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Abstract: Alfalfa is planted in more than 30 million hectares worldwide, but despite its popularity
in temperate regions, it is not widely grown in subtropical agroecosystems. It is critical to improve
alfalfa for such regions, considering current predictions of global warming and the increasing
demands for animal-based products. In this study, we examined the diversity present in subtropical
alfalfa germplasm and reported genetic parameters for forage production. An initial screening was
performed from 2014 to 2016, evaluating 121 populations from different subtropical origins. Then,
a breeding population was created by crossing selected plants, resulting in 145 full-sib and 36 half-sib
families, which were planted in a row-column design with augmented representation of three controls
(‘Bulldog805′, ‘FL99′ and ‘UF2015′). Dry matter yield (DMY), canopy height (AH), and percentage
blooming (BLOOM) were measured across several harvests. Moderate narrow-sense heritability and
high genetic correlations between consecutive harvests were estimated for all traits. The breeding
line UF2015 produced higher DMY than FL99 and Bulldog805, and it could be a candidate cultivar
release. Several families produced higher DMY than all checks, and they can be utilized to develop
high yielding and adapted alfalfa cultivars for subtropical agroecosystems.
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1. Introduction

Subtropical agroecosystems offer unique abiotic and biotic challenges for agriculture production.
Forage breeders aiming at developing cultivars for subtropical regions are challenged to identify
cool-season species with sufficient pest/disease resistance [1], while also selecting warm-season species
that can extend forage production during transition periods [2–4]. In addition, a primary goal for
forage breeders is to select perennial plants that are able to maintain their productivity and stands over
several years [5].

Alfalfa (Medicago sativa L.) is known as the queen of forages [6] and is the most important forage
legume in the world, grown in more than 30 million hectares [7]. It is the fourth most valued crop
in the United States (US) after corn, soybean, and wheat, with an estimated value of $8.8 billion [8].
However, alfalfa production is small in the southeast US, and it has not been recently reported in
Florida [9]. The Köppen-Trewartha Climate Classification system has classified Central/North Florida
as a Subtropical and Mediterranean climate, and South Florida as a Tropical climate [10]. Moreover,
with the current predictions of global warming [11], the tropical savanna climate type is likely to

Agronomy 2020, 10, 742; doi:10.3390/agronomy10050742 www.mdpi.com/journal/agronomy

http://www.mdpi.com/journal/agronomy
http://www.mdpi.com
https://orcid.org/0000-0002-2455-373X
https://orcid.org/0000-0003-3723-9747
https://orcid.org/0000-0001-8973-9351
https://orcid.org/0000-0003-3389-7195
http://www.mdpi.com/2073-4395/10/5/742?type=check_update&version=1
http://dx.doi.org/10.3390/agronomy10050742
http://www.mdpi.com/journal/agronomy


Agronomy 2020, 10, 742 2 of 13

be expanded throughout Florida in the future [12]. Therefore, it is critical to breed a wide array of
forage species adapted to the region’s diverse livestock systems, soil types, and climates [13]. Even
though alfalfa cultivars were previously released and showed improved adaptation to the state’s
subtropical agroecosystem (e.g., ‘Florida 66′ [14], ‘Florida 77′ [15], and ‘Florida 99′), seeds from these
cultivars are not commercially available. Therefore, it is imperative to develop new cultivars adapted
to subtropical agroecosystems.

Alfalfa is also cultivated in more than four million hectares in South America, with Argentina as
the leading producer (3.2 million hectares), followed by Chile and Peru each with (120,000 hectares),
and Uruguay (70,000 hectares) [16]. Given its low adaptation to subtropical and tropical climates,
alfalfa is only grown in 35 thousand hectares in Brazil [17]. Therefore, the development of adapted
cultivars for these challenging environments would offer great potential for alfalfa expansion. However,
such a venture would require significant effort in breeding and selection. The investigation of diversity
panels and the generation of genetic parameters for agronomic traits would benefit alfalfa breeders in
this sense.

Alfalfa is a perennial, outcrossing, and autotetraploid (2n = 4× = 32) species. Yield improvement
in alfalfa is compromised by long selection cycles, tetrasomic inheritance, high inbreeding depression,
and considerable genotype and environment interaction for this complex trait [18–20]. Most alfalfa
breeding programs use recurrent phenotypic selection to develop and select cultivars with improved
yield and tolerance to biotic/abiotic stresses, while new breeding methods and approaches have been
implemented lately [21–23]. In the past 60 years, there has been rapid advancement in terms of
developing disease resistance, pest management, persistence, and transgenic cultivars in alfalfa [24].
However, there has been little improvement related to crop yield, and alfalfa yields have stagnated
in the recent years [25]. Narrow-sense heritability (h2) of 0.15 and broad-sense heritability (H2) of
0.30 were previously reported for yield [25,26]. However, most of these yield studies in alfalfa were
performed in short-term experiments or few harvests (three to four harvests per year) [7,27], with the
exception of de Assis [17], who used 23 harvests for the rainy season in the summer, and eight harvests
for dry season in the winter, and conducted the experiment for four years. Reliable estimates of h2 and
other genetic parameters are essential to explain optimal selection schemes [28]. However, information
regarding genetic parameters in alfalfa in tropical and subtropical conditions is still meager [7].

The use of best linear unbiased prediction (BLUP) is an established method to predict genetic and
breeding values in animals, and has been extensively used for plant species helping guiding decisions
towards breeding. The use of BLUP can generate accurate predictions of genotypic values even for
unbalanced experimental designs, and BLUPs are also used to estimate genetic correlations among
performance of the same genotypes in different environments [29]. Here, we aimed to generate a
reference breeding population and used BLUP to generate information concerning genetic parameters
for important agronomic traits in alfalfa, as well as to obtain genotype rankings, allowing selection of
alfalfa genotypes adapted to tropical/subtropical conditions. Our objectives were: i) to screen alfalfa
germplasm for biomass production in Florida; ii) to develop and phenotype a reference breeding
population for agronomic traits at the family level; and iii) to estimate variance components and
genetic parameters and use them to obtain rankings based on genotypic values, to select families with
improved and desirable agronomic traits.

2. Materials and Methods

2.1. Initial Germplasm Screening

A screening trial consisting of 121 alfalfa populations (including breeding lines and cultivars)
obtained from five tropical/subtropical germplasm pools: Argentina (76), Chile (1), Uruguay (2),
United States, Florida (7), and other sources (34) (Figure 1) was conducted from October 2014 to
April 2016. Fall dormancy groups ranged from 5 to 10 in these populations. The experiment was
established as a randomized complete block design, with two replicates at the Plant Science Research
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and Experimental Unit (PSREU), Citra, FL, USA. The soil at the site was Chipley sand soil (Thermic
coated Aquic Quartzipsamments) and historical weather data was obtained from the Florida Automated
Weather Network (https://fawn.ifas.ufl.edu). Experimental units were planted by broadcasting the
equivalent to 22 kg/ha of seed per plot (1 m × 1 m) on 27 October 2014. Treflan (1.7 L·ha−1) was applied
a week prior to planting as a pre-emergence herbicide. Weeds were manually controlled after planting,
and irrigation was supplemented as needed to promote establishment and regrowth after each harvest.
Experimental units received 67.25 kg·K2O·ha−1 as Muriate of Potash and 1.12 kg·ha−1 boron after each
harvest. Dry matter yield (DMY) was assessed across ten harvests during spring/summer/fall in 2015
and spring of 2016. A total of 33 populations were selected, based on high DMY and persistence across
all harvests. In order to generate a reference breeding population by performing controlled crosses,
individual vigorous plants were selected within each of these 33 populations to be used as parents.
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Figure 1. Germplasm sources and number of populations from each source for the initial alfalfa
screening conducted in Citra, FL.

2.2. Development of the Reference Breeding Population

Crosses of the selected individual plants were performed following a factorial mating design. Male
parents consisted of six plants with known adaptation to Florida (four plants from the UF breeding
program, and two commercial cultivars: ‘Bulldog805′ and ‘AmeriStand915′), and a set of 27 selected
plants were used as females. Fall dormancy ranged from 8 to 10 among male parents, and from 6 to 10
among female parents. All crosses were conducted in controlled conditions in the Forage Breeding and
Genetics Lab greenhouse, at University of Florida (Gainesville, FL, USA). Seeds from each full-sib and
half-sib family were harvested, threshed individually, planted in 72-cell styrofoam trays in August
2017, and maintained in the greenhouse until transplanting in November 2017.

2.3. Experimental Design and Field Management

The field experiment to evaluate the reference population was conducted from November 2017 to
March 2019 at PSREU, Citra, FL. Soil samples were taken during land preparation and tested at the
Extension Soil Testing Lab at the University of Florida. Soil pH was 6.8, and soil P, K and Mg were high,
medium, and high respectively. The experiment was established in a row-column design [30] with
augmented representation of three controls (i.e., cv. Bulldog805, cv. ‘FL99′, and advanced breeding
line UF2015). Each experimental unit (1.82 m × 1.82 m) consisted of eight rows spaced at 22.8 cm.
Twenty seedlings per plot were manually transplanted in the middle rows. The remaining six rows

https://fawn.ifas.ufl.edu
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(three on each side) were seeded (drill) with cv. Bulldog805 at 20 kg·ha−1, to serve as border for each
plot. The field was fertilized after each harvest with 67.25 kg·K2O·ha−1, using Muriate of Potash,
and with Boron at the rate of 1.12 kg·ha−1. The experiment was conducted in rainfed conditions,
weeding was done manually for broad-leaf weeds after each harvest, and herbicide Clethodim (Select,
70.76 g AI/L-1; Valent USA Corporation, Walnut Creek, CA, USA) was applied at the rate of 1.05 kg·ha−1

after harvesting to control grasses.

2.4. Data Collection

The experimental units were harvested for the first time in April 2018, when the reference breeding
line UF2015 reached 10% blooming. The same threshold was applied for harvests throughout the study.
Data collection was initiated by mowing border rows at 6 cm stubble height using a flail mower, and
biomass was removed from the area. Later, traits were measured at the plot/family level. The average
canopy height (AH, cm) was assessed using a ruler placed in the center of each plot, and percentage
blooming (BLOOM) was visually rated (0 to 100%). Experimental units were manually harvested, and
total fresh weight was recorded. Approximately 500 g of vegetative material was collected for each
plot and dried at 65 ◦C for 7 days, to determine dry matter yield (DMY). The cycle for data collection
(mowing borders, AH, and DMY) was repeated 11 times from April 2018 until May 2019.

2.5. Statistical Analyses

First, analyses were conducted by individual harvest, and then a multi-harvest model was fitted.
All analyses were performed using linear mixed models in ASReml-R version 4.0 [31], implemented in
R [32]. The pedigree of all the families were known, and the additive pedigree relationship matrix was
constructed using AGHmatrix 0.0.4 in R [33], considering the tetraploid option. Single harvest analysis
was performed using the model:

y = µ + Xt + Z1r + Z2c + Z3f + e, (1)

where, µ is the overall mean; X and Z represent the incidence matrices for fixed and random effects,
respectively; t is the fixed effect for the checks; r is the random effect of row, r~MVN(0, Iσr

2) and σr
2 is

the variance of row; c is the random effect of column, c~MVN(0, Iσc
2) and σc

2 is the variance of column;
f is the random vector of family, f~MVN(0, Aσf

2) and σf
2 is the variance of family; e is the random

vector of error, e~MVN(0, Iσe
2); and σe

2 is the variance of residual. A is the relationship (kinship)
matrix and I is an identity matrix of its proper size.

Then, a model using harvest as repeated measures was fitted to obtain a single genotypic value
across harvests, where the following model was used for the multi-harvest analysis for single traits:

y = µ + X1h + X2t + Z1r + Z2c + Z3fh + e (2)

where, µ is the overall mean; X and Z represent the incidence matrices for fixed and random effects,
respectively; h is the fixed effect of harvest; t is the fixed effect for the controls; r is the random effect of
row, r~MVN(0, Iσr

2) and σr
2 is the variance of row; c is the random effect of column, c~MVN(0, Iσc

2)
and σc

2 is the variance of column; fh is the random vector of family within each harvest, fh~MVN(0,
G⊗A); e is the random vector of error within each harvest, e~MVN(0, R⊗I); and σe

2 is the variance of
residual. R is the residual variance/covariance matrix, G is the genetic variance/covariance matrix, A is
the relationship (kinship) matrix, and I is an identity matrix of its proper size. The Kronecker product
is denoted by ⊗.

The modeling of the matrix of residual (R) and genetic (G) variance/covariance matrix was
performed for each trait in the multi-harvest model, Equation (2). The choice of the matrices was done
sequentially [34,35], first identifying the best structure for R, and then for G, considering R previously
selected. The best structure for R and G was selected based on the Bayesian Information criterion (BIC),
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as proposed by Schwarz [36]. Variance component estimates from Equations (1) and (2) were used to
calculate family-based narrow-sense heritability (h2) for the breeding population as:

h2 = σf
2/σP

2 = σf
2/σc

2 + σr
2 + σf

2 + σe
2, (3)

where, σP
2 is the phenotypic variance. In the multi-harvest analysis, the average of family and residual

variance of the harvests were used to estimate the h2.
The Spearman correlation of family performance across harvests was calculated using the BLUPs

estimated for families using the single harvest analysis, using the package agricolae [37] in R [32].
The significance of correlation estimates was verified by Spearman’s rho test, using the package Stats in
R [32]. Genetic correlations among traits (Type-A correlation) were estimated using a bivariate model,
where yi was partitioned for a 2-trait analysis y1 and y2. The 2-trait (bivariate) model fitted below:[

y1

y2

]
= µi +X1t+X2h(t)+X3d(t)+Z1r(t)+Z2c(t)+Z3 f (t)+Z4 f h(t)+Z5rh(t)+Z6ch(t)+ e, (4)

where y1 and y2 are the data vectors for the two traits of interest; µi is the overall population mean for
each trait; h(t) and d(t) are, respectively, the vectors of the fixed effects of harvests and controls within
trait; r(t) is the random vector of row effects within traits, with r(t)~MVN(0, I ⊗ B); c(t) is the random
vector of column effect within traits, with c(t)~MVN(0, I ⊗ C); f(t) is the random vector of family effects
within traits, with f(t)~MVN(0, I ⊗ F); fh(t) is the random vector of family × harvest interaction effects
within traits, with fh(t)~MVN(0, I ⊗ H); rh(t) is the random vector of row × harvest interaction effects
within traits, with rh(t)~MVN(0, I ⊗ J); ch(t) is the random vector of column × harvest interaction effects
within traits, with ch(t)~MVN(0, I ⊗ K); and e is the random vector of errors, with e~MVN(0, I ⊗ R).
B, C, F, H, J, and K are compound symmetry heterogeneous (CSH) 2 × 2 variance-covariance matrices
between traits defined by a single trait-to-trait type-A genetic correlation term (rA), and a unique jth
variance term, σgtj

2 for each trait. R is an unstructured 2 × 2 residual variance-covariance matrices with
a different variance for each trait (σej

2) and a covariance between traits (σeij). I is an identity matrix of
its proper size and the Kronecker product is denoted by ⊗. The genetic correlations (rg) for each pair of
traits (type-A) were estimated directly from the genetic variance–covariance matrices from the models
described above, where values close to 1 or -1 indicate a strong association between genetic values
from a pair of traits.

Principal component analysis (PCA) was performed with the prcomp function, as implemented
in R [32], calculated through a correlation matrix using the genotypic values obtained with the
multi-harvest model. The PCA results were visually plotted using the package ggbiplot in R [38]. For all
other analysis, graphs were created using ggplot2 [38].

3. Results

3.1. Initial Germplasm Screening and Mating Design

The initial germplasm screening of 121 populations showed significant phenotypic diversity for
DMY after 10 harvests, and DMY per harvest ranged from 450 to 2000 kg DMY/ha (Figure 2). Several
populations produced average DMY per harvest lower than 1000 kg DMY/ha, and were not selected
as parents for subsequent crosses. Seven populations from the UF Agronomy Department Alfalfa
Breeding Program exhibited high DMY, particularly for harvests performed after the summer 2015
(Figure 2A,B). Fifteen populations from Argentina and thirteen from other US sources also produced
more than 1000 kg DMY/ha per harvest on average (Figure 2A,B). The average DMY among populations
for each germplasm origin (Figure 2B) showed that these populations produced more dry matter in the
first spring after planting (Spring 2015), as compared to summer 2015. The UF germplasms produced
higher DMY from July 2015 to the end of the study. All populations exhibited an increase in DMY in
late-winter/early-spring of the second year (Figure 2B).
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Figure 2. Alfalfa germplasm screening for dry matter yield (DMY, kg/ha) conducted in Citra, FL using
121 alfalfa populations from five different sources (blue: University of Florida, green: Argentina, light
blue: Uruguay, red: Chile, and orange: USA states other than Florida). (A) Average DMY across
10 harvests for the populations exhibiting higher DMY, (B) average DMY among germplasm source.

The ranking for average DMY per harvest was used to select populations exhibiting adaptation to
Florida, and the populations with higher DMY are shown in Figure 2A. A single plant per population
was selected based on vigor, and cuttings were made in the summer 2016. Fall dormancy ranged from
eight to 10 among male parents, and from six to 10 among females. A factorial mating design was used
to create all possible full-sib combinations; however, some crosses did not produce enough viable seed,
and were not included in further trials.

3.2. Variance Components and Genotypic Values

The modeling of the matrix of residual (R) and genetic (G) variance and covariance were performed
for each trait and harvest, identifying the best structure for R first, and then for G (Supplemental
Table S1). The diagonal matrix and autoregressive of order one heterogeneous structure provided the
lowest BIC value for R and G matrix for all traits, respectively. The alfalfa reference breeding population
exhibited significant genetic variation (p < 0.001) across eleven harvests for all traits (Supplemental
Tables S4–S6). Low to moderate h2 (0.08 to 0.53) was estimated for all traits in each harvest (0.15 to 0.53
for DMY, 0.08 to 0.37 for AH, 0.08 to 0.51 for BLOOM). All three traits had the highest h2 estimates in
the first harvest, whereas lower estimates were obtained in later harvests (Supplemental Tables S2–S4
and Figure 3). However, moderate values were observed for the multi-harvest analysis for each trait.
The estimate of h2 was 0.41 (DMY), 0.21 (AH), and 0.37 (BLOOM) across all the harvests, using the
multi-harvest model (Figure 3).
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Figure 3. Narrow-sense heritability (h2) and standard error (black error bar) for dry matter yield
(orange), canopy height (green), and percent blooming at harvest (gray) in a single harvest (denoted by
month and year), and in multiple-harvest (MultH) analysis in alfalfa.

3.3. Spearman Correlation Between Harvests, and Type-A Genetic Correlation Between Traits

Spearman correlations ranged from 0.26 to 0.93 for DMY (Figure 4A), 0.13 to 0.84 for AH (Figure 4B,
and 0.08 to 0.84 for BLOOM (Figure 4C). All traits exhibited higher correlation coefficients between
consecutive harvests, whereas moderate values were obtained among distant harvests. All traits
exhibited positive correlation with each other. The highest type-A genetic correlation (r = 0.85) was
estimated between AH and DMY; followed r = 0.57 between AH and BLOOM, and r = 0.42 between
DMY and BLOOM.
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Figure 4. Spearman correlations across harvests using best linear unbiased predictions (BLUPs) from
single harvest analysis for dry matter yield (A), average canopy height (B) and percent bloom (C)
measured in 145 full-sib, 33 half-sib alfalfa breeding populations and three controls (cv. Bulldog805, cv.
FL99, and advanced breeding line UF2015) across 11 harvests (eight for percentage blooming (BLOOM))
in Citra, FL. Color-coded panel indicates the magnitude of the correlation coefficient, and white panels
indicate non-significant correlations by Spearman’s rho test at 5% probability.

3.4. Principal Component Analysis for DMY

Principal Component Analysis showed that the first two components (PCA1 and PCA2) accounted
for 81% of the variation in DMY genotypic values across the eleven harvests (Figure 5). The first
component (PCA1) explained 64% of the variation, and the second component (PCA2) explained
17% of the variation. Harvest five and harvest six contributed most towards the variation in the first
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component, while harvest one, two, ten, and eleven contributed more towards PCA2. No distinct
clustering was observed for half- and full-sib families, and a broad range of variation was observed for
DMY across harvests. For the controls used in this study, UF2015 produced the highest DMY across all
harvests. Significant phenotypic variability was present in the reference breeding population for DMY,
with some families producing more DMY at the beginning of the experiment, while their production
was significantly reduced after the summer harvests (Figure 5). Some families exhibited improved
persistence and their DMY was high throughout the study. Specifically, full-sib family 149F produced
the highest DMY during the initial harvests; however, families 15F, 33H, 28H, 42F exhibited higher
DMY in later harvests. Several half- and full-sib families produced lower yields than the three checks
across all harvests (Figure 5).
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4. Discussion

The projected increase in the global population to 9.2 billion in 2050 demands an increase in
agriculture production, including animal-based products [39]. A projected increase of 200 M tons
of beef and other livestock products is necessary to meet the future demand [39], particularly in
subtropical/tropical regions such as Africa [40] and South America. This unprecedented increase in
animal-based products will rely on adequate animal feed supplies. Alfalfa is the most commonly
grown forage, and its international trade for hay reached 8.3 million metric tons in 2017, for a total
value of USD 2.3 billion, and the demand for alfalfa hay will continue to increase [16]. Despite being the
most important forage legume crop globally, limited resources have been dedicated towards improving
alfalfa adaptation to subtropical and tropical regions.

The Alfalfa Research and Development Latin American Platform [16] promotes the cultivation
of alfalfa in South America, and they have made significant efforts to breed alfalfa adapted to
subtropical [41] and tropical [17] agroecosystems. In the US, improved varieties were developed
for the southeastern region [5,42], but most of these cultivars did not persist well under the hot and
humid conditions prevalent in Florida (Figure 2A). Three well-adapted cultivars (‘Florida 66′, ‘Florida
77′, and ‘Florida 99′) previously developed and released by the UF Agronomy Department [14,15]
are not commercially available anymore. Therefore, there is a growing need to develop germplasm
well-adapted to subtropical agroecosystems and release cultivars with improved DMY and persistence.
The goal of this study was to create a reference breeding population using parental lines adapted to
subtropical and tropical environments, in order to develop suitable cultivars for tropical and subtropical
climates, such as Florida. The phenotypic diversity and genetic parameters presented in this study
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exhibited the existence of adapted germplasm, and the potential for developing and releasing cultivars
in the near future.

4.1. Initial Germplasm Screening and Mating Design

The introgression of germplasm from international sources proved to be a successful approach to
increase genetic diversity for DMY and persistence in the UF program. The seven breeding populations
from Florida exhibited higher DMY after the fifth harvest in the summer 2015, until the end of the study,
showing the importance of developing locally-adapted germplasm. These seven populations were at
the top of the ranking for average DMY across 10 harvests (Figure 2A). Similarly, the locally developed
cultivars “Florida66” and “Florida77” showed improved persistence, and consequently higher yields
in the second production year, compared to other cultivars in Florida [14,15]. Nevertheless, several
populations from Argentina and other US sources also exhibited high DMY per harvest, even after the
fifth harvest (Figure 2A).

Selection based on DMY across harvests resulted in 33 populations exhibiting improved yield
in Florida, and a single plant per population was used as a parent in crosses to develop a breeding
population. The mating design allowed the utilization of at least one male parent with proven
adaptation to the Southeastern US, and particularly to Florida. Due to the diverse geographical origin
among germplasm sources, it was expected that these parental lines would be genetically distant,
and therefore would provide novel allele combinations to broaden the genetic base in the UF alfalfa
breeding program. As a future study, molecular markers will provide more detailed data regarding
the genetic diversity present in the parental lines and their progeny.

4.2. Variance Components and Genotypic Values for the Reference Breeding Population

Results from this study indicated that significant genetic variation existed for the three traits in
the reference breeding population. Phenotypic characterization showed a wide range of continuous
variation for the three agronomic traits, and the presence of a wide range of variation among families,
which would warrant the improvement of germplasm adapted to Florida. The wide range of
phenotypic variation can be used to guide plant selections for future cultivar releases, as well as to use
this germplasm for novel breeding approaches such as genomic selection and marker assisted breeding.

Family-based h2 for DMY for the multi-harvest model (0.30 ± 0.02) was higher than previous
reports [7,26]. Bowley and Christie [26] conducted an experiment based on 90 genotypes and three
harvests; while Annicchiarico [7] used 125 genotypes, representative of Italian germplasm, which
were evaluated for 12 harvests. Riday and Brummer [27] reported DMY h2 of 0.12, 0.27, and 0.34 for
three harvests. In our study, the lowest DMY h2 (0.15) was estimated for the last harvest, whereas the
highest (h2 = 0.53) was estimated in the first harvest. The higher values obtained for heritability in
our study may be associated with the diverse population produced by the combination of germplasm
from different breeding programs, which generated a high degree of genetic variability. Nevertheless,
we had some families that performed better in the earlier harvest and their yield declined rapidly,
perhaps due to lack of persistence. Therefore, selection in alfalfa for DMY in early harvests (prior to
first summer after planting) may result in non-persistent germplasm, which would limit long-term
production in subtropical regions.

The h2 of AH was 0.21 (±0.02) for the multi-harvest model, which was lower than previous reports
by Riday and Brummer [27]. Riday and Brummer [27] reported H2 of 0.40, 0.46, and 0.41 for three
harvests respectively. However, a higher number of harvests were evaluated in our study, and the
h2 was low to moderate for each harvest. Most of the agronomic traits evaluated are quantitative in
nature, and are governed by many genes and have a low heritability suggesting the requirement of
more time, effort, and labor for the genetic improvement of these traits. BLOOM being an oligogenic
trait generally has high heritability but, in this case, it was moderate (0.37 ± 0.02).
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4.3. Type-B (rGxH) Genetic Correlation Between Families and Harvest

High rGxH were estimated between consecutive harvests for all the three traits, suggesting that
genotypic performance is stable in the short-term, and that fewer harvests could be performed to
phenotype these traits. The high rGxH indicates that the rankings will not change drastically in each
of the consecutive harvests. Therefore, reducing the number of harvests, and consequently labor,
could allow breeders to increase their breeding population size, and consequently increase genetic
gains. In addition, these results demonstrate the need for performing several harvests in alfalfa when
selecting for quantitative traits, particularly for harvests performed after the first summer.

4.4. Type-A (rG) Genetic Correlation Between Traits

The type-A genetic correlation measures the proportion of variance that two traits share, due to
genetic causes. It is an estimate of the degree of pleiotropy or causal overlap, and it is calculated by
extracting information from the additive genetic variances and covariances between the traits [43].
In alfalfa, genetic correlations are based on the genetic variance of the traits and covariance between the
traits [44], and the additive genetic correlations are based on half-sib family variances and covariances
that includes a dominance variance component [45]. The knowledge of rG is a very important genetic
parameter that can assist selection. High positive rG suggests that indirect selection for both traits could
be achieved by measuring only one trait, reducing the amount of resources and time in phenotyping,
considering a moderate/high heritability for both traits [46]. High rG was estimated between AH and
DMY, indicating that the taller plants also produced higher DMY. This might be due to the presence
of more biomass due to thickening of stems, and a greater number of leaves in those stems. Since
there was a high rG between AH and DMY, breeders can use AH for selecting higher DMY when
large nurseries are to be screened [46]. The AH can also be accurately phenotyped using unmanned
aerial vehicles (UAVs), thus making the utilization of high-throughput phenotyping possible in alfalfa
breeding programs [47]. There was a positive rG correlation between BLOOM and AH, suggesting
that taller plants produced flowers earlier. Positive but low correlation rG was also observed between
BLOOM and DMY. This lower correlation might be due to the harvesting of all the plots when the
flowering of UF2015 reached 10%. During this time, some plots in the experiment did not flower,
whereas some plots had 100% flowering. This elucidates that the BLOOM ratings used in this protocol
should not be used for the indirect measurement of DMY.

4.5. Principal Component Analysis

The PCA analyses also revealed a high family by harvest interaction for distant harvests, and
significant genotypic variation across families for DMY. Some families had high DMY in the first four
harvests (i.e., 149F, 76F, and the check Bulldog 805), while their DMY decreased in later cuts. Other
full- and half-sib families exhibited high DMY across all harvests (i.e., 42F, 23F, 30H, and 12F). A third
group of families exhibited higher DMY, particularly at later harvests (15F, 33H, and 28H). The PCA
for DMY showed no distinct pattern for full and half-sib families, suggesting that improvements in
alfalfa DMY can be performed using half-sib families. The resources and labor in creating full-sibs
can be significantly reduced by allowing selected parents to cross under an open-pollination scheme,
in isolated environments [41].

Harvest five and six contributed more in explaining the variation in the first component, indicating
that efficient selection can be done for DMY in the fifth or sixth harvest, which coincides with harvests
performed after the first summer in Florida. Weather conditions (high temperature, rainfall, water table
depth) during summer in subtropical environments can be very deleterious to alfalfa stands [48]. These
abiotic stresses, coupled with several biotic challenges present in subtropical/tropical environments,
impact DMY and persistence in temperate legumes [1,5,17].
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5. Conclusions

A reference alfalfa breeding population was created using a broad germplasm pool obtained
from different subtropical pools, particularly Florida, Argentina, and other US sources. Breeding
populations from the UF alfalfa breeding program produced higher DMY and showed improved
persistence in Florida; nevertheless, populations from Argentina and other US programs also exhibited
high DMY. Full and half-sib families were created and phenotyped for DMY, AH, and BLOOM across
11 harvests. These traits exhibited a wide range of genetic variability. Estimates for rGxH indicated that
fewer harvests can be performed to phenotype breeding populations and successfully select improved
families. The breeding line UF2015 was the best check producing higher DMY across harvests, and it
could be a candidate line for cultivar release in the near future. Several families produced high
DMY in early harvests, but their DMY decreased after the first summer. Several full and half-sib
families produced more DMY than all the checks, exhibiting an improvement in this germplasm.
High rG correlations indicated the potential for indirect selection between these traits, particularly for
AH and DMY. Novel families developed during this experiment showed higher DMY and AH, and
they can be utilized to develop high yielding and adapted alfalfa cultivars in Florida, and for other
subtropical agroecosystems.
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