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Abstract: Peanut is an important oilseed and food crop worldwide; however, the development of
new cultivars is limited by its remarkably low genetic variability. Therefore, in order to enhance
peanut genetic variability, here, we treated two widely cultivated peanut genotypes, Huayu 22 and
Yueyou 45, with different concentrations of the mutagen ethyl methyl sulfonate (EMS) for different
durations. Based on median lethal dose (LD50) value, optimal EMS treatment concentrations for each
duration were identified for each genotype. Mutants induced by EMS differed in various phenotypic
traits, including plant height, number of branches, leaf characteristics, and yield and quality in plants
of the M2 generation. Moreover, we identified potentially useful mutants associated with dwarfism,
leaf color and shape, high oil and/or protein content, seed size and testa color, among individuals of
the M2 generation. Mutations were stably inherited in M3-generation individuals. In addition to
their contribution to the study and elucidation of the mechanisms underlying the regulation of the
expression of some important agronomic traits, the mutants obtained in this study provide valuable
germplasm resources for use in peanut improvement programs.
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1. Introduction

Peanut (Arachis hypogaea L.) is one of the most important oil and protein crops in the world. In 2017,
global peanut production reached 47.10 M tons in a total cultivated area of 27.95 M ha [1]. As peanut
demand continues to increase, there is an urgent need to breed new peanut varieties with high yield
and quality, in addition to resistance to biotic and abiotic stress factors [2]. However, cultivated peanut
is an allotetraploid species that shows very low genetic variability through artificial selection over
many decades [3]. Furthermore, peanut crop improvement should start with the formation of new
germplasm that may then be used as source of highly desirable, outstanding performance traits.

Induced mutagenesis is one of the most important approaches for broadening crop genetic
variability to overcome the limitations associated with a narrow genetic basis [4]. Induced mutants
not only serve as an important functional genomics tool, but additionally, as intermediate material
in crop breeding [5–8]. Thus, induced mutagenesis have also been used in peanut [9–11] to generate
mutants for high-oleate content [12–15], color of the testa [16], photosynthetic activity [17], salinity
resistance [18] and resistance to biotic stress [19], and pod development [20]. Among available
mutagens, ethyl methyl sulfonate (EMS) is a potent and popular chemical mutagen that has been
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effectively used to induce a high-density of random irreversible point mutations uniformly distributed
in the genome [21,22]. The EMS induces single nucleotide changes by alkylation of specific nucleotides,
resulting in a high frequency of single nucleotide polymorphisms (SNPs) and insertion/deletions
(InDels) in the genic sequences and coding sequence (CDS) region, which is considered as an excellent
resource for targeting induced local lesions in genomes (TILLING) [23,24]. However, few studies have
reported a mutant peanut variety library constructed by an optimal EMS treatment, because mutagenic
efficiency depends on many different factors including, EMS concentration, treatment duration, peanut
genotype, temperature, etc., [25,26]. To further improve the mutagenesis protocol for peanut, in this
study, two different peanut genotypes were treated with different EMS concentrations for different time
periods to optimize EMS treatment and identify stably-inherited mutations to improve peanut varieties.

2. Materials and Methods

2.1. Plant Materials

Two different A. hypogaea cultivars, namely, ‘Huayu 22’ (HY22) and ‘Yueyou 45’ (YY45), from
North and South China, respectively, were used in this study. HY22 belongs to the common larger-sized
kernel varieties with high quality and yield potential [27]. On the other hand, YY45 belongs to the
Spanish type of peanut with smaller-sized kernels with high resistance to rust, leaf spot and bacterial
wilt [28], used predominantly for peanut candy, salted peanuts, and peanut butter.

2.2. EMS Treatment

Sixteen treatments were tested at 25 ◦C, which consisted of four EMS (Sigma, St Louis, USA)
concentrations (0.3%, 0.6%, 0.9% and 1.2%), each combined with four treatment duration times (1, 3, 5,
and 7 h). Seeds soaked in 0.1 M phosphate buffer (pH 7.0) were used as the control treatment. Fifty
seeds of each, HY22 and YY45, were subjected to each combination treatment and the control treatment.
There are two replications for each treatment. Treated and control seeds were then thoroughly washed
under running water for 3 h and transferred to pots filling wet sand and placed in an incubator for
germination at 25 ◦C in the dark until radical emergence [29,30].

2.3. Generating Mutant Populations

All germinated and non-germinated seeds were sown in the field. The size of individual plots
was 1.6 × 1.6 m. Planting distance between and within rows was 20 cm. Standard cultural practices
were carried out thereafter. The experiment was laid in a complete randomized-block design at the
Experimental Station of South China Agricultural University in Guangzhou (23◦5′ N, 113◦23′ E),
Guangdong, China. M1 plants were self-pollinated to create M2 families. M2 seeds were harvested from
349 and 374 surviving M1 plants of HY22 and YY45, respectively. In the spring of 2019, 20 seeds from
each M2 family were planted to grow an M3 generation, again, in a complete randomized-block design.

2.4. Phenotype

Mutants were detected by visual observation of the plants during the whole plant growing cycle
in each generation. Visual phenotypic variation in growth performance and leaf morphology were
recorded and photographs were taken to document the comparison between mutants and their control.
After harvest, plant height, number of branches and total pod number per mutant or control were
recorded. Pods were harvested from the parent plants and then dried. Total pod number (TPN) per
plant was counted. The weight of twenty full pods of each plant was determined. After removal of
pod shells, the weight of twenty full seeds sampled from each plant was determined. The 100-pod
weight (HPW) and 100-kernel weight (HKW) were calculated as five times the weight of twenty full
pods and twenty full seeds, respectively. Oil and protein from clean seeds were measured using a
near-infrared reflectance (NIR) analyzer (DA 7250, Perten Instruments, Inc., Springfield, IL, United
States) by the methods reported previously [31].
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2.5. Statistical Analysis

All obtained data from the M1 generations were subjected to analysis of variance (ANOVA) using
SPSS 16.0 software (SPSS, Chicago, IL, USA). The analyzed data were presented as means (±SD) of
two replicates.

3. Results

3.1. Germination Rate and LD50 in the M1 Generation

Field germination rates of HY22 and YY45 in generation M1 were surveyed at 10 d after sowing.
Figure 1 showed that there were 8 and 10 lethal treatments for HY22 (0.6% EMS for 5 or 7 h, 0.9% for 3,
5, or 7 h, and 1.2% EMS for 3, 5, or 7 h) and YY45 (0.6% and 0.9% EMS for 3, 5, or 7 h, and 1.2% for 1, 3,
5, or 7 h), respectively. Except those lethal treatments, the germination rates of the other EMS-treated
seeds of both genotypes were significantly (p < 0.05) reduced by EMS treatment, except 0.3% EMS for 1
h in YY45, compared to the corresponding control (i.e., 79% for HY22 and 87% for YY45) (Figure 1).
Moreover, under the same EMS concentration, different changes of germination rates were observed in
different durations of both genotypes. In HY22, for 0.3% EMS concentration, no significant difference
was found among durations of 1, 3, 5 h or 5, 7 h. However, significant difference was showed between
1, 3, and 7 h. For 0.6% EMS concentration, there was no significant difference between 1 h and 3 h. In
YY45, for 0.3% EMS concentration, no significant difference was found between the durations of 1, 3 h
and 5, 7 h. However, significant differences were showed between 1 and 5 h, 1 and 7 h, 3 and 5 h, and 3
and 7 h. In addition, the germination rates of EMS-treated YY45 seeds were higher than those of HY22
under 0.3% EMS for 1, 3, 5, or 7 h, and under 0.6% EMS for 1 h.
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Mean values within different EMS concentration followed by lower cases are significantly different 
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at P < 0.05. 
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each duration were estimated through linear regression based on lethal rate (Figure 2). Based on the 

Figure 1. The germination rate of M1 generation HY22 and YY45 induced by different ethyl methyl
sulfonate (EMS) treatments. (A) Germination rate of ‘Huayu 22’ (HY22) induced by different EMS
treatment; (B) Germination rate of ‘Yueyou 45’ (YY45) induced by different EMS treatment. Note: Mean
values within different EMS concentration followed by lower cases are significantly different at p < 0.05.
Mean values within different duration followed by upper cases are significantly different at p < 0.05.

The median lethal dose (LD50) is usually used as a critical parameter for chemically induced
mutagenesis. The LD50 values for mutagenesis of peanut with different EMS concentrations for each
duration were estimated through linear regression based on lethal rate (Figure 2). Based on the lethal
rate of HY22, LD50 values were calculated 0.51%, 1.41%, 0.27% and 0.19% for durations of 1, 3, 5 and
7 h, respectively. For YY45, LD50 values were estimated 0.63%, 0.40%, 0.33% and 0.31% for durations
of 1, 3, 5 and 7 h, respectively (Figure 2, Supplementary Table S1). The data showed that the LD50 of
HY22 were lower than those of YY45 for 1, 5 and 7 h, whereas it is converse for 3 h.
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Figure 2. Median lethal dose (LD50) values of HY22 and YY45 with different EMS treatments.

3.2. Plant Height and Branch Number in Population M2

In order to analyze the agronomic traits in peanut, plant height and number of branches were
recorded after harvest. For plant height, the peak of frequency (number of M2 families) in M2
populations of HY22 and YY45, were 25.49% (78) and 31.77% (115) at the groups of 40–44.99 cm and
35–39.99 cm, while the average value among HY22 and YY45 control plants was 43.4 and 38.5 cm,
respectively. In M2 populations of HY22, the groups of 0–39.99 cm and 45–89.99 cm accounted for
27.78% (85) and 46.73% (143), respectively. As for YY45, the groups of 0–34.99 cm and 40-89.99 cm
accounted for 24.03% (87) and 44.20% (160), respectively (Figure 3A).
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Figure 3. Frequency and number distribution of agronomic traits of M2 generation of HY22 and YY45
induced by EMS treatments. (A) Plant height; (B) Number of branches.

For the number of branches, the average of number of branches in HY22 and YY45 plants were
8.5 and 7.4, respectively (Figure 3B). The peak of frequency (number of M2 families) in M2 populations
of HY22 and YY45, were 39.80% (123) and 41.16% (149) at the groups of 5.0–6.9 and 7.0–8.9. Except for
groups including the control plants, there were 46.28% (143) families in the less-branches group and
21.04% (65) families in the more-branches group among HY22 plants in the M2 generation, whereas
42.26% (152) less-branches families and 16.57% (60) more-branches families were observed among
YY45 plants of the same generation.

3.3. Plant Yield in the M2 Generation

In order to explore the effect of EMS treatment on yield, total pod number (TPN), hundred-pod
weight (HPW) and hundred-kernel weight (HKW) per plant were studied in generation M2.

For TPN per plant, the peaks both appeared at the group of 10.0–14.9. TPN of 85.16% (264) of
HY22 families were decreased, compared to the control (TPN: 24.9). Only 4.52% (14) of families were
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increased (Figure 4A). TPN in 45 YY45 M2 families was lower than that in the control (TPN: 11.4),
accounting for 12.43%. TPN in 168 YY45 M2 families was higher than that in the control, accounting
for 46.41% (Figure 4A).
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For HPW per plant, we observed the peak at the groups of 90–99.9 g and 100–109.99 g among the
M2 generation of HY22 and YY45, whereas HPW of HY22 and YY45 control plants were 159 and 156 g,
respectively. In the mutant populations of HY22 and YY45, HPW of 249 and 325 families, respectively,
decreased compared to the corresponding control, and accounted for 98.42% and 98.19%, of the
corresponding values, respectively. The data showed that HFW in M2 families of the two genotypes
decreased relative to the corresponding WT (Figure 4B). For HKW per plant, the peaks of HY22 and
YY45 appeared at the groups of 35–39.9 g and 40–44.9 g, which were lower than mean value in HY22
control plants (61 g) and YY45 (54 g). Similarly, in mutant populations of HY22 and YY45, HKW of 242
and 273 families, respectively, decreased compared to the corresponding control, and accounted for
92.72% and 81.98%, of the corresponding values, respectively (Figure 4C). Thus, it was verified that
HKW in M2 families of the two genotypes decreased compared to the corresponding control.

3.4. Seed Quality in Plants of Generation M2

Data in Figure 5A show that the peak of oil content (OC) at the group of 50–51.99 in the M2
population of HY22, accounting for 29.27%, was lower than the HY22 control plants (mean OC: 55.57%).
Compared with the control, low and high OC were observed in 256 (89.20) and 11 (3.81%) M2 families,
respectively. In the M2 population of YY45, the peak appeared at the group of 48–49.99, accounting for
32.54%, which was lower than the control plants (mean OC: 51.16%). On the other hand, 237 (70.12%)
and 44 (13.02%) M2 families had low and high OC compared to the control YY45 (Figure 5A). The data
showed that OC in the mutant population of the two genotypes were decreased compared to their
corresponding control.

It was found that the peak of protein content (PC) appeared at the group of 24–24.99 and 25–25.99
in the M2 population of HY22 and YY45, whereas PC of their control plants was 23.1% and 23.5%,
respectively. In total, 164 and 65 families of HY22 had higher and lower PC than the control, accounting
for 57.14% and 22.65%, respectively. Meanwhile, high PC was observed in 244 (73.05) M2 families of
YY45, while lower PC was observed in 41 (12.28%) families (Figure 5B).
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3.5. Mutants

We identified several important mutations in the M2 generation that were stably inherited to
the M3 generation. These included dwarfism, leaf color and shape, high oil and/or protein, seed size,
and color of testa mutants.

3.5.1. Dwarf Mutants

Two mutants, HY-53 and HY-67, were dwarfs with height of 22.9 and 35.0 cm, and smaller leaves
than those of the control. These traits were stably inherited in the M3 generation (Figure 6A,B).
Mutant YY-18 was a dwarf with height of 21.0 cm, smaller and darker-green leaves than control YY45
(Figure 6C).
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3.5.2. Leaf Color and Shape Mutants

We found nine leaf-shape mutants among HY22 plants of the M2 generation, including two
large-leaf, four small-leaf, and two slender-leaf mutants and one wrinkled-leaf mutant. There were 13
leaf-color mutants: yellow (Figure 7A), dark-green, and pale-green (Figure 7B) observed in five, four,
and one mutant, respectively; one more mutant had the leaves with a chlorine-like color in the veins
(Figure 7C), while two more mutants showed mosaic leaves (Figure 7D,E).

There were five leaf-shape mutants in YY45 plants of the M2, including four small-leaf mutants
and one rolled-leaf mutants. Additionally, we found nine leaf-color mutants; one yellow-leaf, three
dark-green-leaf and one pale-green-leaf mutant (Figure 7F); lastly, there were four rolled-leaf mutants
(Figure 7G).
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3.5.3. High oil and/or Protein Mutants

Table 1 showed there were one high-oil dwarf mutant, six high-protein dwarf mutants, and one
high-protein yellow-leaf mutant among HY22 individuals in population M2. On the other hand, we
observed one high-oil, small-leaf mutant, two high-oil, high-protein, dwarf mutants, two high-protein
dwarf mutants, and one high-protein large-leaf mutant among YY45 plants in population M2.

Table 1. Mutants related to high oil and/or protein of HY22 and YY45 induced by EMS treatment.

Mutant ID Phenotype Oil Content
(%)

Protein
Content (%)

Plant
Height (cm)

HY22
mutants

HY93 High oil Dwarf 64.58 23.67 30.6
HY100 High protein Dwarf 51.82 32.95 34.2
HY104 High protein Dwarf 40.33 30.06 36.7
HY106 High protein Dwarf 44.68 31.77 37.1
HY123 High protein Dwarf 44.96 32.03 30.3
HY125 High protein Dwarf 50.20 32.40 34.3
HY126 High protein Dwarf 47.06 32.13 35.0
HY131 High protein Yellow leaves 45.01 30.72 40.2

YY45
mutants

YY37 High oil Small leaves 59.70 21.06 45.0
YY38 High oil and protein Dwarf 61.93 32.42 32.0
YY47 High oil and protein Dwarf 61.17 30.12 25.6
YY62 High protein Dwarf 44.86 30.66 34.8
YY64 High protein Dwarf 51.79 30.07 27.0
YY66 High protein Big leaves 45.74 30.54 41.9

3.5.4. Seed Size and Testa Color Mutants

The mutant in Figure 8B is shorter than the HY22 control (Figure 8A). The seed testa in the mutant
in Figure 8C became wrinkled and its red color more intense than that of the control. Cracks were
observed on the testa of the mutant in Figure 8E compared to the YY45 control (Figure 8D).
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4. Discussion

4.1. Optimal Treatment Conditions Based on LD50

Highly efficient mutagenesis is essential in mutagenesis-based breeding programs. Successful
EMS-mediated mutagenesis depends on many factors, such as EMS concentration, treatment duration,
and temperature, and others [4,32–34]. In the previous studies, several peanut genotypes, including
Silihong, Baisha 1016 and Jinhua 8, were treated with different conditions. Then, researchers simply
selected as optimal EMS treatment conditions closest to 50% of germination rate. However, few
researchers have reported an analysis to determine proper EMS treatment conditions through linear
regression for different peanut genotypes. In order to optimize EMS treatment conditions reasonably
and correctly, here, we compared sixteen different treatments comprising four EMS concentrations and
four treatment durations on two different peanut genotypes, HY22 and YY45. LD50 value for each
duration was calculated based on lethal rate, which is as the optimal treatment conditions for each of
the two genotypes studied.

Our results showed that EMS LD50 values for 1, 5 and 7 h in YY45 were higher than those
in HY22, suggesting that the former is more resistant to EMS than the latter. Similarly, previous
studies reported that sensitivity to chemical mutagens differs with genotype [35,36]. In addition,
our results showed that 100-pod weight and 100-kernel weight decreased in the M2 population of
both genotypes, as compared to the corresponding control. We inferred that this may be attributed
to different physiological and biological processes related to yield, including enzyme activity and
hormonal balance [37,38]. Furthermore, the toxic nature of the mutagen may reportedly damage cell
constituents at the molecular level or alter enzyme activity [39,40].

In previous research, it is verified that polyploid species are tolerant to high densities of induced
mutations compared to diploids [41], which supports the hypothesis that loss-of-function mutations in
polyploids are masked by genetic redundancy among homoeologs [42]. Such redundancy reduces the
probability of selection of favorable mutations induced by EMS [43], mainly producing point mutations
(G to A and C to T) in many crop species [44]. Peanut (AABB) is a tetraploid crop with very similar A
and B sub-genomes, which frequenctly have more than 98% DNA identify between corresponding
genes [43]. In this study, we inferred that many potentially useful induced mutants were likely masked
by functional redundancy among homeologs in the mutant population of both genotypes. TILLING
(targeting induced local lesions in genome) approach provides a relatively simple strategy to identify
mutants in a target sequence independently of its phenotypic effect [45]. Combined with the exome
capture technique, which is a smaller, specific portion of a plant genome that can be captured for
resequencing [46], the protein coding regions could be captured to discover SNPs [47] and catalog
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induced mutations [8,48]. These mutations can be combined to study gene function and to reveal
previously hidden phenotypic variation [42].

4.2. Potentially Useful Mutants Associated Important Traits

Dwarf and chlorotic mutants are the most readily visible, usual mutant types. Dwarf mutants
in peanut can provide useful insights for understanding the regulatory mechanisms of plant growth
and development, whereby they can be of great assistance in breeding programs. In our study,
several dwarf mutants were observed. Previous studies suggested that dwarfism might be due
to abnormal biosynthesis of indole acetic acid (IAA), gibberellin (GA), brassinosteroid (BR) or
strigolactones (SL) [49–55]. For example, the tryptophan-deficient dwarf1 (tdd1) rice mutant, which is
embryonic-lethal because of a failure to develop most organs during embryogenesis, is caused by TDD1,
which encodes a protein that functions upstream of Trp-dependent IAA biosynthesis [52]. Similarly, a
rice GA-insensitive dwarf mutant showed a severe dwarf phenotype containing high concentrations of
endogenous GA [56]. Furthermore, the Arabidopsis dwarf mutant, shrink1-D (shk1-D), is produced by
the activation of the CYP72C1 gene, which is a member of the cytochrome P450 monooxygenase gene
family that regulates BR inactivation [57]. In turn, dwarf mutant dwarf11 (d11) rice bearing seeds of
reduced length are controlled by the D11 gene encoding a novel cytochrome P450 (CYP724B1), which
showed homology to enzymes involved in BR biosynthesis [58]. Lastly, mutant dwarf 53 (d53) rice
controlled by the D53 gene encoding a substrate of the SCFD3 ubiquitination complex that functions as
a repressor of SL signaling [59].

Several types of chlorosis, such as yellow, pale-green and vein-chlorosis, were identified in this
study. In agreement with our results, previous studies found that a significant change in chlorophyll
development always resulted in the variation of leaf color [60–63]. For example, chlorotic mutants
defective in ChlH, ChlD or ChlI encoding the Mg-chelatase subunits have been identified in Arabidopsis,
rice, barley, and tea [64–68]. The loss of chlorophyll resulted from either a reduction or an excess
accumulation of ChlI [69]. In addition to genes encoding Mg-chelatase, other genes related to chlorotic
leaves have also been identified, which influence the biosynthesis of chlorophyll and alter chlorophyll
content. Firstly, OsYGL1, encoding a chlorophyll synthase responsible for catalyzing the esterification
of chlorophyllide, was identified from a rice yellow-green leaf1 mutant that showed yellow-green
leaves in young plants with reduced Chl synthesis, increased level of tetrapyrrole intermediates, and
delayed chloroplast development [70]. Secondly, the ylc1 mutant showed reduced levels of Chl and
lutein in young leaves compared to those of the control and turned green gradually, approaching
normal green at maximum tillering stage, which was controlled by the chloroplast-localized gene,
OsYLC1, whose protein is involved in Chl and lutein accumulation and chloroplast development
during early leaf development in rice [71]. Similarly, in this study, the Chl-deficient mutant in Figure 7A
showed completely etiolated newly grown leaves, light-green on middle leaves and regular green on
the bottom part at seedling stage, a pattern that warrants further study.

Three more mutant types associated with seed quality, including high-protein/dwarf,
high-oil/dwarf, and high-oil/large-leaf mutant, were observed in our study (Table 1). A previous study
showed that gene FAD2 regulated high oleic-acid synthesis in peanut [14,72,73]. However, to date,
only a few studies related to peanut seed-protein content have been reported. Mutations conferring
different phenotypic variations are important for the functional analysis of corresponding genes; in
addition, they offer an alternative plant material that peanut breeding programs can work with towards
crop improvement for desirable traits. Therefore, in our future work, novel phenotypes resulting
in phenotypic variation could be characterized using a combination of whole-genome resequencing,
linkage maps and RNA-seq, providing a comprehensive picture of gene expression changes and newly
introduced SNPs compared to wild-type, based on the reference genome of peanut. Once the gene
function was identified in a mutant population by TILLING or separated population by genetic maps,
the gene can be introgressed into breeding lines lacking that gene through crosses by the help of visible,
biochemical, or molecular markers, i.e., molecular marker-assisted selection (MAS).
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5. Conclusions

Based on LD50, here, we inferred the optimal EMS treatment conditions that will benefit future
mutagenic research in peanut. Further, the effects of EMS treatment on growth, yield, oil, and seed
quality were analyzed. Meanwhile, several mutants related to dwarfism, chlorosis, high oil and/or
protein content, seed size and testa color were obtained. Our findings highlight the potential of
EMS-induced mutant lines of HY22 and YY45; furthermore, the mutant lines selected in this study
may be used as germplasm resources and breeding materials in peanut breeding programs.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4395/10/5/655/s1.
Table S1: LD50 calculation based on the lethal rate with different EMS treatments.
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