methods, statistical
(data-driven) methods [6], or a combination of them. For instance, in Europe, the approach of the
MARS (Monitoring Agricultural Resources) Crop Yield Forecasting System (M-CYFS), developed and
maintained by the European Commission’s Joint Research Centre (JRC), is based on gridded runs
of the WOFOST (World Food Studies Simulation Model) process-based crop model and statistical
methods [7]. Process-based crop models are highly parameterized and its calibration to large areas
with diverse agro-climatic conditions is very difficult to achieve. In recent years, statistical methods
have been gaining attraction, due to their simplicity and their ability to manage large amounts of data.
These models have been applied, most often at the country or regional level, to study several issues:
assess climate change impacts on yields [8-10]; identify factors determining crop productivity [11-14];
but also, as the basis for yield forecasting systems [15-20].

Statistical models are flexible enough to ingest large amounts of data and can be easily adapted to
different agro-climatic areas. Their estimation, however, is often based on regression methods and can
thus suffer from the known limitations and drawbacks of such models. For example, when the number
of predictors is low, multiple linear regression models have proven to be successful [21,22]. Ref. [23]
showed that linear models outperform in many cases more complex statistical models in explaining
yield variability. However, when a high number of candidate explanatory variables are considered,
OLS (ordinary least squares) estimation is often subject to overfitting problems, which weakens the
prediction power of these approaches. For such cases, more sophisticated estimation techniques, such
as ridge or lasso regressions are sometimes useful, especially when the number of variables is large
compared to the number of data, and/or where these inputs are strongly correlated [24].

The aim of this study is to investigate the feasibility and performance of different local-scale
statistical crop yield forecasting tools. Two diverse agro-climatic areas in Italy and four cereal species
(wheat, barley, maize and rice) are considered. Forecasts derived from statistical models of different
complexity levels under various spatial aggregation scales are compared.

2. Area of Study

Two diverse agro-climatic regions, the Apulia region, Puglia (abbreviated PG) in Italian, and the Po
River Basin District (PRBD) are considered in this study (Figure 1). They are the main cereal-producing
areas in Italy, accounting for more than two-thirds of national cereal production [25].

PG is located in south-eastern Italy. About 70% of its surface, predominantly flat, is devoted
to agriculture [26]. The most important agricultural land for production of cereals is situated in the
central-northern zone, while olive trees and vineyards dominate the central and southern parts of the
region. The climate is mainly of Mediterranean semi-arid type (Koppen: Csa), characterized by hot
and dry summers and moderately cold and rainy winter seasons. Monthly precipitation ranges from
about 30 mm/month in July, to 80 mm per month in November and December. Daily mean temperature
seasonal cycles range from 7 °C in January to 25 °C in August [27]. Being surrounded by the seas,
relative humidity in summer stays not lower than 50% [28].
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Figure 1. Description of the studied area. An overview of the location of the two studied regions within
Italy (left map), with Po river highlighted in orange. The three different spatial aggregation scales
considered can be seen on the right-hand side panels: province (left), agricultural district (centre) and
municipality (right).

The PRBD comprises five regions in northern Italy (Piedmont, Aosta Valley, Lombardy, Veneto
and Emilia-Romagna), running from the Western Alps to the Adriatic Sea. The Po Valley has a warm
oceanic climate (Koppen: Cfa), cool-humid with fog in winter and warm-moist in summer, with
precipitation peaks in spring and autumn [29]. Mean daily temperature seasonality varies from just
about zero degrees in winter to around 20 °C in summer [30]. On average, the precipitation over the Po
basin is about 100 mm/month, with up to 50% difference among the seasonal peaks and the winter and
summer dry period, and large interannual variability [29]. Climate in PRBD is strongly conditioned by
orography. The Po valley, also known as Padan Plain, is structured as an extensive flatland, where the
Alps protect the area from cold winds from north Europe, while the Apennines limit the mitigation
action of the sea, favoring high levels of relative humidity throughout the year [31,32]. The relative
humidity during summer is about 50%, similarly to PG [28]. The layout of the plain makes temperature
variability over the year evenly distributed, in any point of the basin.

3. Materials and Methods

3.1. Yield Data

Farm-level, geo-referenced yield and surface data were retrieved from the Rete di Informazione
Contabile Agricola (RICA) dataset, for a period covering the 2001-2015 growing seasons. RICA data
is collected annually by the Italian Council for Agricultural Research and Economics (Consiglio per
la Ricerca in agricoltura e I'analisi dell’Economia Agraria or CREA). CREA conducts field-level surveys
providing data on a comprehensive list of agricultural and livestock variables from representative farms
in Italy. The RICA-CREA dataset serves as the Italian input for the European Union’s Farm Accountancy
Data Network (FADN; https://ec.europa.eu/agriculture/rica/), an instrument for evaluating the income
of agricultural holdings and the impacts of the EU’s Common Agricultural Policy (CAP).

Four different cereal species (wheat, barley, maize and rice) are here analyzed. These four classes
represent 97% of the total cereal production in the two studied regions. Most of the wheat in northern
Italy is common wheat (around 80%), but durum wheat is also grown in the region (around the
province of Parma), and its share within total wheat production keeps on rising. However, most of
the durum wheat is grown in PG, the largest producing region in Europe. The cultivation of durum
wheat in PG is overwhelmingly predominant, accounting for 92% of total cereal production in the
region. Differences in the species and varieties grown in both regions, as well as diverse agro-climatic
conditions, are reflected in the productivity of wheat farms, evidenced in Figure 2. Barley is also
grown in PG and PRBD, but is relatively less important quantitatively, representing 5% and 4% of
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total regional cereal production, respectively. Maize and rice, mostly irrigated, are produced only in
PRBD. These two crops are particularly relevant in the Po valley area and account for 82% and 98%,
respectively, of the total national production. Except for wheat yields showing a slightly positive trend,
cereal yields have remained stable over the study period in both regions (see Figures S1-S3 in the
Supplementary Materials).

Figure 2. Average wheat yields (tons/hectares) in Puglia (PG) (left) and the Po River Basin District
(PRBD) (right), at the municipality level over the study period (2001-2015).

Despite RICA-CREA featuring a good spatial coverage of the two territories at the farm level
(see Figures 54 and S5 in Supplementary Materials for a detailed description of the sampling frequency
of each geographic area), there remain essentially two main reasons for data spatial aggregation:
(1) RICA-CREA data show precise geo-reference information only after the year 2010. Prior to that
year, only the municipality ascription of observed fields was provided; (2) survey-based data are
usually subject to uncertainty associated to respondents inaccurately or falsely answering questions.
Assuming a random bias in the responses, these uncertainties tend to mitigate when yield observations
are spatially aggregated. Accordingly, three different scales of spatial aggregation are explored in
this study: (i) municipality, (i) Regione Agraria (agricultural district), and (iii) province (see right
panels of Figure 1). For every season, crop and administrative unit considered, annual average cereal
productivity was obtained as the total harvested product (tons) per aggregate unit of surface (hectare).
A description of yield data at the three spatial aggregation scales studied can be found in Table 1.

3.2. Yield Predictors

Several potential candidate predictors were considered. These indicators are broadly classified
into two main families: meteorological and satellite-based indicators. Their sources, timespan and
horizontal resolutions are described in Table 2. The selected indicators feature a native resolution
below the size of the administrative units considered. Therefore, they were all trimmed and aggregated
at the respective geographical unit of reference (municipality, agricultural district or province), using
the 4th (2012) CORINE Land Cover inventory in Europe [33], and the corresponding boundaries
maps. In particular, land cover class 2.1.1 (Non-irrigated arable land) was used for wheat, barley and
maize, and class 2.1.3 (Rice fields) for rice. All variables (apart from precipitation, which was monthly
cumulated) were averaged at the monthly scale. We distinguished between winter (wheat and barley)
and summer crops (maize and rice). A homogenous growing season cycle was considered in both
regions: a 9-month (October to June) growing cycle was assumed for winter crops and a 7-month
(April to October) cycle for summer crops. Only monthly predictors belonging to the specified growing
cycle periods were considered as candidate predictors.
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Table 1. Descriptive statistics of RICA-CREA yield data at the three spatial aggregation scales considered.

Municipality

Region Crop N Mean () sd (o) cv(o/w)

PRBD Wheat 8319 5.713 1.166 0.204

PRBD Barley 4115 5.157 1.257 0.244

PRBD Maize 10359 10.207 2.468 0.242

PRBD Rice 1363 6.302 0.879 0.139
PG Wheat 1475 2.548 0.937 0.368
PG Barley 346 2.694 1.191 0.442

Agricultural
District

Region Crop N Mean (p) sd (o) cv(o/p)

PRBD Wheat 2140 5.638 1.017 0.180

PRBD Barley 1715 5.105 1.105 0.216

PRBD Maize 2303 10.015 2.103 0.210

PRBD Rice 296 6.177 0.912 0.148
PG Wheat 445 2.559 0.836 0.327
PG Barley 198 2.684 1.174 0.437

Province

Region Crop N Mean () sd (o) cv(o/w)

PRBD Wheat 415 5.621 0.755 0.134

PRBD Barley 397 5111 0.879 0.172

PRBD Maize 438 9.816 1.795 0.183

PRBD Rice 112 6.079 0.941 0.155
PG Wheat 82 2.476 0.622 0.251
PG Barley 69 2.518 0.867 0.344

N = Number of observations; sd = standard deviation; cv = coefficient of variation; Po River Basin District = PRBD;
Puglia = PG.

Table 2. Data sources and description of the weather and satellite-based indicators used in the
construction of the analyzed statistical models.

Short Name Variable Source Frequency Resolution
Temp Mean air temperature UERRA Daily 11 km
Temp.Min Minimum air temperature UERRA Daily 11 km
Temp.Max Maximum air temperature UERRA Daily 11 km
Prec Cumulative Precipitation UERRA Daily 11 km
Standardized
Precipitation-Evapotranspiration Own elaboration (from
SPEIL Index I(>th1ree differelilt accufnulation UERRA datag Monthly 1T lem
periods: 3, 6, 9 months)
fraction of Absorbed
fAPAR Photosynthetically Active Copernicus 10-day 1 km
Radiation
LST Land Surface Temperature MOD11A2 8-day 1 km
ET Net Evapotranspiration MOD16A2 8-day 500 m

UERRA (Uncertainties in Ensembles of Regional ReAnalyses); The Standardized Precipitation-Evapotranspiration
Index (SPEI); Absorbed Photosynthetically Active Radiation (fAPAR); Net Evapotranspiration (ET); Land Surface
Temperature (LST); The MOD11A2 Version 6 product provides an average 8-day per-pixel Land Surface Temperature
and Emissivity (LST&E) with a 1 kilometer (km) spatial resolution in a 1200 by 1200 km grid; The MOD16A2
Version 6 Evapotranspiration/Latent Heat Flux product is an 8-day composite dataset produced at 500 meter (m)
pixel resolution.

3.2.1. Meteorological Variables

Temperature and precipitation time series were retrieved from the regional high-resolution (11 km)
UERRA-Harmonie V1 reanalysis. This reanalysis was produced within the FP7 Uncertainties in
Ensembles of Regional ReAnalysis UERRA project, with boundary conditions given by the global
ERA-Interim reanalysis [34]. A complete description of the HARMONIE modelling system can be
found in [35]. A drought stress index was derived from UERRA temperature and precipitation monthly
time series. The Standardized Precipitation-Evapotranspiration Index (SPEI) [36] was calculated for
each administrative unit (municipality, agricultural district and province), approximating potential
evapotranspiration with the Thornthwaite equation [37]. The climatic water balance was computed
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on three different accumulation periods: 3, 6 and 9 months. Finally, SPEI values were obtained by
standardizing monthly values of the climatic water balance over the analyzed period (2001-2015),
using an empirical cumulative distribution function.

3.2.2. Remote Sensing Indicators

Three satellite-based indicators were considered in this analysis: the fraction of Absorbed
Photosynthetically Active Radiation (fAPAR), Net Evapotranspiration (ET) and Land Surface
Temperature (LST). These three indicators correlate well with crop yields [3,38-40], and are usually
used as explanatory factors of yields in statistical models.

The fAPAR [41,42] is a spectral vegetation index quantifying the fraction of the solar radiation
absorbed by live leaves for the photosynthesis activity. It refers only to the green and alive elements
of the canopy. fAPAR data used in this study refer to version 2 of the data provided by [43]. LST
(MOD11A2) [44] measures the radiative skin temperature of the land surface, including both vegetation
and bare soil temperatures. It correlates but does not exactly matches surface air temperature.
ET (MOD16A2) [45] summarizes part of the water cycle of the plant as the sum of evaporation and
plant transpiration to the atmosphere. It is produced based on the logic of the Penman-Monteith
equation [46], which includes inputs of daily meteorological reanalysis data along with remotely
sensed data products, such as vegetation property dynamics, albedo, and land cover.

3.3. Statistical Models

We assessed the predictive ability of two different classes of models: parsimonious models,
relying on a reduced number of predictors; and more complex, data-intensive models based on
multiple indicators observed at different temporal scales. These families of models were applied to
each region-crop combination under the three scales of spatial aggregation (municipality, agricultural
district and province) considered.

Parsimonious models in this context are simple linear statistical models relying on a set of
representative indicators within the growing season. In particular, a parsimonious model based on
representative temperature (Temp) and precipitation (Prec) would read:

log(yi) = yo+ y1-Season; + y-NUTS3; + B1-Temp; + Bo-Prec; + ¢; 1)

where yields of crop i relate linearly to monthly average temperature (Termp) and monthly cumulative
precipitation (Prec), a constant term, a seasonal effect (Seasorn) and a provincial fixed effect (NUTS3),
while ¢; is a residual random error term. Yields come expressed in logarithms, which implicitly
assumes that changes in the independent variables have the same percent impact on yields regardless
of yield level. Equation (1) was estimated with OLS.

Parsimonious models were estimated for different candidate predictors, as described in Table 3
(rows 1-6). All possible monthly values over the hypothesized growing season were considered as
candidate predictors. The final selected model was the one featuring lowest Root Mean Squared
Error (RMSE). For instance, for the case of PG-Wheat (region-crop) and the family of models based on
meteorological indicators (Model: Meteo), 9 different parsimonious models were estimated (a growing
season of 9 months between October and June was assumed) and the model with greater predictive
ability was retained. This estimation strategy was replicated for all the region-crop combinations and
all the candidate models proposed.



Agronomy 2020, 10, 809 7 of 16

Table 3. Summary of the estimated models: model name identifier, indicators included, and estimation
method used.

# Model Indicators Included Estimation Method
1 Meteo Temp, Prec OLS
2 Meteo.MM Temp.Min, Temp.Max, Prec OLS
3 SPEI-3 SPEI-3 OLS
4 SPEI-6 SPEI-6 OLS
5 SPEI-9 SPEI-9 OLS
6 fAPAR fAPAR OLS
7 RS fAPAR, LST, ET OLS
Temp, Prec, SPEI-6, fAPAR, . _
8 Lasso LST, ET Regularized (« = 0)
. Temp, Prec, SPEI-6, fAPAR, . _
9 Ridge LST, ET Regularized (x =1)
. Temp, Prec, SPEI-6, f{APAR, . _
10 Elastic Net LST, ET Regularized (ax = 0.5)

More complex models were also considered, on the premise that including more information
potentially results in greater predictive accuracy. The following statistical model, based on the
combination of meteorological and remote sensing indicators, was tested:

6 N

log(yi) = Yo +y1-Season; + yNUTS3;i+ Y Y Bicije + & @)
j=lk=1

which differs from the parsimonious model described in Equation (1), in that here | = 6 indicators
are included, represented by all their monthly values (Ni) over the respective growing cycle, with Ny
equal to 9 and 7 for winter and summer crops, respectively. Since this approach implies working with
an additional 54 predictors (number of predictors x number of months of the growing cycle) in the
case of winter crops (42 additional predictors, if summer crops) on top of the seasonal and provincial
fixed effects, a problem of overfitting could raise. We dealt with this problematic by resorting to
regularization techniques [47,48]. These techniques are typically used to reduce the complexity of
models in the presence of many, potentially correlated, features.

The most well know regularization alternatives are L1- and L2-type regularization. L1-type, also
known as lasso (least absolute shrinkage and selection operator), adds “absolute value of magnitude”
of coefficient as penalty term to the loss function. L2-type or ridge regularization adds “squared
magnitude” of coefficient as penalty term to the loss function. The difference between these two
techniques is that lasso performs variable selection by shrinking the less important feature’s coefficient
to zero, thus, removing some features altogether and improving the sparsity of the model. In ridge
regressions, all coefficients are shrunk towards zero, preventing from variable collinearity while
controlling for overfitting. We used a specification that embeds the two types of penalties, known as
elastic net [49]. Elastic net updates the general residual minimization function, by adding another term
known as the regularization term.

min( 227+ A[(1 = BB /2 + ] ©)
Here, A is the regularization tuning parameter and

N

RSS = Z (108(}’1) — 0 — 1 -Season; — y2-NUTS3; - XiTB)Z @
=1
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where yg, y; and y, are not-penalised parameters and ||§||; = Z’; _ l|ﬁ| and IIﬁllﬁ = Z]]f -1 ﬁ? are the
L1-type and L2-type penalty terms, respectively. The hyperparameter A controls the overall strength
of the penalty and is chosen through cross-validation (note that if A = 0, we are in the OLS case).
The elastic net penalty is controlled by a, which modulates the influence of the lasso (o = 1) and ridge
(a = 0) penalty terms. It is known that the ridge penalty shrinks the coefficients of correlated predictors
towards each other, while the lasso tends to pick one of them and discard the others. The elastic net
penalty mixes these two; if predictors are correlated in groups, an a = 0.5 tends to select the groups of
indicators in or out together. Three different values of & were central in our analysis: a = 1 (lasso),
a = 0.5 (elastic net) and « = 0 (ridge). Alternative estimations for &« =0.25, « =0.75and @ =1 — ¢ were
also performed.

3.4. Estimation Strategy

As stated above, the hyperparameter A for complex statistical models must be chosen through
cross-validation. We implemented a cross-validation framework based on the construction of
N = 1000 folds, resulting from randomly splitting the total sample into a training set (of size
2/3*N) and a validation set (1/3*N). The value of A was chosen as the one which minimized the
cross-validation error. Once A was obtained, the root mean squared error (RMSE) of the predictions
over the validation set was computed. These values were then averaged over folds. To preserve
comparability, the constructed training-validation sets were also used for estimation and forecast
accuracy on the parsimonious models.

In summary, we estimated a set of statistical models for each of the macro areas, available crops
and spatial aggregation scales considered. For each of the 6 region-crop combinations and the three
spatial aggregation scales proposed, 10 candidate models (7 parsimonious, 3 complex) were estimated,
making a total of 10 X 6 x 3 = 180 estimated models. A full description of all these models can be found
in Table 3.

4. Results and Discussion

An assessment of the predictive quality of the proposed models is presented and discussed in this
section. Our analysis differentiated among cereal crops, as well as among different model complexity
and spatial aggregation scales. By examining the outputs from feature selection models (lasso models),
which (families of) indicators were preferred and the phase of the growing cycle of the plant of the
selected indicators were also explored.

4.1. Model Accuracy by Cereal Species

Figures 3 and 4 show the average root mean squared error (RMSE) of predictions within the
cross-validation test datasets for all the proposed models. A summary of these findings by cereals
species can be found in Table 4, where a region-crop, mean-adjusted average RMSE across specifications
is computed. The ratio RMSE;./ . is obtained for each region-crop, where RMSE,, represents the
average RMSE across all proposed models in a specific region-crop combination, and y. is the average

yield within each specific region-crop combination.

Table 4. Average, mean-adjusted RMSE across all model specifications for the three spatial aggregation
scale considered: municipality, agricultural district and province. A rank of the best predictable species
at each administrative level is provided between parentheses.

Region Crop Municipality Agricultural District Province
PRBD Wheat 0.278 (3) 0.253 (3) 0.167 (2)
PRBD Barley 0.361 (4) 0.327 (4) 0.209 (4)
PRBD Maize 0.239 (2) 0.216 (2) 0.151 (1)
PRBD Rice 0.197 (1) 0.183 (1) 0.172 (3)

PG Wheat 0.670 (5) 0.598 (5) 0.340 (5)

PG Barley 0.774 (6) 0.763 (6) 0.563 (6)




Agronomy 2020, 10, 809 9of 16

Wheat Barley
Meteo o—o— r—o—
Meteo.MM —o— o
SPEI-3 o——o— ——o—
SPEI-6 o———o— *—o—
SPEI-9 -—o— ——eo— %
fAPAR — — 5
RS o——o— —o—
Lasso —o— o
Ridge *—o— *—o—
Elastic Net ——o— ——o—
Meteo e ® ——e
Meteo.MM e * —o
SPEI-3 ® g o
SPEI-6 e g —o
SPEI-9 e ® —o 8
fAPAR r—— o
RS e s — o
Lasso —o— [ —— -]
Elastic Net ———o— —=
0.1 0.2 0.3 04 0.1 0.2 0.3 0.4
RMSE

¢ PRO e AGR MUN

Figure 3. Average RMSE of the estimated models for wheat (left) and barley (right) in PRBD (top)
and PG (bottom), resulting from cross-validation estimation over N = 1000 training-validation folds.
Three different levels of spatial aggregation were considered: municipality (MUN), agricultural district
(AGR) and province level (PRO).

Rice yield models showed, on average, the best forecasting performance at the municipality
and agricultural district spatial aggregation scales. At the provincial scale, their relative accuracy
decreased slightly in favor of maize and PRBD’s wheat yield models. Maize yield models followed in
average performance, evidencing that summer crops tend to be more predictable than winter crops,
possibly influenced by the smaller dispersion of their yields and their greater connection to heat stress.
This better predictability has been early confirmed at the global level [14].

There existed notable differences in the forecasting accuracy of wheat yield models between
regions, with wheat models in PRBD (where common wheat is predominant) behaving better than
those in PG (durum wheat, mostly). Moreover, the ratio of these differences remained nearly constant
over spatial aggregation scales. We attribute these differences to the heterogeneous performance of
wheat farms within PG, where marked differences in the distribution of yields between North and
South are observed (Figure 2). Our predictors failed to capture these differences, which suggest that
they may lay on local characteristics, such as the type of soil (even though this variability may be
partially captured by vegetation health remote sensing indicators), or in the amount and the intensity
of use of various agro-management practices, such as the adjustment of sowing and harvest dates.
The coexistence of common and durum wheat observations, especially in PRBD, could have also
damaged the overall fit of wheat models.
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Maize Rice
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Figure 4. Analogous to Figure 3, but for summer crops (maize and rice).

Barley models featured the worst performance in both regions. Given the phenotypical similarities
between wheat and barley and based on the findings of other studies (Garcia-Ledn et al. 2019),
a similar performance between wheat and barley models was expected. We explain the relatively worse
performance of barley models by the concurrence of two facts: first, barley is not a widespread crop
in the studied regions, which results in a lesser amount of data being available; second, barley fields
are sparse, especially in PG (Supplementary Figure 54), and their yields show very large dispersion,
leading to less accurate estimations.

4.2. Differences across Spatial Scales

We observed generalized improvements in the performance of the proposed models after
aggregating data to larger administrative units. Moreover, these improvements were homogenous
across model specifications. When moving from the municipality to the agricultural district scale,
an average of 10% RMSE reduction was observed for nearly all species. Gains when shifting to the
provincial scale were strongly marked, but showed greater variability, with a decrease in RMSE ranging
from 40% to 75%, depending on the crop species. These improvements in the overall predictability may
be attributed to the observation of more stable yields at coarser spatial units, once data uncertainties,
such as sampling errors and local factors, had been filtered out by spatial aggregation.

Interestingly, gains for rice yields were more moderate, with the RMSE of rice models being
significantly lower at the municipality scale, compared to the rest of the crops. Rice is a case featuring
several particularities: first, the production is highly concentrated in a relatively small geographic area
(Supplementary Figure S5), making sampling errors at the municipality scale already low; second, rice
fields are mostly irrigated and show a high degree of management, which probably decreases yield
variability across spatial scales, because of a reduced impact of weather conditions; and third, there
is a dedicated layer in CORINE to rice fields, making the extraction of weather and remote sensing
indicators more precise.

4.3. Parsimonious Versus Complex Models

The performance of parsimonious models (Models 1 to 7 in Table 3) was compared against
the performance of regularized models that rested on several predictors (Models 8 to 10 in Table 3).
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Also, within parsimonious models, different degrees of complexity were tested. Model performance
differences were extracted from the analysis of Figures 3 and 4.

Although it is difficult to generalize for all regions and species, Meteo models outperformed
basic SPEI and fAPAR models. Some subtle gains were observed when extreme temperature values
(Meteo.MM) instead of average values were accounted for. Even though simple models based on
only fAPAR were not quite reliable, the addition of different sources of remote sensing indicators (RS)
tended to improve their overall predictability and made them beat Meteo models in most cases.

Except for rice, regularized models, in any form, outperformed parsimonious models for all
region-crop combinations at the municipality scale. These gains vanished as data was spatially
aggregated, with all models at the agricultural district and province scales showing very similar
performance. No significant differences were found among the three regularized methods considered.
Different choices of the regularization parameter awere also explored, a = 0.25, a = 0.75 and a = 1
— ¢ (an alternative to lasso that removes any degeneracies and wild behaviour caused by extreme
correlations), producing almost identical results (not shown).

Our results suggest that, when fine spatial resolution is sought, more complex models show
better performance than any class of parsimonious models, based on a reduced number of either
meteorological or remote sensing indicators. However, basic meteorological-based models could
be as good as complex models to predict yield for large administrative units. Under coarse spatial
resolutions, it was very hard to state which family of models performed best, as several models led
to very similar performance levels. Given the opportunity cost of building more complex models,
especially in terms of gathering and processing all the necessary data, it can be argued that simple
parsimonious models are advisable for coarse spatial resolutions.

4.4. Nature of the Selected Predictors

By looking at the features selected by the lasso models, it can be inferred which indicator/family
of indicators is more relevant to predict each crop in each region. Since looking directly at the size of
the coefficients associated to each predictor can be misleading (even when predictors are standardized,
so that they all showed the same mean and standard deviation prior to estimating the regressions),
due to the collective constraint imposed on the size of the coefficients, it was opted to document the
relative frequency of selected indicators along all the cross-validation simulations. These relative
frequencies are shown for every model and spatial aggregation scale in Figure 5.

A few messages can be extracted from the analysis of Figure 5. First, it was observed a general
preference for the selection of satellite-based rather that meteorological predictors, regardless of the
spatial detail considered. The relative weight of satellite indicators was always above 50% and was
close to 75% in some cases. Second, indicators describing the water content of the soil/plant, such as ET
and fAPAR, were selected more often in wheat and barley models, suggesting that moisture content
is highly relevant for these two species. Third, in contrast to winter crops, temperature (both air
temperature, temp, and ground temperature, LST) seems to be more relevant for the predictability of
summer crops: maize and, especially, rice.

There was, however, considerable variation in the choice of selected input variables, and thus the
results must be handled with caution. It was confirmed that the distribution of selected indicators
was highly dependent on the strength of the regularization penalty, which relies on the value of the
parameter A. We experimented with different choices of A, basically increasing the size of the penalty.
It was observed that higher penalty values made the selection of indicators more stringent in detriment
to the overall predictive quality of the model, causing in most cases that regularized models featured
worse performance than parsimonious models. Feature selection should be further studied for other
regions under different climatic conditions.
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Figure 5. Relative weight (%) of satellite-based indicators (purple-left) compared to meteorological
indicators (green-right), within all selected features in lasso models at the province (A), agricultural
district (B) and municipality level (C), for all the region-crop combinations.

4.5. Timing of the Selected Predictors

We aggregated our candidate predictors at the monthly level, based on previous studies [10,20]
and our own correlation analysis. Correlations between yields and predictors suggested that the
optimal temporal aggregation window for indicators is the monthly level (as seen for wheat yields and
fAPAR in Supplementary Figure 56). We assumed three different growing stages: early or tilling stage,
mid or anthesis stage and late or grain filling stage. These stages were proportionally distributed over
the growing cycles assumed for winter and summer crops.

Figure 6 describes the phases within the growing stage of the selected features by lasso. It was
very hard to discern any clear time pattern within the selected indicators, as they were widespread
over the entire growing cycle for most crops and spatial aggregation scales. Wheat in PG seemed to
be more dependent on indicators belonging to the mid stage (January—March). More interestingly,
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most indicators of maize models were also drawn from the mid stage (June-August). The sign of
the parameter estimates associated to the selected Temp and LST indicators was most of the time
positive, suggesting that higher than average summer temperatures would decrease average maize
yields. Given that it is inferred from the previous section that temperatures are relatively more relevant
for this crop, it can be added here that summer temperatures are crucial to explain maize productivity.

40
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Figure 6. Percentage of indicators belonging to each of the three growing stages (Q1, Q2 and Q3) of the
plant, as derived from the selected features by lasso models under the three spatial aggregation scales
considered: municipality (left), agricultural district (center) and province (right).

5. Conclusions

The predictive ability of several local-scale statistical models for Italian cereal yields was tested in
this study. Summer crops showed relatively better predictability than winter crops, irrespective of the
model considered. This may be partly explained by a more intricate relation between winter cereals and
excess water scenarios, and because some winter species are subject to different physiological processes,
such as vernalization, neither of which is well captured by our predictors. Differences in the fit of wheat
models in both regions could also respond to common and durum wheat reacting differently to weather
variations. More complex models based on feature selection outperformed parsimonious models,
evidencing the gains of combining climate and satellite information. These gains, however, decreased
as yield and predictors were spatially aggregated. Within feature selection models, a preference for
satellite-based indicators was revealed, probably because their higher native resolution can better
match local crop characteristics. We conclude, however, that feature selection from regularized models
needs to be further explored, as it seems highly dependent on the total size of the regularization penalty.
Finally, our results indicate that parsimonious models based on pure meteorological variables behave
well in predicting cereal yields at coarse aggregation scales, but if finer levels of spatial detail are
sought, combining information from different sources using; for instance, the regularization methods
proposed in this study can improve the overall performance of crop yield forecasting tools.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4395/10/6/809/s1,
Figure S1:Wheat yields time series for various municipalities over the study period, Figure S2: Barley yields
time series for various municipalities over the study period, Figure S3: Maize and rice yields time series for
various municipalities in PRBD, Figure S4: Sampling coverage of RICA-CREA data at the municipality level
in PG, Figure S5: Sampling coverage of RICA-CREA data at the province level in PRBD, Figure S6: Triangular
correlation matrix between fAPAR and wheat yields over the growing season.
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