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Abstract: A proper understanding of cultivar adaptation to different environments is of great relevance
in agronomy and plant breeding. As wheat is the most important crop in Poland, with a total of about
22% of the total sown area, the study of its performance in environments with different productivity
levels for consequent cultivar recommendation is of major importance. In this paper, we assess
the relative performance of winter wheat cultivars in environments with different productivity and
propose a method for cultivar recommendation, by considering the information of environmental
conditions and drought stress. This is performed in the following steps: (1) calculation of expected
wheat productivity, depending on environmental factors, (2) calculation of relative productivity of
cultivars in the environments, and (3) recommendation of cultivars of a specific type and range of
adaptation. Soil and weather conditions were confirmed as the most important factors affecting winter
wheat yield. The weather factors should be considered rather in shorter (e.g., 10 day) than longer
(e.g., 60 day) time periods and in relation to growth stages. The ANCOVA model with genotype and
management intensity as fixed factors, and soil and weather parameters as covariates was proposed
to assess the expected wheat productivity in particular environments and the expected performance
of each genotype (cultivar). The recommendation of cultivars for locations of specified productivity
was proposed based on the difference between the expected cultivar yield and the mean wheat
productivity, and compared with the Polish official cultivar recommendation list.

Keywords: cultivar recommendation; drought; environmental factors; genotype specific reaction;
regression analysis; winter wheat

1. Introduction

Wheat is one of the most important crops in the world and the third largest crop in terms of
production after sugarcane and maize and before rice [1]. It is the most important crop in Poland,
where it occupies about 22% of the sown area [2]. In Poland, winter wheat is grown in environments of
variable productivity, at both regional [2] and local scale. The variable productivity within environments
is mainly conditioned by soil, which is relatively stable in time. However, some local soil variability
may occur even within a single field [3]. Studies on a wide adaptation, even of the best varieties,
show that it may not be sufficient in environments with soils of extremely variable productivity [4].
In such cases, it may be justified to select different cultivars of narrower adaptation to be grown on
soils of contrasting productivity, e.g., one cultivar better adapted to fertile soil and another adapted
to unfertile soil, and sow them on respective fields or parts of one field. Consequently, farmers need
knowledge on which cultivars adapt to the soils of a given productivity: poor, medium or high.
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Adaptation of winter wheat cultivars depend on their ability to produce the relatively highest possible
yield in a given environment.

Under the conditions of modern agriculture, soil productivity depends on the ability to supply
plants with water, its reaction and other properties [5]. The water availability for plants is determined
by soil properties (mainly texture) and weather conditions. Precipitation is the main source of water,
while its loss resulting from evapotranspiration depends, above all, on air temperature. However,
the effect of water deficit and high air temperature on crop yield varies with the growth stage [6–8].
Babushkina et al. [9] investigated the relationship between the yield of spring wheat, barley and
oats, and air temperature, precipitation and the Selyaninov hydrothermal coefficient (HTC, calculated
from both air temperature and precipitation) in decades (consecutive periods of 10 days) in three
regions of Republic of Khakassia (South Siberia), over the period 1938–2012. The strongest and most
unambiguous effect of these factors was found in the northern region of the study area, which has
the lowest rainfall and no irrigation system. The significant positive impact of precipitation and HTC
was observed in the earlier growth stages including milk maturity (BBCH 7). In other regions, the
impact of rainfall and HTC was weaker and ambiguous. Negative air temperature had an effect on
yield, in both the northern region without irrigation and in the central irrigated region.

Babushkina et al. [9] fitted linear multifactor regression models of yield dynamics with the
following independent variables: (i) May–July air temperature; (ii) HTC of the same period; and (iii) an
auto correlation component. The soil factor was not directly considered in the model. The coefficients of
determination for these models varied between 0.30 and 0.63 for all crops and amounted to 0.47 (in the
northern region of the studied area) and 0.63 (in the central region of the studied area) for wheat.
Carew et al. [10] used a Just–Pope production function to estimate the relationship between spring
wheat yield and climatic factors (cumulative precipitation and air temperature in the growing season),
soil quality, fertilization and other factors using data from Manitoba, Canada, between 2000 and 2007.
They found that soil quality had a positive impact on the yield but the interaction between growing air
temperature (GDD) and precipitation had a negative effect on the yield for spring wheat.

Recently, Wójcik-Gront [11] found soil class and climatic water balance in the June–July period
within the four most important factors affecting winter wheat yield according to a classification and
regression tree (CART) analysis. The importance of weather factors in some growth stages of wheat
and soil suitability was reported in one-year and four-year studies by Iwańska and Stępień [12,13],
respectively. The influence of environmental conditions such as geographical coordinates, weather and
soil class, on genotype-by-environment patterns [14] was also studied with the use of a constrained
AMMI (additive main-effects and multiplicative interaction) model [15].

Reliable recommendation of cultivars requires the knowledge of their response to environmental
conditions in particular locations or zones that depend on both soil and weather factors. The yield of a
particular cultivar may be related to the averaged yield across locations [16–18]. The best performing
cultivars (i.e., with the highest productivity) should be preferred for recommendation in locations of
similar environmental conditions.

Currently, recommendations of cultivars are created at regional [19–21] or country level [22].
These recommendations are based on the set of performance data including yield and yield stability,
grain quality, lodging, pest and disease resistance and other specific criteria [20,21]. However, existing
recommendations do not take into account differences in a given region or even in one field and the
exact algorithm used by experimental stations is not available. It is also difficult to find studies that
propose methods for cultivar selection and recommendation in specific environments, e.g., with fertile
and unfertile soils.

The objective of this study is to elaborate a simple method for cultivar recommendations based
on the assessment of the winter wheat cultivars’ relative performance in environments with different
productivity due to soil and weather conditions.
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2. Materials and Methods

2.1. Yield Dataset and Environmental Variables

The data used in this study comprises 19 experimental sites of the Research Centre of Cultivar
Testing (COBORU) in Poland (Table 1), observed in the in the Post Registration Variety Testing System
(PVTS) during the 2017–2018 cropping season [12,13]. The research stations are located in a warm
temperate climate zone, between sea and continental transition. These areas fit the Köppen–Geiger
climate classifications of Cfb (warm temperate climate, fully humid with hot summer) and Dfb (snowy
climate, fully humid with warm summer) [23].

The winter wheat grain yield in each location calculated as the mean yield of cultivars considered
and two crop management levels is shown in Table 1. The environmental, weather and soil variables
are shown in Tables 1 and 2. Arable land suitability groups (agricultural soil suitability complexes)
were transformed to points in the way described by Witek et al. [24] and used in the paper to represent
soil conditions (Tables 1 and 2). Soil pH values were within the range of 4.9–7.0 (Table 1).

The winter wheat grain yield data covered a subset of 29 winter wheat cultivars, which were
evaluated in the growing season 2017–2018 at each trial location at two levels of crop management
intensity (for the cultivar names see Table 3). The lower, a moderate-input management system
(MIM) included standard fertilization adapted to local conditions, seed treatment, and herbicide and
insecticide applications, according to necessity. The high-input management system (HIM) included
nitrogen dose increased by 40 kg ha−1, an additional applications of foliar fertilizers, fungicides and
growth regulators [25,26]. Each field experiment was conducted according to a two-factor strip-plot
design with two replications and the grain yield for the cultivars was calculated.
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Table 1. Selected information on locations of post-registration multi-environment trials (PDO).

Location Longitude/Latitude/
Altitude Province *

The Points Attributed to
Arable Land Suitability

Group (Designation) in 2018

Average Arable
Land Suitability

in Points [26]
Soil pH Drought Mean Yield (t/ha)

Cicibór Duży 23.117/52.083/114 Lubelskie 70 (4. Very good for rye) 36.5 5.9 4 5.70
Czesławice 22.267/51.317/206 Lubelskie 94 (1. Very good for wheat) 82.9 6.2 No drought 9.88
Głębokie 18.438/52.645/85 Kujawsko-Pomorskie 80 (2. Good for wheat) 70.0 6.3 2 5.69

Głubczyce 17.833/50.183/280 Opolskie 94 (1. Very good for wheat) 82.4 5.7 No drought 10.19
Krościna Mała 16.950/51.367/106 Dolnośląskie 70 (4. Very good for rye) 48.9 6.9 3 9.56

Marianowo 22.117/53.217/140 Podlaskie 70 (4. Very good for rye) 76.7 5.7 2 7.45
Masłowice 18.633/51.250/174 Łódzkie 70 (4. Very good for rye) 50.9 6.5 2 7.32

Nowa Wieś Ujska 16.750/53.033/105 Wielkopolskie 70 (4. Very good for rye) 43.5 5.4 5 6.14
Pawłowice 18.483/50.467/240 Śląskie 80 (2. Good for wheat) 53.1 6.7 No drought 4.94
Radostowo 18.750/53.983/40 Pomorskie 94 (1. Very good for wheat) 76.7 7.0 No drought 10.02

Rarwino 14.833/53.933/10 Zachodnio-Pomorskie 70 (4. Very good for rye) 57.3 5.9 2 6.66
Rychliki 19.533/53.983/80 Warmińsko–Mazurskie 80 (2. Good for wheat) 72.3 6.4 2 9.14
Seroczyn 21.933/52.000/150 Mazowieckie 70 (4. Very good for rye) 39.6 6.8 4 5.58

Skołoszów 22.733/49.883/230 Podkarpackie (2. Good for wheat) 70.6 5.8 No drought 8.66
Słupia 19.967/50.633/290 Świętokrzyskie 80 (2. Good for wheat) 57.9 5.5 No drought 10.45

Świebodzin 15.583/52.233/90 Lubuskie 70 (4. Very good for rye) 48.6 4.9 4 6.85
Tomaszów

Bolesławie-cki 15.683/51.283/200 Dolnośląskie 52 (4. Good for rye) 70.3 6.0 No drought 3.27

Węgrzce 19.983/50.117/285 Małopolskie 94 (1. Very good for wheat) 79.8 6.1 No drought 8.87
Zybiszów 16.917/51.067/130 Dolnośląskie 80 (2. Good for wheat) 76.5 6.4 no Drought 9.93

* The first level administrative units of Poland (Polish: województwo, officially translated into English as voivodship). In the paper, we use the term province with the same meaning.
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The mean air temperature (T) and precipitation (P) were provided by the COBORU experimental
station and used to compute the Selyaninov’s Hydrothermal Coefficient (HTC) in the 10-day periods
(each single record covered 10 days in each location). In this paper, the HTC was considered to
be the sum of air temperatures higher than 0 ◦C, while in the original version [27] the HTC was
considered to be the sum of air temperatures over a given minimum air temperature (e.g., 5 ◦C or
10 ◦C; Radomski [28]). The climatic water balance (CWB) was collected from the Agricultural Drought
Monitoring System for Poland (ADMS) (http://www.susza.iung.pulawy.pl), provided by the Institute
of Soil Science and Plant Cultivation-State Research Institute (IUNG-PIB). If the value of CWB in
the district of the trial location was lower than the critical value of CWB determined for a particular
soil texture grouping (agronomic category, Jadczyszyn et al. [29]), the occurrence of drought was
recognized. Drought length was determined on the base of the successive ADMS reports with drought
occurrence (Tables 1 and 2).

The dates of winter wheat principal growth stages were provided by the COBORU experimental
station and rated according to Meier [30], considering only the principal growth stages (e.g., 5),
according to the BBCH (modified Zadoks) scale [31].

Table 2. Description of environmental traits used in the statistical analysis.

Variable Name Unit Description and Interpretation Number Per
Location Source

Air
temperature (T)

◦C
Mean air temperature in 10-day

period from the second period in
April to the second period in July

10

COBORU

Precipitation
(P) mm

Sum of rainfall in 10-day period
from the second period in April to

the second period in July
10

Selyaninov
Hydrothermal

coefficient
(HTC)

10 mm/◦C HTC = 10 × ΣP/ΣT 10

Skowera and
Puła [32],
simplified

(calculation
based on

COBORU data)

Climatic water
balance (CWB) mm

The difference between the
precipitations and the potential
evapotranspiration for a total
period of sixty days, reported

every ten days

5 ADMS for the
district in
which the

experiment is
located

Drought length
(DL) 10-day period

The number of ADMS reports
indicating the threat of drought
between April 10 and July 10 as
according to the ADMS web site
adjusted to agronomic category

1

Arable land
suitability
group (LS)

points

Arable land suitability for each
trial location. The full scale ranges
from 18 to 94 points, with higher

values for better, more wheat
suitable soils [33]

1
COBORU

Soil pH unit less Measured in 1M KCl extract 1

Due to the type of data and very similar results, the Selyaninov hydrothermal coefficient (HTC) was identical to the
Aridity Index (AI) [34,35], which was not included in the paper. In this paper, the sum of air temperatures >0 ◦C
was considered, differently than in Selyaninov’s original HTC formula [27].

2.2. Statistical Analyses

In this paper, the assessment of cultivar adaptation to environments of different productivity
was performed in the following steps: (1) calculation of expected wheat productivity, depending on

http://www.susza.iung.pulawy.pl
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environmental factors; (2) calculation of cultivar productivity in location that were treated as separate
environments; and (3) recommendation of cultivars of a specific type and range of adaptation.

2.2.1. Calculation of Expected Productivity

First, the analysis of covariance (ANCOVA) was performed by considering the genotype and
management intensity levels as fixed factors and the soil and weather parameters as covariates
as follows:

Yijk = m + ai + bj + abij + c1 × HTC1,k + . . . + c10 × HTC10,k + c11 × DLk + c12 × LSk + c13 × pHk + eijk (1)

where: m is the overall mean, ai is the ith cultivar main effect, bj is the jth management intensity level
main effect, abij is the cultivar–management interaction, HTC is the HTC index of nth period denoted
in kth location and cn is the coefficient for this quantitative variable, DL, LS and pH are the drought
length, arable land suitability and soil reaction, respectively, and eijk is the error term. The location
(Table 1) was not treated directly as a factor but its influence was included by the location’s quantitative
parameters (Table 2 and [13]). In this way, the estimated yields were calculated based on all available
data such as soil conditions and weather. Thus, the obtained yield values should contain a smaller
portion of random noise than the observed data, the influence of the weather conditions being reduced.

Then, the stepwise procedure based on the Akaike information criterion was used for covariate
selection [36]. The use of too many variables leads to overestimating the reduction of variables
needed to increase the model prediction ability. Finally, selected covariates were used to fit a linear
model to estimate the expected yield. In this way, the location estimated mean yield across cultivars
(environmental mean productivity in kth location and jth management intensity; expected grain yield,
YEjk) can be obtained from the model in Equation (2), which is a transformation of model in Equation
(1), by removing the terms associated with the cultivars (ai, abij), the error term (eijk) and the unjustified
(according to the Akaike information criterion) quantitative variables.

YEjk = m + bj + c1 × HTC1,k + . . . + c10 × HTC10,k + c11 × DLk + c12 × LSk + c13 × pHk (2)

2.2.2. Calculation of Relative Productivity of Cultivars (Genotype Specific Reaction)

The simple linear regression model was used to calculate single cultivar yield depending on the
expected mean wheat yield (independent variable), according to general equation:

Ycijk = gi + hiYEjk + eijk (3)

where: Ycijk is cultivar yield for the kth location under jth management level for ith cultivar, gi is
the intercept for ith cultivar, hi is the coefficient describing the relationship between the ith cultivar
and the environmental expected mean productivity, similar to Finlay and Wilkinson [17], YEjk is the
environmental mean productivity in kth location under jth management level and eijk is the error term.
This regression model in Equation (3) (one for each cultivar) describes the cultivar response to generally
considered environmental conditions, especially to the water stress described by the ten HTC indexes.

The cultivar (genotype) specific relative reaction (GSR) was calculated as a difference between
estimated cultivar yield Equation (3) and estimated environmental productivity Equation (2). Due to
the fact that average coefficients across cultivars average across cultivars (i index) for hi in Equation (3)
equals one, the GSR can be simplified to:

GSRi = gi + YEjk (hi − 1) (4)

where gi and hi are as defined in Equation (3) and YEjk is as defined in Equation (2). This parameter,
defined in Equation (4) was used for cultivar recommendation.
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2.2.3. Recommendation of Cultivars

The GSR and the mean yield of wheat expected in a given environment (location) were the
unique criteria used for selection of cultivar to be recommended. The relative specific reaction
(GSR) retains the order of estimated cultivar yield in a particular environment (location). For this
reason, the GSR values and wheat productivity levels (between 4 and 10 t/ha) was used for cultivar
recommendation. All cultivars were ranked according to the GSR value at a given yield level, i.e.,
low (4 t/ha, corresponding approximately to national average, GUS [2]), medium (7 t/ha), and high
value (10 t/ha). The five cultivars with highest GSR at each level were chosen for recommendation.

The selected top five cultivars were also compared with the official list of recommended cultivars
by the COBORU for cultivation within the particular province (voivodeship) in 2019 [37].

The statistical analyses were performed using the R software [38]. The analysis of covariance and
regression analyses were done with the use of the lm function and the orthogonal contrasts were chosen
for factors. The selection of independent variables contained in the model was done according stepwise
selection method based on Akaike information criterion (AIC) and the calculation was performed with
the ‘stepAIC’ function from ‘MASS’ package [39].

3. Results

3.1. Calculation of Expected Productivity

Table 3 presents the estimates for the main parameters in Equation (1). The overall mean of winter
wheat yield across experimental locations (m) was estimated at 7.70 t/ha. Cultivar main effects (ai)
show yield relative to the overall mean [17]. Positive effects of ai inform about a higher yield in relation
to the overall mean and vice versa. The best performing cultivars, outyielding the overall mean by
0.2 t/ha or more, were RGT Bilanz, Artist, Bonanza and Frisky. The cultivars with the lowest yield were
Ostroga, KWS Ozon, Owacja, Arkadia and Pokusa.
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Table 3. The effects of cultivar (ai), management intensity level (bj) and their interaction (abij), the
AMMI (additive main-effects and multiplicative interaction) stability measure and the Finlay–Wilkinson
regression coefficient on winter wheat yield.

Cultivar Name ai
abij

m *
bj AMMI Stability

Measure (ASV)

Finlay–Wilkinson
Reression

Coeficient (FW)MIM HIM MIM HIM

Arkadia −0.214 −0.129 0.129

7.70 −0.504 0.504

4.015 0.875
Artist 0.337 −0.063 0.063 0.978 0.978
Belissa 0.085 −0.038 0.038 2.857 1.054

Bonanza 0.325 −0.108 0.108 1.499 0.987
Delawar −0.067 0.121 −0.121 1.351 0.919
Dolores 0.057 0.071 −0.071 1.459 0.887

Formacja −0.019 0.111 −0.111 0.433 0.972
Frisky 0.215 0.075 −0.075 1.870 0.884

Hondia −0.087 0.007 −0.007 0.799 1.004
Hybery 0.123 0.146 −0.146 3.391 0.867

KWS Firebird −0.065 −0.138 0.138 2.323 0.956
KWS Kiran 0.135 0.037 −0.037 2.332 0.905
KWS Ozon −0.265 −0.186 0.186 0.883 0.950

KWS Spencer −0.106 0.028 −0.028 1.508 0.970
LG Jutta 0.161 −0.080 0.080 2.810 1.010

Linus −0.106 −0.090 0.090 0.927 0.912
Medalistka −0.172 0.006 −0.006 3.294 0.951

Opcja 0.064 −0.016 0.016 1.371 0.927
Ostroga −0.472 0.028 −0.028 1.458 0.961
Owacja −0.253 0.154 −0.154 1.992 0.951
Patras 0.105 0.014 −0.014 1.462 1.012
Pokusa −0.211 0.003 −0.003 1.446 0.915

RGT Bilanz 0.360 −0.089 0.089 2.142 0.850
RGT Kicker −0.067 0.003 −0.003 2.240 0.910

RGT Kilimanjaro 0.031 0.052 −0.052 1.558 0.876
RGT Metronom 0.049 −0.074 0.074 1.351 0.970

Rivero 0.113 0.022 −0.022 0.639 0.968
Rotax 0.140 0.093 −0.093 1.439 0.999

Tytanika −0.197 0.039 −0.039 3.552 0.926

* m is the overall mean.

The main effects of the management intensity level (bj) indicates a mean difference between
moderate (MIM) and high (HIM) management intensity levels of about 1 t/ha (Table 3). The effects of
the cultivar–management interaction (abij) indicate the response of cultivars to the level of management
intensity level (MIM or HIM). The effect of this interaction (Table 3) was sometimes: (i) around zero
(Pokusa and RGT Kicker cultivars had estimated differences between management levels around
0.006 t/ha); (ii) positive for HIM (and negative for MIM at the same time), which indicated positive
effect of improved management (0.186 t/ha KWS Ozon); or (iii) negative for HIM, which showed lower
positive effect (than occurred for most others cultivars) of management level on yield for particular
cultivar (Owacja, HIM main effect equal to 0.504 t yield/ha was reduced by 0.154 for this cultivar).
Thus, the results showed which cultivars were more sensitive to the management level, and for those
cultivars, the higher management intensity is especially important.

Stability indexes such as the Finlay–Wilkinson regression (FW) coefficient and the AMMI stability
value (ASV) were considered for comparison purposes (Table 3). For the FW coefficient, the most stable
cultivars are those with regression coefficient equal to one, being a possible measure for instability as
the absolute distance from the unit coefficient [17]. As for the ASV, since it is computed as the Euclidian
distance between the scaled genotype scores and the origin of the biplot in a two-dimensional space
formed by the first two interaction principal components, a lower absolute value of this index indicates
greater cultivar stability [40,41].

Based on a preliminary analysis of Table 3, by considering the FW stability index, the top five
most stable cultivars are Bonanza, Hondia, LG Jutta, Patras and Rotax. When considering the AMMI
stability value, the most stable cultivars are Formancja, Hondia, KWS Ozon, Linus and Rivero.
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3.2. The Impact of Environmental Variables (Covariates)

The data set that was used in the analysis was characterized by a large interdependence between
variables. Although HTC in 10-day periods was calculated based on precipitation and air temperature,
it was most frequently correlated with rainfall [13].

Both the sum of squares in ANCOVA connected to the independent quantitative variables and the
signs of the coefficients were different for each sub-model (Table 4). The sum of squares and AIC result
in the same ranking of factors influencing winter wheat yield, meaning that both criteria chose the
same factors as main source of yield gaps. The signs of coefficients determine if the influence of the
quantitative variable was positive or negative on the yield.

Table 4. Akaike information criterion for sub-models and regression slope (coefficients) for the selected
variables in order of significance according to AIC and sum of squares values.

Variable AIC a Coefficients b Sum of Squares b

HTC_June_1_dec 3732 1.69 1008
HTC_May_3_dec 3572 2.82 781

DL 3314 −1.04 478
LS 3278 0.093 441

HTC_July_2_dec 3234 −0.754 398
HTC_May_1_dec 3171 −2.58 339
HTC_June_3_dec 3082 −0.699 261
HTC_July_1_dec 3048 −2.68 232

HTC_April_2_dec 2850 −0.878 84
Soil pH 2848 −0.939 82

HTC_May_2_dec 2818 0.314 63
HTC_June_2_dec 2763 −0.415 27
HTC_April_3_dec 2729 0.457 6

All 2722
a AIC, Akaike Information Criterion for the model without the variable in the first column and all selected variables.
b according the ANCOVA analysis.

The strongest impact on the winter wheat yield was obtained by HTC in the first 10-day period in
June and in the third 10-day period in May, both with positive signal (Table 4). The drought stress
generated yield gaps. The next factors were drought length (DL) with negative impact, i.e., longer
water deficit decreased yield, and soil quality (LS) with positive impact. The influence of HTC was
positive or negative, independent of the period, so the water deficit is beneficial in some growing
stages (Table 4 and Figure 1).

The 10 points of LS value increased yield by 0.93 t/ha. Greater soil pH results in lower yield, and
an increase of 1 pH represents a loss of about 0.9 t/ha. Also, increasing the DL parameter by one (water
stress time is longer by 10 days) results in a loss yield equal to 1 t/ha.

The response of winter wheat to the HTC index depended on the time period. A negative
relationship between yield and HTC was observed in the second 10-day period in April, the first
10-day period in May and between the second 10-day period in June and the second 10-day period in
July. This relationship was particularly strong in the first 10-day period in May and first 10-day period
in July. In contrast, a positive relationship between yield and HTC was found in the third 10-day
period in April and between the second 10-day period in May and the first 10-day period in June,
being especially strong in the third 10-day period in May (Figure 1 and Table 4). It is important to
mention that CWB also had a significant effect on winter wheat yield, however, weaker in comparison
with the HTC impact. For this reason, CWB was not included in the final model.
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Figure 1. Regression coefficients of the effect of HTC on winter wheat yield in 10-day periods included
in the study.

Based on the results described above, the considered independent quantitative variables
(covariates) in the linear model ANCOVA were: DL, LS, pH and the set of HTC values in decades
without precipitation and air temperature (both were included in HTC index). A large number
of covariates was avoided to improve parsimony and avoid overfitting during estimation [42–44].
Akaike information criteria confirmed the importance of all covariates in the analysis of covariance
(Table 4).

The model (2) describes the mean yield under each environmental condition (YEjk) based on the
studied weather (mainly HTC index) and soil parameters, and allows the calculation of the location
means according to the analysis of covariance (Figure 2). The location Tomaszów Bolesławiecki was
characterized by the lowest yield, whereas Czeslawice was the most productive location. The estimated
productivity decreased from Czeslawice to Tomaszów Bolesławiecki and seems to be a continuous
variable. The arable lands in Poland are not clearly separated in terms of environmental conditions
so the continuous increasing in the adjusted mean yield (Figure 2) instead of a discrete behavior
was expected.



Agronomy 2020, 10, 632 11 of 20

Agronomy 2020, 10, x FOR PEER REVIEW 11 of 20 

 

 
Figure 2. Estimated average yield (t/ha) in trial locations based on ANCOVA analysis. Triangles are 
the observed yield at the lower, a moderate-input management system (MIM) (vertex down) and the 
high-input management system HIM (vertex up) conditions. Circles and squares are the estimated 
yield for two levels of crop management intensity: moderate (MIM) and high (HIM), respectively. 

3.3. Recommendation of Cultivars 

Figure 3 shows the genotype specific reaction (GSR) of each cultivar in environments of 
determined productivity ranging from 4 to 10 t/ha, based on the simple linear regression according 
to equation [4], for each single cultivar. The GSR gives the relative difference between expected yield 
of each cultivar and mean yield of all cultivars. The row position in the figure indicates relative 
productivity of a particular cultivar in comparison to the other cultivars. The intensity of shading 
informs the type and degree of winter wheat cultivar adaptation to environment productivity. The 
green color indicates high and positive reaction of cultivar while red means low and negative reaction 
in the environment of the specified productivity. The response of a single cultivar to the productivity 
of the environment is seen in each row. 

Figure 3. Genotype specific reaction (GSR) in environments of determined productivity ranging from 
4 to 10 t/ha. The row position in the figure indicates relative productivity of a particular cultivar in 
comparison to the other cultivars. The intensity of shading informs the type and degree of winter 
wheat cultivar adaptation to environment productivity. The green color indicates high and positive 
reaction of cultivar while red means low and negative reaction in the environment of the specified 
productivity. 

 

Figure 2. Estimated average yield (t/ha) in trial locations based on ANCOVA analysis. Triangles are
the observed yield at the lower, a moderate-input management system (MIM) (vertex down) and the
high-input management system HIM (vertex up) conditions. Circles and squares are the estimated
yield for two levels of crop management intensity: moderate (MIM) and high (HIM), respectively.

3.3. Recommendation of Cultivars

Figure 3 shows the genotype specific reaction (GSR) of each cultivar in environments of determined
productivity ranging from 4 to 10 t/ha, based on the simple linear regression according to equation [4],
for each single cultivar. The GSR gives the relative difference between expected yield of each cultivar
and mean yield of all cultivars. The row position in the figure indicates relative productivity of a
particular cultivar in comparison to the other cultivars. The intensity of shading informs the type and
degree of winter wheat cultivar adaptation to environment productivity. The green color indicates
high and positive reaction of cultivar while red means low and negative reaction in the environment of
the specified productivity. The response of a single cultivar to the productivity of the environment is
seen in each row.

Cultivars of wide adaptation are marked as green lines in the full range of productivity. For example,
Artist and Bonanza produce higher yield than the environmental average in both low and high
productivity environments (GSR values from 0.20 to 0.53 t/ha). Cultivars of narrow adaptation are
characterized by green color in a narrower range of productivity of environments. In environments
with high productivity (from 7 to 10 t/ha) the cultivars RGT Bilanz and Frisky are recommended
as producing higher yield (GSR values from 0.15 to 0.64 t/ha) than average wheat yield in these
environments. Cultivars LG Jutta, Rotax and Belissa are characterized by good adaptation (GSR values
from 0.17 to 0.53 t/ha) to environments with low and medium productivity (from 4 to 7 t/ha), similarly
to Artist and Bonanza with wider adaptation to productivity of environments. Thus, our method
recommends the following, top-five highest yielding cultivars: Belissa, Bonanza, LG Jutta, Artist, Rotax
and RGT Bilanz in environments of low productivity (4 t/ha), three of them being the same as those
suggested by the FW stability index. The cultivars Artist, Bonanza, LG Jutta and Rotax (two also
recommended by the FW stability index) are recommended for environments of medium productivity
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(7 t/ha), and the cultivars RGT Bilanz, Frisky, Dolores, Hybery and KWS Kiran are recommended for
locations of high productivity (10 t/ha).
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4. Discussion

4.1. Main Effects of Cultivars on Wheat Productivity

The model used in the study takes into account fixed factors depending on farmers (cultivar,
management intensity level and their interaction, Table 3) and covariates (justified weather and soil
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factors, Table 4). Among the fixed factors, management had a greater impact than cultivars and
interaction between both factors, as it was observed before by Mądry et al. [45] and Rozbicki et al. [46].

Mean difference between moderate (MIM) and high (HIM) management intensity levels was of
about 1.0 t/ha (Table 3) and it was similar to the respective difference reported by Rozbicki et al. [46]
(0.9 t/ha).

The cultivars incurred different effects on winter wheat productivity (ai varying between—0.472
for Ostroga and 0.360 for RGT Bilanz, Table 3). A significant effect of winter wheat cultivar on yield was
reported by Mądry et al. [45] in contrast to Rozbicki et al. [46]. However, both studies differ partially in
terms of the growing season, selected cultivars and location.

The cultivar–management interaction gives the response of the cultivars to the level of management
intensity (MIM or HIM). The highest and positive abij values at HIM (and, consequently the
lowest negative abij values at MIM) distinguish cultivars with the highest requirements regarding
agrotechnology level. Examples of such cultivars were KWS Ozon, KWS Firebird, Arkadia and
Bonanza. The cultivars Owacja, Hybery, Delawar and Formacja, characterized by lower requirements
regarding agrotechnology, actually responded negatively on improvement of management intensity
(Table 3). This fact is quite surprising and requires explanation by further and more detailed studies.
However, according to Praczyk [47], the growth regulators used for stem shortening, which were
applied at HIM, and not at MIM level, may have negative effect on crops during the years with longer
periods of dry and hot weather, as it actually occurred in 2018.

The effects of cultivars and cultivar by management interaction were not quantified in previous
studies but it may be useful for recommendation of cultivars depending on technology level.

4.2. The Impact of Environmental Factors: Soil and Weather

4.2.1. Soil

In the model, land suitability was the fourth most important quantitative (environmental) factor
determining winter wheat yield, after HTCs in the first 10-day period in June and in the third 10-day
period in May and drought length in the dry year 2018. The importance of soil as the main or one of
the most important factors affecting crop yield is widely known and has been continuously confirmed
in previous and recent studies [10–13,48]. However, according to Iwańska and Stępień [13], based on
the same yield, soil and weather dataset, the arable land suitability had stronger effect on winter wheat
yield than any weather factor. At the same time, while in this study the HTC values for the third
10-day period in May, and first 10-day period in June as well as drought length had stronger and more
significant effect on wheat yield than arable land suitability (LS). This may result from the use of a
simple Spearman’s rank correlation coefficient by Iwańska and Stępień [13], while in this study more
advanced, multivariate statistical analyses were performed.

In the model developed in this study, the 10 points assigned to the LS group corresponded to
0.93 t/ha of yield increase (Table 3). Actually, the number of points assigned to each land quality group
depended on yield of the main cereals obtained in 1970s [24]. In those times the maximum average
cereal yield obtained on the best land suitability groups (1–94 points and 2–80 points) were of about
4.8–5 t/ha. Currently, the progress in technology used in agriculture led to an increase yield in winter
wheat to about 8–10 t/ha and even more (Table 1) in these suitability groups. Thus, the valuation of
land suitability in points developed in 1970′s [24] is still valid and well related to yield.

The increase of soil pH by one reduced average winter wheat yield by 0.9 t/ha. In this study
the soil pH values varied between 4.9 and 7.0, and, most frequently, it was above six. Fotyma and
Zięba [49], Farhoodi and Coventry [50] and Miller [51] reported a possibility of wheat yield decrease at
such pH values. Also, a Spearman rank correlation analysis performed by Iwańska and Stępień [12]
indicated a significant and negative effect of soil pH on wheat yield in 2015 and lack of any effect in the
years 2016–2018.
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4.2.2. Weather

The impact of some weather factors on winter wheat yield was greater than the impact of land
suitability (Table 4). These factors were the HTC in the last ten days of May and the first 10 days of June
and the drought length. The 10 days of DL decreased yield by one t/ha and confirmed the occurrence
of drought, as reported by the agricultural drought monitoring system for Poland (ADMS) [52].

The analysis of the same data set using the Spearman correlation rank coefficient showed a
negative relationship of winter wheat yield with drought length [13]. The impact of HTC on winter
wheat yield were positive or negative depending on period similarly to Babushkina et al. [9] and
Iwańska and Stępień [12]. As the temperature and precipitations vary across years, so does the HTC
values. Consequently, the effect of HTC, as well as T and P, on wheat yield, is year-specific [12].

A negative coefficient for HTC indicates a decrease in yield along with an increase in HTC and as
the amount of water increases, which might indicate the occurrence of excess of water in this period.
A negative effect of HTC on wheat yield was found in the second 10-day period in April, which
corresponded to tillering (BBCH 2), with particularly strong HTC in the first 10-day period in May,
which corresponded to shooting (BBCH 3) and between the second 10-day period in June and the
second 10-day period in July, which corresponded to milk maturity (BBCH 8) and ripening (BBCH
9) with particularly strong HTC in the first 10-day period in July (Figure 1 and Table 4). During this
period there were two highest values of HTC significantly reducing wheat yield by an amount ranging
from 0.0 t/ha (Czesławice) to 5.0 t/ha (Pawłowice) and from 0.0 t/ha (Nowa Wieś Ujska) to 2.7 t/ha
(Pawłowice). Similar results as for the final winter wheat growth stage under the strong influence of
water availability in June and July were reported by Wójcik-Gront [11].

In contrast, a positive coefficient in the ANCOVA analysis for HTC indicates a decrease of yield,
along with a low amount of HTC, indicating water deficit and hence drought (Table 4). The lower the
value of the HTC index, the greater the decrease of yield in the respective period. A positive impact of
HTC was noted in the third 10-day period in April, which corresponded to tillering (BBCH 2) and
between the second 10-day period in May and the first 10-day period in June, which was related mostly
to heading (BBCH 5) and flowering (BBCH 6), with particularly strong HTC in the third 10-day period
in May (Figure 1 and Table 4). This period is critical regarding water supply for winter wheat, as it
reported previously by Hanson and Nelsen [6], Rane et al. [53], Podolska [8] and Senapati et al. [54].
During the third decade of May the lowest values of HTC significantly reduced wheat yield by an
amount ranging from 0.0 (Tomaszów Bolesławiecki, the most pronounced water deficit of all locations,
HTC 0.0, data not shown) to 4.4 (Zybiszów, the best water supply of all locations, HTC 1.6, data not
shown). In this study, the effect of the climatic water balance on winter wheat yield was significant
(data not shown). The importance of CWB for winter wheat yield was reported by Wójcik-Gront [11]
using the data from seven growing seasons (from 2009–2010 to 2015–2016). However, CWB did not
show drought in Tomaszów Bolesławiecki, while the analysis of HTC in decades showed a strong
negative impact of drought on winter wheat yield in the third 10-day period in May (Figure 1, Table 4).

Moreover, HTC proved to be more useful than CWB, which is determined in 60-day periods and
difficult to relate to grow stages. Probably, CWB reported for shorter periods, would lead to similar
conclusions as HTC [12]. DL was calculated using CWB and was included in the model. Consequently,
HTC and DL are also more convenient to be used in yield modeling and plant breeding programs.

4.3. Recommendation of Cultivars and Validation

In the current study, cultivar recommendation was based on genotype specific reaction
methodology taking into consideration the criteria of winter wheat yield for the selected cultivars,
which were those occurring in each of 19 locations during the 2017–2018 growing season. The top-five
highest yielding cultivars were selected for good adaptation to specified productivity levels of the
environment such as low (4 t/ha), medium (7 t/ha) and high (10 t/ha) (see Section 3.2) and also because
of their presence in the list of recommended cultivars by COBORU for cultivation within the province
in 2019.
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These top five cultivars were then compared with the list of recommended cultivars by the
COBORU (Research Centre for Cultivar Testing) for cultivation within the provinces (voivodeships,
or administrative areas) of Poland in 2019 (Table 5). Five of the top-yielding cultivars for the low value
of wheat productivity (4 t/ha) were found on the list of recommended cultivars by COBORU [37]:
Artist (in 16 provinces), Rotax (in eight provinces), Belissa (in seven provinces), Bonanza and LG Jutta
(in five provinces).

Table 5. The selected TOP five highest yielding cultivars for the specified value of Genotype Specific
Reaction (GSR) and their presence in the list of recommended cultivars by the Research Center of
Cultivar Testing (COBORU) for cultivation within the province in 2019.

Ranking of
Cultivar

GSR-Based Recommendation in Environments of Expected
Yield

COBORU
Recommendation
(No of Provinces)

Low (4 t/ha) Medium (7 t/ha) High (10 t/ha)

Artist 4 * 1 * 6 16
Rotax 5 * 5 * 15 8
Belissa 1 * 6 20 7

Bonanza 2 * 2 * 8 5
LG Jutta 3 * 4 * 14 5
Hybery 15 11 4 * 4

KWS Kiran 13 10 5 * 3
RGT Bilanz 14 3 * 1 * 3

Frisky 17 7 2 * 2
Dolores 22 12 3 *

RGT Kilimanjaro 23 14 7 14
Linus 19 19 13 12

Hondia 8 16 19 11
Arkadia 16 22 22 7
Patras 6 8 11 7

Ostroga 25 25 25 6
Delawar 21 18 10 5

KWS Ozon 20 24 24 5
Formacja 11 15 12 2
Pokusa 24 23 17 2
Rivero 7 9 9 2

KWS Firebird 10 14 16 1
KWS Spencer 12 17 18 1

Medalistka 9 20 23 1
Tytanika 18 21 21 1

* Denotes top ranked cultivars in top five cultivars selected for recommendation. In low-, medium- and
high-producing environments; (1–25) the numbers next to the cultivar names indicates the place in the ranking of
each cultivar.

For the medium level of wheat yield (7 t/ha), Artist (in 16 provinces), Rotax (in eight provinces),
Bonanza and LG Jutta (in five provinces) and RGT Bilanz (in three provinces) were also recommended
by COBORU. The top-five provinces for the high yield level (10 t/ha) that were selected in this study
were Hybery (in four provinces), RGT Bilanz (in three provinces), KWS Kiran (in three provinces),
Frisky (in two provinces) and Dolores (in one province), and also recommended by COBORU.

Cultivars, which we recommend for lower productivity, are recommended by COBORU in more
provinces, and those that we recommend for higher productivity, are recommended in fewer provinces
(Table 5). It is also worth to note, that some cultivars recommended by COBORU in more than
10 provinces (RGT Kilimandżaro, Linus and Hondia) were not found within our top five cultivars
selected for recommendation in low-, medium- and high-producing environments.

The differences in recommendations made by COBORU and those resulting from the current
study may be explained as follows:
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(1) Our criterion is based on the expected yield, whereas COBORU does not regard yield as the
only criterion;

(2) Our recommendations are based on a one-year study, since the main goal is to develop a
methodology, and COBORU considers the results from several years;

(3) At COBORU experimental sites, it is possible to provide generally higher agrotechnology even
at MIM level, as the experiments are carried-out on small plots, than in production conditions [20,22];

(4) At COBORU experimental sites, wheat is usually grown (on average) on better kinds of soils
than (on average) under production conditions (see Table 1);

(5) The detailed algorithm used by COBORU for cultivar recommendation is not available to
the public;

(6) Not all cultivars recommended by COBORU were included in this study, as they were not
investigated in all locations in 2018.

The ranking for the top five most stable genotypes was computed for each stability measure,
including our proposal, the FW stability index and the AMMI stability value, and Linus only for the
AMMI stability value. Two genotypes, Formacja and KWS Ozon, were in the top five for our method
and for the AMMI stability value. Genotype Hondia was on the top five for both FW stability index
and AMMI stability measure.

The Spearman correlation of rankings for these three stability measures (Table 6) showed that
the AMMI stability value was significantly correlated with the other two, and compliance with them
was comparable. However, no significant correlation was found between our method and the FW
stability index. Since only the proposed method takes into consideration weather conditions and soil
yield-forming potential, it is expected to result in different ranking than other methods that do not take
into consideration this information.

Table 6. Spearman’s rank correlation coefficients and its significance level for the three stability measures.

Proposed AMMI ASV Finlay–Wilkinson

Proposed - 0.40 * 0.25 ns

AMMI ASV 0.40 * - 0.42 *
Finlay–Wilkinson 0.25 ns 0.42 * -

* Significant at the 0.05 probability level, ns not significant at the 0.05 probability level.

The main limitation of our study is that it was based on single year. However, the main objective
of this paper was to propose a new methodology for cultivar recommendation by considering the
information of connected with environmental conditions and drought stress. The reasons for this
approach to be based on one single year are: (i) often, the data available to researchers includes cultivars
that are not repeated in consecutive years (this is the case for the COBORU research testing for variety
testing); (ii) by including more than one year, many missing values would be included in the data and
further strategies would need to be considered to generalize our proposal; and (iii) we were interested
in proposing a relevant methodology and conclusions/suggestions based on recent data that can be
useful for practical use in Polish plant breeding, instead of considering older data and a limited number
of cultivars in a data set without missing values. However, we do believe that this article introduces
the basis for a long-term analysis taking into account weather conditions, and, therefore represents a
valuable step in this direction. Nevertheless, as a future development, we intend to develop a new
methodology to analyze data collected along the time that can also account for missing values.

5. Conclusions

In this paper, we studied the relative performance of winter wheat cultivars in environments
with different productivity and proposed a method for cultivar recommendation that takes into
consideration the information of environmental conditions and drought stress. This was performed
in three steps: (1) calculation of expected wheat productivity, depending on environmental factors,



Agronomy 2020, 10, 632 17 of 20

(2) calculation of relative productivity of cultivars in the environments, and (3) recommendation of
cultivars of a specific type and range of adaptation.

This study confirmed the importance of soil and weather conditions as important factors to
determine wheat yield. However, the weather factors should be considered in shorter time periods
such as 10-day periods and in strict relationship with crop growth stages. Even during dry years,
the crop may suffer not only from water deficit, especially in the period during or near to heading,
but also water excess, especially in early spring, i.e., during tillering, and during ripening.

From the weather variables affecting crop yield, the Selyaninov’s hydrothermic coefficient (HTC),
which is calculated from precipitation and temperature, was more useful in wheat yield modeling than
precipitation and temperature treated as separate variables. HTC was also more strictly correlated
with wheat yield than the climatic water balance in 60-day periods, which is freely available in Poland,
without any charges.

In the current study, we propose a genotype-specific reaction methodology for the recommendation
of a cultivar for environments of a determined wheat productivity level. The method should be further
developed for the analysis of long-term and to account for missing values, in order to increase its
precision. Cultivars of wide adaptation should be recommended especially for fields with high soil
variability, i.e., with large variations in productivity within the field. Cultivars of narrow adaptation
should be recommended for fields with low soil variability.

This approach can be especially useful for farmers having long term experience, whose knowledge
allows to assess the wheat yield level expected on their farms or even in particular places of one field,
and then select the best-adapted cultivar for the respective wheat productivity level and also for their
specific agrotechnology level.
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28. Radomski, C. Państwowe Wydawnictwo Rolnicze i Leśne; Agrometeorologia: Warsaw, Poland, 1987; pp. 1–544.
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45. Mądry, W.; Derejko, A.; Studnicki, M.; Paderewski, J.; Gacek, E. Response of winter wheat cultivars to
crop management and environment in post–registration trials. Czech J. Genet. Plant Breed. 2017, 53, 76–82.
[CrossRef]
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