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Abstract: Knowledge of genetic variations can provide clues into the molecular mechanisms regulating
key crop traits. Sweet potato (Ipomoea batatas (L.) Lam.) is an important starch-producing crop,
but little is known about the genetic variations in starch biosynthesis and sucrose metabolism
genes. Here, we used high-throughput sequencing of pooled amplicons of target genes to identify
sequence variations in 20 genes encoding key enzymes involved in starch biosynthesis and sucrose
metabolism in 507 sweet potato germplasms. After filtering potential variations between gene copies
within the genome, we identified 622 potential allelic single nucleotide polymorphisms (SNPs) and
85 insertions/deletions (InDels), including 50 non-synonymous SNPs (nsSNPs) and 12 frameshift
InDels. Three nsSNPs were confirmed to be present in eight sweet potato varieties with various
starch properties using cleaved amplified polymorphic sequence (CAPS) markers. Gene copy with
loss of the fifth intron was detected in IbAGPb3 genes, and loss of multiple introns were observed
in IbGBSS1-1 genes and various among germplasms based on intron length polymorphism (ILP)
markers. Thus, we identified sequence variations between germplasms in 20 genes involved in starch
biosynthesis and sucrose metabolism, and demonstrated the diversity in intron-loss alleles among
sweet potato germplasms. These findings provide critical genetic information and useful molecular
markers for revealing regulatory mechanism of starch properties.
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1. Introduction

The discovery of genetic variation is essential for revealing the molecular mechanism controlling
important traits. Many sequence variations, such as single nucleotide polymorphisms (SNPs),
insertions/deletions (InDels), and intron length polymorphisms (ILPs), have been identified in crops [1–4],
providing comprehensive tools for analyzing the genome and identifying genes and genomic regions that
contribute to phenotypes of interest. Many variations associated with disease resistance or important
agronomic traits have been identified in crops [5,6]. Genetic markers developed from sequence variations have
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been used extensively for diverse genetic analyses, including genetic diversity assessment, trait association
mapping, and fine-mapping of QTLs regulating important agronomic traits [7].

Sweet potato (Ipomoea batatas (L.) Lam.) is widely grown throughout the world and is critical
for food security and nutrition due to its high yield, rich nutrient content, low input requirements,
multiple uses, and adaptability under a range of environmental conditions [8–10]. Sweet potato yields
a large amount of energy per unit area per unit time [11]. Starch levels in the storage root are 20%
to 30% of the wet weight [12] and 50% to 80% of the dry weight [10]. The high starch content and
reliable starch yield of sweet potato make it a good source of carbohydrates and, thus, an excellent raw
material for starch-based industries and environmentally friendly ethanol biofuel production. Indeed,
sweet potato may have an even greater potential than maize (Zea mays) as an ethanol source [11–13].

The quality and yield of carbohydrates and ethanol from sweet potato depend on starch properties
such as yield, content, and composition. The starch content of the storage root influences post-harvest
processing and ethanol yield [11,14]. The starch composition, particularly the amylose–amylopectin
ratio, affects the starch structure and physicochemical properties of the starch [15] and also the ethanol
yield [11]. A higher proportion of short amylopectin branched chains may lower the gelatinization
temperature of starch and thereby help reduce energy consumption and CO2 emission in ethanol
biofuel production [12]. Thus, improving the starch content and starch quality remains an important
goal, especially in the field of biotechnology [16]. Starch content and composition vary greatly among
different sweet potato varieties [14,15,17], but the genetic basis and regulatory mechanism of these
important traits is insufficiently understood.

Starch is synthesized through a complex biosynthetic pathway, and the properties of the starch
are determined by the activities of several key starch biosynthetic and metabolic enzymes [18].
Natural genetic variations of genes encoding these key enzymes are associated with starch properties
in crops. For example, Kharabian-Masouleh et al. [19] identified two SNPs in the Granule bound starch
synthase I (GBSSI) gene—a G/T SNP at the exon1/intron1 boundary and a C/T SNP in exon 10—with
a significant association with amylose content in rice (Oryza sativa). Candidate gene association
mapping showed that rice amylose content was also associated with SNPs in starch synthases (SS).
SNPs in sucrose synthase, starch-branching enzyme (SBE), adenosine diphosphate (ADP)-glucose
pyrophosphorylase (AGPase) large subunit, α-amylase, and β-amylase (BMY) genes were associated
with starch properties of maize (Zea may) kernels [20]. SNPs in the BMY gene BMY-8/2, the starch
phosphorylase gene PHO1b, and the AGPase large (β) subunit gene AGPaseS were associated with
tuber starch content and starch yield in potato (Solanum tuberosum) [21]. These sequence variations will
provide a basis for further study of the regulation of starch-related traits.

In sweet potato, the key enzymes involved in starch biosynthesis and metabolism, and their
associated genes, have been isolated and studied [10,18]. RNA interference studies confirmed that
several of these genes directly regulate starch properties. The starch content of storage roots was
reduced in transgenic sweet potato plants in which the expression of the starch branching enzyme II
gene (IbSBEII) [22] or GBSSI [23] was suppressed by RNA interference. Overexpression of the soluble
starch synthase I gene IbSSI resulted in a significant increase in starch content and granule size, as well
as in the proportion of amylopectin [24]. Using CRISPR/Cas9 technology, Wang et al. [25] knocked
out IbGBSSI and IbSBEII in sweet potato and, thereby, altered the starch content, amylopectin chain
length distribution, and amylose percentage. These results demonstrated that starch biosynthesis
genes could be exploited to improve the starch properties of sweet potato through biotechnology.
However, the genetic variation in these genes, which may provide critical clues into the genetic basis
of starch properties, has rarely been investigated.

Sequence variation in candidate genes can be mined by sequencing PCR amplicons from bulk
DNA from a population or germplasm collection. The development of next-generation sequencing
(NGS) technology and improved computational algorithms for sequence analysis, along with the
availability of increasing sequence information in public databases, make it possible to identify all
existing genetic variation in an entire genome and in targeted sequences of interest. The major advance
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offered by NGS methods is the ability to cheaply and reliably sequence DNA on a large scale and
generate large volumes of sequence data [26,27]. Many genetic variations have been identified from
amplicon, transcriptome, exome, and genome resequencing [1–3]. Su et al. [28] developed 795,794
SNP sites in sweet potato based on specific length amplification fragment sequencing (SLAF-seq)
technology. Based on transcriptome data, SNPs were detected between two sweet potato varieties,
Xushu 18 and Xu 781, and 32 SNP markers were verified in these two varieties using Tetra-primer
Amplification Refractory Mutation System PCR (ARMS-PCR) [29]. Using double-digest restriction
site-associated DNA sequencing (ddRAD-Seq), based on NGS technology, 94,361 SNPs were identified
in an S1 population generated through self-pollination of Xushu 18, and a high-density genetic map of
sweet potato was constructed [30].

Despite this progress, it remains a challenge to discover allelic variations in sweet potato, which is
an allohexaploid and has a large, heterozygous genome [31]. Variations may arise both between allelic
(homologous) sequences within individual subgenomes and between homoeologous sequences among
subgenomes, in addition to paralogous variation between duplicated gene copies [32]. Deep sequencing
of target genes or gene regions is an effective method to discover homologous variations, but potential
paralogous variations between duplicated gene copies need to be eliminated.

In the present study, to discover sequence variations in genes encoding key enzymes regulating
starch biosynthesis and metabolism in sweet potato, we performed deep sequencing of target
sequences/genes in a large natural population with wide genetic and phenotypic diversity. SNPs,
InDels, and ILPs were detected by aligning the reads to the reference sequences. Through alignment
of all the gene copies explored in the hexaploid sweet potato genome, potential variations within
the genome were filtered, and SNPs and InDels between germplasms were identified. CAPS and
ILP markers were developed and verified in sweet potato germplasms. The sequence variations
detected in this work will provide powerful tools for association analysis, marker-assisted selection,
high-resolution genetic mapping, and research into regulatory mechanisms in sweet potato.

2. Materials and Methods

2.1. Plant Materials

To capture the widest possible variability in the gene sequences, 507 sweet potato germplasms,
including varieties, breeding lines, wild varieties, farmer varieties, and landraces, were used
(Supplementary Materials Table S1). These germplasms have a wide range of morphological types,
and are derived from prominent sweet potato production regions in China and other countries,
including Japan, Nigeria, Brazil, and the USA. These sweet potato germplasms were conversed by
our lab and collected from other four institutions, and have been identified based on morphological
characteristics, quality traits and molecular markers. Most of these germplasms have been reported in
our previous genetic diversity and association analysis studies [14,33,34]. The sweet potato germplasms
were planted in the experimental field of the Key Laboratory of Biology and Genetic Breeding for
Tuber and Root Crops in Chongqing, China.

2.2. Sample Preparation and DNA Extraction

The fresh young leaves of each sweet potato germplasm were harvested from the experimental
field and immediately stored in liquid nitrogen. Genomic DNA was extracted following the CTAB
protocol [35]. The resulting DNA samples were examined by agarose gel electrophoresis, and the
concentration and quality of RNA were determined with a NanoDrop ND-2000 Spectrophotometer
(Thermo Scientific, Waltham, MA, USA) following the manufacturer’s protocol. All DNA samples
were normalized to 50 ng/µL concentration.
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2.3. Genetic Diversity Analysis, Population Structure Analysis, and Starch Properties Evaluation

The genetic diversity and population structure of the 507 germplasms were analyzed based on
inter-simple sequence repeat (ISSR) markers selected in our previous study [33]. Genomic DNA of
each germplasm was used as template for PCR amplification using previously described method [33],
and ISSR bands were used to assign loci for each primer and scored as present (1) or absent (0). The band
presence/absence data matrix was analyzed using NTSYS pc2.10 [36] to estimate the Nei’s standard
genetic distance [37] between the tested germplasm. The genetic distance matrix was computed and
clustered using the neighbor-joining (NJ) method [38] using MEGA X [39].

Population structure was assessed using the model-based method implemented in STRUCTURE
v2.3.3 [40]. The number of subgroups (K) was set from 1 to 20 based on models characterized
by admixture and correlated allele frequencies. For each K, five runs were performed separately,
with 100,000 iterations carried out for each run after a burn-in period of 10,000 iterations. A K value
was selected when the estimate of LnPr (X|K) peaked in the range of 1 to 20 subpopulations. Since the
distribution of LnP (D) did not show a clear cut-off point for the true K value, an ad hoc measure, ∆K,
was used to determine the numbers of subpopulations [41]. The run with the maximum likelihood
was applied to subdivide the accessions into different subpopulations using a membership probability
threshold of 0.55 as well as the maximum membership probability among subgroups. Those accessions
with a membership probability of less than 0.55 were retained in the admixed group (AD). The results
from STRUCTURE were displayed by DISTRUCT 1.1 software [42].

The starch properties, including the storage root starch content and amylose–amylopectin ratio,
of these germplasms were evaluated using previously described methods [14].

2.4. Candidate Gene Selection

Genes encoding key enzymes involved in starch biosynthesis and metabolism, which have been
confirmed to show different expression patterns in sweet potato varieties with different starch properties
in our previous study [10], were considered as candidate genes.

2.5. Sequence Analysis and Primer Design

Candidate sequences of these genes were explored against National Center for Biotechnology
Information (NCBI) (http://www.ncbi.nlm.nih.gov/) and previously reported sweet potato
transcriptome sequencing data. The nucleotide sequences of each target gene were analyzed on
Geneious 4.8.5 to determine the open reading frame (ORF), untranslated region (UTR), and exon and
intron regions. The sequences, including complete coding sequences, were used for primer design.
Forward and reverse primer sequences were up- and downstream of the ORF sequence, respectively,
to ensure that the entire ORF was obtained in the PCR products. Primers were designed using Primer
Premier 6 according to the manual.

2.6. Gene Cloning and Reference Sequence Determination

The candidate genes were cloned from 10 sweet potato germplasms, i.e., Yushu No.2, Xushu22,
Shangqiu52-7, D01414, Yushu33, Chaoshu No.1, Xinxiang, Suyu No.1, Mianfen No.1, and S1-5, that had
diverse starch content and quality properties, or from the other germplasms listed in Supplementary
Materials Table S1, using PCR. TransStart FastPfu Fly DNA polymerase (TransGen Biotech, Beijing)
was used to amplify sequences in PCR reactions, containing 50 ng genomic DNA, 1 µL of each forward
and reverse primer (10 µm), 10 µL of 5×TransStart FastPfu Fly Buffer (50 µm), 4 µL dNTPs (10 mM),
1 µL TransStart FastPfu DNA polymerase, and ddH2O to a final volume of 50 µL. The PCR reactions
were conducted using a 9700 Thermal Cycler (ABI, USA) under the following cycle profile: 1 cycle of
95 ◦C for 2 min, followed by 35 cycles of 95 ◦C for 1 min, annealing temperature based on the Tm of
the primers (Tm–5 ◦C) for 30 s, and 72 ◦C for 1–4 min. The final extension was performed at 72 ◦C

http://www.ncbi.nlm.nih.gov/
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for 10 min. The amplicons were cloned into pMD19-T vectors (TARAKA) and Sanger sequencing
(Invitrogen, Shanghai) was performed to ensure that the target gene sequences were obtained.

2.7. DNA Equivalent Pooling

To obtain the gene sequences from 507 sweet potato germplasms, a uniform pooling strategy
was applied for all samples. The genomic DNA of 507 sweet potato germplasms was divided
into 25 individual pools based on starch content, containing equally mixed genomic DNA of
20–21 germplasms with various (high, medium, and low) levels of starch content each. The starch
contents of germplasms in each pool were listed in Supplementary Materials Table S1. For each
gene, PCR was carried out using each genomic DNA pool as template, respectively, as above.
The concentration of PCR products from these pools was measured using a NanoDrop 2000c
Spectrophotometer, and the final mega pool containing 5 µg of amplicons from each pool was
prepared according to the sequencing manufacturer’s protocol (Illumina, San Diego, CA).

2.8. Amplicon Sequencing

The pooled amplicons were subjected to Illumina paired-end (PE125) sequencing using the
Hiseq2000 platform at Novogene Biotech, Beijing, China. Quality control, such as filtering and trimming,
was performed using the DNASeq-QC software package, which includes DNASeq-PrimerFilter,
DNASeq-LowqFilter, and DNASeq-KHHNBaseFilter, established by Novogene Bioinformatics
Technology Co. Ltd, Beijing, China.

2.9. Genotype Calling and Variation Filtering

Data analysis, including reads assembly, filtering, trimming, and mapping to the reference
sequences, was performed using CLC genomic workbench 7.5.1. The CLC genomic workbench
general parameters were set as follows: the conflict resolution was changed into all four nucleotides
(select A, C, G, and T), and nonspecific and masking references were ignored. The mismatch cost,
insertion cost, deletion cost and length fraction for all of the paired end reads were 2, 3, and 3,
respectively. The sequence data were assembled de novo with a sequence similarity of 0.8 over
0.5 of the read length. To minimize the bias introduced by PCR amplification, and errors caused
by sequencing and read alignment, the variations were called with a minimum coverage of 10 and
a minimum variant frequency of 20%. Thus, sequences that varied by less than 20% were excluded in
this test, but the authenticity of the identified variations was ensured.

The reference sequences were aligned to the hexaploid sweet potato genome (http://public-
genomes-ngs.molgen.mpg.de/SweetPotato/) [31] using BLASTN (E value cut-off of 1E-5) in Geneious
Prime, and potential homologous, homoeologous, or paralogous genes of target genes were explored
using an E value of 1e-5 and identity of above 85%. The sequence variations between these genes or
gene copies were filtered.

2.10. Total Polymorphism Rate Calculation and Non-Synonymous SNP (nsSNP) Detection

The SNPs/InDels identified in the coding regions were detected, and SNPs/InDels that caused
amino acid changes or reading frame shifts were analyzed. The total polymorphism rate and nsSNP
rate were calculated as described by Kharabian-Masouleh et al. [1]. To predict the impact of the detected
SNPs/InDels to enzyme activity or protein function, the conserved domain and site of each proteins
encoded by the candidate genes were analyzed on InterProscan (http://www.ebi.ac.uk/interpro/search/

sequence/) [43], and the likelihood of nsSNP to cause a functional impact on the protein was estimated
using PANTHER (http://www.pantherdb.org/tools/csnpScoreForm.jsp) [44].

http://public-genomes-ngs.molgen.mpg.de/SweetPotato/
http://public-genomes-ngs.molgen.mpg.de/SweetPotato/
http://www.ebi.ac.uk/interpro/search/sequence/
http://www.ebi.ac.uk/interpro/search/sequence/
http://www.pantherdb.org/tools/csnpScoreForm.jsp
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2.11. Marker Development and Identification

CAPS markers were developed using the online restriction/SNP-RFLP analysis tool Watcut
(http://watcut.uwaterloo.ca). Eight sweet potato germplasms with various starch properties were used
as templates and PCRs were performed using CAPS marker primers. The PCR products were digested
using the corresponding restriction endonucleases and the products were compared. For InDel,
primers were designed based on the Insert/Deletion region using Primer Premier 6. DNA extracted
from the sweet potato germplasms was used as templates for PCRs using the InDel marker primers,
and the length of PCR amplicons was detected using agarose or PAGE electrophoresis. Association
analysis between marker and starch properties was performed as described [14].

2.12. ILP Marker Development and Identification

The sequences of each candidate gene and the corresponding mRNA sequences were aligned
to examine the gene structure (number of introns and positions of splice sites). Putative ILPs among
the obtained sequences were identified by aligning the entire sequences of available genes (gDNA)
and their corresponding cDNA using Geneious Prime. ILP markers were developed and exon-primed
intron crossing PCR (EPIC-PCR) primers were designed using Primer Premier 6. ILP markers were
identified by PCR amplification on a population of 192 sweet potato germplasms, and the amplified
products were isolated on an 8% non-denaturing PAGE gel. Silver staining was used to visualize
DNA bands.

3. Results

3.1. The Sweet Potato Germplasms Exhibited High Genetic and Phenotypic Diversity

To evaluate the genetic diversity and structure of 507 sweet potato germplasms, the genetic
distances between germplasms were calculated and the population structure was analyzed using
ISSR markers. Based on the 216 polymorphic bands generated using 17 ISSR markers, the calculated
Nei’s genetic distances [37] among 507 sweet potato germplasms ranged from 0.1286 to 1.9869.
Cluster analysis revealed eight subgroups and high genetic diversity in the tested sweet potato
population (Figure 1a, Supplementary Materials Table S2).

Population structure analysis revealed the presence of ten main subpopulations within the
507 germplasms (Figure 1b). With membership probabilities of 0.55, 66, 44, 8, 31, 9, 54, 8, 23, 72,
and 76 accessions were assigned into the ten subpopulations, respectively, and 116 germplasms
exhibited various membership probabilities between the two subpopulations and were assigned to the
admixed group (AD) (Figure 1c, Supplementary Materials Table S3).

The starch properties of the 507 sweet potato germplasms were tested; the storage root starch
content ranged from 4.480% to 29.131% and the amylose–amylopectin ratio ranged from 0.247 to
0.429. However, no relationship was detected between starch properties and subgroup assignment
in the cluster analysis, or subpopulation assignment in the population structure analysis on the
507 germplasms, based on the 17 ISSR markers. The storage root starch content of germplasms
assigned to each subgroup and each subpopulation were listed in Supplementary Materials Table S2
and Table S3, respectively.

In summary, these results showed the 507 germplasms exhibited high levels of genetic diversity,
complex population structure, and various starch properties, and sufficient genetic variations could be
explored from this set of germplasms.

http://watcut.uwaterloo.ca
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STRUCTURE. 
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degradation, and starch and sucrose metabolism: (1) AGPase (EC 2.7.7.27) large (β) subunit 1 gene 
IbAGPb1A; (2) AGPase large (β) subunit 2 gene IbAGPb1B; (3) AGPase large (β) subunit 3 gene 
IbAGPb2; (4) AGPase large (β) subunit 4 gene IbAGPb3; (5) AGPase small (α) subunit 1 gene 
IbAGPa1; (6) AGPase small (α) subunit 2 gene IbAGPa2; GBSSI (EC 2.4.1.242) genes (7) IbGBSS1-1, (8) 
IbGBSS1-2, and (9) IbSPSS67; (10) granule-bound starch synthase 2 (GBSS2, EC 2.4.1.21) gene 
IbGBSS2; (11) soluble starch synthase (SSS, EC 2.4.1.21) gene IbSSS1; (12) starch-branching enzyme 
(SBE, EC 2.4.1.18) gene IbSBE1; (13) isoamylase (ISA, EC 3.2.1.68) gene IbIsal; (14) starch 
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Figure 1. Genetic diversity and population structure analysis of 507 sweet potato germplasms. (a) The
507 germplasms could be divided into eight subgroups based on neighbor-joining (NJ) clustering.
The different colored lines represent the subgroups inferred by NJ cluster analysis. (b) STRUCTURE
estimation of the number of subpopulations for K ranging from 1 to 20 by LnP (D) did not show a clear
cut-off point for the true K value, and delta K values (∆K) indicating the presence of ten subpopulations;
(c) Ten subpopulations in the 507 germplasms inferred from population structure analysis. The vertical
coordinate of each subgroup indicates the membership coefficient of each individual, and the colors of
the bar indicate the ten subpopulations identified using STRUCTURE.

3.2. Twenty Candidate Genes Were Captured for Variation Detection

By searching against the NCBI database and sweet potato transcriptome sequencing data,
we collected sequences of genes that had previously been reported to encode key enzymes involved in
starch biosynthesis and metabolism, and were differentially expressed in sweet potato germplasms
with various starch properties [10]. The primers were designed based on the downloaded sequences
and candidate genes were amplified using DNA extracted from 10 sweet potato varieties as templates.
The primers used for PCR amplification of each gene are listed in Supplementary Materials Table S4.

Twenty genes were successfully amplified, and no unspecific PCR product was detected in
the sequenced clones. The cloned sequences showed polymorphisms among different sweet potato
germplasms. These genes encode key enzymes involved in starch granule formation, starch degradation,
and starch and sucrose metabolism: (1) AGPase (EC 2.7.7.27) large (β) subunit 1 gene IbAGPb1A;
(2) AGPase large (β) subunit 2 gene IbAGPb1B; (3) AGPase large (β) subunit 3 gene IbAGPb2; (4)
AGPase large (β) subunit 4 gene IbAGPb3; (5) AGPase small (α) subunit 1 gene IbAGPa1; (6) AGPase
small (α) subunit 2 gene IbAGPa2; GBSSI (EC 2.4.1.242) genes (7) IbGBSS1-1, (8) IbGBSS1-2, and (9)
IbSPSS67; (10) granule-bound starch synthase 2 (GBSS2, EC 2.4.1.21) gene IbGBSS2; (11) soluble starch
synthase (SSS, EC 2.4.1.21) gene IbSSS1; (12) starch-branching enzyme (SBE, EC 2.4.1.18) gene IbSBE1;
(13) isoamylase (ISA, EC 3.2.1.68) gene IbIsal; (14) starch phosphorylase/α-1,4 glucan phosphorylase L
isozyme (EC 2.4.1.1) gene IbSP; sucrose synthase (EC 2.4.1.13) genes (15) IbSuSy1, (16) IbSuSy2, and (17)
IbSuSy3; and uridine diphosphate glucose dehydrogenase/UDP-glucose 6-dehydrogenase (UDPGH,
EC 1.1.1.22) genes (18) IbUDPGH3, (19) IbUDPGH, and (20) IbUDPGH13.
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IbSSS, which encodes soluble starch synthase in sweet potato, was first isolated based on our
sweet potato transcriptome data [10], and we used the clone from sweet potato variety Shangqiu52-7
as the reference gene in this study. The gene names, accession numbers, and reference gene lengths
are listed in Supplementary Materials Table S5 and the reference gene sequences are provided in
Supplementary Materials File S1.

3.3. Number of Reads and Average Coverage Obtained from NGS

To detect sequence polymorphisms in sweet potato, the candidate genes were amplified from
pooled DNA and NGS was performed on the pooled PCR products. Two pools, Mix1 and Mix2,
were subjected to NGS; genes that generated insufficient reads were amplified again, pooled (Mix3),
and sequenced. A total of 5.594, 5.038, and 1.715 Gb of raw data was obtained for Mix 1, 2, and 3,
respectively, which yielded 5.496, 4.954, and 1.704 Gb of clean data. The sequencing data are deposited
in the BIG Data Center under BioProject accession code PRJCA002386.

Sequencing of pooled amplicons of 20 candidate genes generated approximately 90,206,712 reads
of clean data, of which 71,696,295 (79.48%) mapped to the reference sequences (Supplementary
Materials Table S6). The highest and lowest numbers of reads were obtained for IbAGPa1 and IbSBE1,
with 13,734,507 and 912 reads, respectively. The average coverage of genes ranged from 28.56 to
1,458,236.09. The average coverage was above 6,000 for all target genes except IbSBE1. Thus, sufficient
sequencing data were obtained for variation exploration.

3.4. Detection of SNPs and InDels

SNPs and single/multi-base InDels were detected in the target gene sequence by alignment with
the reference genes. In total, we detected 1,113 SNPs and 85 InDels across the 20 studied genes.
To further select allelic variation between germplasms, all of the potential homologous genes or gene
copies of target genes were explored in the hexaploid sweet potato genome and aligned. For each
gene, 1 to 37 potential homologous genes or gene copies were identified (Supplementary Materials
Table S7), and 350 SNPs and 17 InDels, which were identified as being variations between genomic
sequences, were filtered. Surprisingly, 145 variants were detected only in our cloned sequences but
not in the genomic sequences. These variants were also filtered. Furthermore, six SNPs were further
identified as PSVs by alignment of the gene sequences cloned from the same germplasm and filtered.
A total of 44.115% and 31.765% of the SNPs and InDels were filtered from the variations identified from
pooled gene amplicons, respectively. Finally, a total of 622 SNPs and 58 InDels were detected in the
20 gene sequences. The position and characteristics of the SNPs and InDels are listed in Supplementary
Materials Table S8.

The SNPs and InDels rates in the detected gene sequences were 10.568 and 0.985/kb, respectively.
SNP rates in intron, UTR, and coding sequences (CDS) were 7.136, 0.578, and 2.871 /kb, respectively,
and the corresponding InDel rates were 0.731, 0.034, and 0.204/kb.

The number and distribution of SNPs and InDels in each gene are listed in Supplementary
Materials Table S5. On average, the SNP rate ranged from 0 SNPs/kb (IbAGPb1A) to 26.792 SNPs/kb
(IbAGPa2) for these candidate genes within this set of germplasms. Of the 622 SNPs identified,
169 (27.170% of the total) were located in coding regions, and of these, 50 SNPs were recognized
as non-synonymous SNPs (nsSNPs) predicted to cause a change in amino acid sequence or ORF
pre-termination. Most of the SNPs and InDels were detected in intron regions of the candidate gene
sequences. We detected fewer polymorphisms in the 5’ and 3’ untranslated regions (UTRs) than in the
ORF regions (Figure 2a, Supplementary Materials Table S5).



Agronomy 2020, 10, 627 9 of 23

Agronomy 2020, 10, x FOR PEER REVIEW 9 of 27 

 

The number of polymorphisms varied among the individual genes in our study. The AGPase 
large subunit genes IbAGPb1B and IbAGPb3, the small subunit genes IbAGPa1 and IbAGPa2, and two 
IbGBSS1 genes showed a high degree of polymorphism in the germplasm collection, with more than 
100 SNPs and InDels detected in their sequences. By contrast, we detected zero SNPs in IbAGPb1A, 
three SNPs in IbSP, and one SNP in IbSSS, even though we obtained high sequence coverage for 
these genes (101,057.31, 137,132.69, and 104,531.88 respectively, Supplementary Materials Table S6).  

Low sequence coverage might have contributed to the low level of variation detected in the 
IbSBE1 and IbSuSy3 gene sequences. The three UDP-glucose 6-dehydrogenase genes also showed a 
low level of sequence polymorphism in this study, although an average coverage of 42,870.36 to 
72,770.73 was obtained for SNP calling in the three genes. 

 
Figure 2. Summary of the single nucleotide polymorphisms (SNPs) and insertions/deletions (InDels) 
identified in this study. (a) Summary of the number of SNPs and InDels detected in the 20 genes. 
ORF, open reading frame; UTR, untranslated region. (b) Number of substitutions in the detected 
SNPs. CDS, coding sequence; 

3.5. Non-Synonymous Substitutions were Identified in Starch Biosynthesis and Metabolism Genes 

We next analyzed the non-synonymous substitutions we detected. Synonymous substitutions 
outnumbered non-synonymous substitutions in the ORF regions (Supplementary Materials Table 

Figure 2. Summary of the single nucleotide polymorphisms (SNPs) and insertions/deletions (InDels)
identified in this study. (a) Summary of the number of SNPs and InDels detected in the 20 genes. ORF,
open reading frame; UTR, untranslated region. (b) Number of substitutions in the detected SNPs. CDS,
coding sequence;

The C/T and A/G transitions were the top two frequent substitutions, which accounted for 28.502%
and 23.941% of the detected SNPs, respectively. Except for transitions, a high proportion of A/C
transversions was detected in CDS regions, which accounted for 11.377% of the SNPs detected in the
CDS; and the G/T transversion accounted for 28.125% of detected substitutions in the CDS (Figure 2b).

The number of polymorphisms varied among the individual genes in our study. The AGPase
large subunit genes IbAGPb1B and IbAGPb3, the small subunit genes IbAGPa1 and IbAGPa2, and two
IbGBSS1 genes showed a high degree of polymorphism in the germplasm collection, with more than
100 SNPs and InDels detected in their sequences. By contrast, we detected zero SNPs in IbAGPb1A,
three SNPs in IbSP, and one SNP in IbSSS, even though we obtained high sequence coverage for these
genes (101,057.31, 137,132.69, and 104,531.88 respectively, Supplementary Materials Table S6).

Low sequence coverage might have contributed to the low level of variation detected in the IbSBE1
and IbSuSy3 gene sequences. The three UDP-glucose 6-dehydrogenase genes also showed a low level
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of sequence polymorphism in this study, although an average coverage of 42,870.36 to 72,770.73 was
obtained for SNP calling in the three genes.

3.5. Non-Synonymous Substitutions were Identified in Starch Biosynthesis and Metabolism Genes

We next analyzed the non-synonymous substitutions we detected. Synonymous substitutions
outnumbered non-synonymous substitutions in the ORF regions (Supplementary Materials Table S8).
In the set of germplasms we analyzed, we detected 50 nsSNPs in the 20 candidate gene sequences
(Table 1), 16 of which would cause a change in polarity at the corresponding amino acid position and
thus might affect the structure or activity of the resulting protein.

Nineteen nsSNPs would cause amino acid change in conserved domain of the protein, but
16 of them would not cause functional impact on protein as estimated using PANTHER (Table 1).
Three nsSNPs, the SNP detected in IbAGPb2 (1,572 bp), in IbSPSS67 (421 bp) and in IbUDPGH13 (140 bp)
would cause amino acid change in conserved domain of protein and possibly damage the function of
enzyme as estimated using PANTHER. Two nsSNPs detected in IbSP (3,584 bp and 3,743 bp) would
not cause amino acid change in the conserved domain or site, but possibly damage the function of
enzyme as estimated using PANTHER.

Four SNPs, detected in the reference sequences of IbGBSS1-1 (4,276 bp), IbSBE1 (658bp),
IbSal1 (1,467 bp), and IbUDPGH13 (1,318 bp), would cause premature termination of translation.
SNP in IbSBE1 (658bp) would result in a 170 aa amino acid sequence and loss of the conserved domains
of SBE. The SNP detected in IbSal1 (1,467 bp) would change the length of translated amino acid
sequence from 786 to 484 aa, and lost the glycosyl hydrolase domain. The SNP in IbUDPGH13 (1,318
bp) would change the sequence of a conserved domain. Furthermore, the SNP detected in IbAGPb3
(2 bp) would cause loss of the first 10 aa in amino acid sequence, but would not affect the conserved
domain sequences.

Table 1. Non-synonymous SNPs (nsSNPs) detected in the candidate gene sequences.

No. Gene Position Nucleotide
Substitution

Amino acid
Change

Polarity
Changed

Amino Acid
Change in

Conserved Domain

1
IbAGPb1B

2,992 bp/457 aa C/G His to Gln No
2 3,304 bp/507 aa T/C Val to Ala No
3

IbAGPb2
1,572 bp/205 aa G/A Asp to Asn Yes Yes

4 2,454 bp/340 aa A/G Try to His No Yes
5

IbAGPb3

2 bp/1 aa T/A Start codon
6 29 bp/10 aa C/G Ala to Gly No
7 160 bp/54 aa G/A Gly to Ser Yes
8 163 bp/55 aa G/A Thr to Ala Yes
9 166 bp/56 aa A/G Lys to Glu No

10 1,526 bp/294 aa C/A Pro to Gln Yes Yes
11 2,511 bp/445 aa T/A Phe to Try Yes
12

IbAGPa1
125 bp/19 aa G/T Glu to Thr Yes

13 2,263 bp/310 aa C/T Ala to Val No
14

IbAGPa2

2,140 bp/286 aa C/A Phe to Leu No Yes
15 2,538 bp/342 aa A/C Gln to Pro Yes Yes
16 2,717 bp/376 aa G/C Phe to Leu No
17 2,971 bp/423 aa G/C Val to Leu Noa

18

IbGBSS1-1

2,296 bp/217 aa A/C Lys to Asn Yes
19 4,276 bp G/T pre-termination
20 4,280 bp/585 aa T/G Val to Gly Yes
21 4,283 bp/586 aa C/A Cys to Asp Yes
22 4,311 pb/595 aa C/G Asp to Glu No
23

IbGBSS1-2
1,372 bp/137aa A/G Ile to Val No Yes

24 1,892 bp/216aa A/G Ser to Gly No Yes
25 2,736 bp/376 aa T/G Val to Gly Yes



Agronomy 2020, 10, 627 11 of 23

Table 1. Cont.

No. Gene Position Nucleotide
Substitution

Amino acid
Change

Polarity
Changed

Amino Acid
Change in

Conserved Domain

26

IbSPSS67

198 bp/59 aa T/C Leu to Pro No
27 421 bp/133 aaD A/T Glu to Asp No Yes
28 441 bp/140 aa C/T Pro to Leu No Yes
29 1,779 bp/586 aa C/A Ala to Asp No
30

IbGBSS2

779 bp/209 aa T/C Phe to Leu No Yes
31 797–798 bp/238 aa AA/GG Asn to Gly Yes Yes
32 915 bp /277 aa T/A Val to Glu No Yes
33 1,985 bp/634 aa A/G Ser to Gly Yes
34 IbSSS 691 bp/111 aa G/A Glu to Lys No
35

IbSBE1
658 bp G/T per-termination

36 1,654 bp/493 aa T/C Ser to Pro Yes Yes
37

IbSal

139 bp/42 aa A/G Lys to Arg No
38 453 bp/147 aa C/A Gln to Lys Yes Yes
39 641–642 bp/210 aa TA/GT Thr to Ser No
40 898 bp/295 aa A/G Lys to Arg No Yes
41 1467 bp G/T per-termination
42 1472 bp/486 aa G/T Trp to Cys No Yes
43

IbSP
3,584 bp/458 aa T/C Ser to Pro Yes

44 3,743 bp/511 aa A/G Lys to Glu No
45 IbSuSy1 94 bp/9 aa C/A Thr to Asn No
46 110 bp/12 aa A/C Gln to Pro Yes
47 IbSuSy3 911–912 bp/289 aa GG/CC Gly to Ala No Yes

48 1,280–1,281 bp/412
aa GT/AC Ser to Asn No Yes

49
IbUDPGH13

140 bp/38 aa G/A Arg to Gln Yes Yes

50 1,318 bp/431 aa A/T Lys to stop
codon

3.6. Development of CAPS Markers and Verification of SNPs

To further test the authenticity of these nsSNPs and to develop markers that could be used for
further study, six of the nsSNPs were converted to CAPS markers (Table 2) and tested in eight sweet
potato varieties with various starch properties. DNA of these sweet potato varieties was used as
template for PCR amplification using the marker primers, and the PCR products were purified and
digested with the appropriate restriction endonucleases.

Table 2. Cleaved amplified polymorphic sequence (CAPS) markers developed based on nsSNPs and
tested in sweet potato germplasms.

Marker Gene Position Base
Change

Restriction
Endonuclease

Primer
Position Primer Sequence

CAPS1 IbAGPa1 2263 C/T BtgZI 1875 CGCTGGAGATCACCTATACCGAATGG
2511 CAGTGAGACTTCACATAGAGCTACTG

CAPS2 IbAGPa2 2538 A/C HindIII
2242 CCCTGGAGCCAATGACTTTGGAAGTG
2794 CACTGTCCGTGACATCAGCATCAAGC

CAPS3 IbAGPa2 2971 G/C DdeI
2730 GCTCCAATCTACACTCAGCCTCGATA
3274 GCCAATGCCAATTGGGATGCTGCCC

CAPS4 IbGBSS1-1 4283 C/A BseYI
3878 GTTGCTTGTGCTCAGTGTGAAACTG
4327 CAAGTGGTGCAATTTCGTCTCCTTC

CAPS5 IbSP 3584 T/C RsaI
3407 TGGAGTTATGAGCTGATGGAGAAGC
3937 ATGAATCTCGGCAACTCCATTTACA

CAPS6 IbSuSy1 110 A/C EcoRII
6 TGTGACACCCGGGGAGCCTTCGTTCA

470 GCCACGTGTACCTATTTCAAGCAAAC

As shown in Figure 3, no digestion products or polymorphic bands were produced when marker
CAPS1 (Figure 3a,b), CAPS5 (Figure 3c,d), and CAPS6 (Figure 3e,f) were tested in the eight sweet
potato varieties. There would be digestion products if the minor alleles existed, thus the results indicate
there were no minor alleles, but only major alleles of IbAGPa1-T2263, IbSP-T3584, and IbSuSy1-A110 in
the genomes of eight sweet potato varieties. For CAPS3 (Figure 3g,h), CAPS2 (Figure 3i,j), and CAPS4
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(Figure 3k,l), we obtained PCR products and digestion products of the predicted size, and the bands
were polymorphic among the eight sweet potato varieties. However, the DNA of some varieties
yielded both digested and undigested products, indicating either incomplete digestion of the PCR
products or the presence of both major and minor alleles in the same genome.
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3.7. Frameshift InDels were Detected 

Figure 3. Test of CAPS markers in eight sweet potato germplasms. The numbers 3, 8, 492, 9, 10,
273, 2, and 1 represent the sweet potato germplasms shown in Supplementary Materials Table S1,
which were Shangqiu52-7, Yushu33, Yanshu No.5, Chaoshu No.1, Xinxiang, Xiaohuaye, Mianfen No.1,
and Suyu No.1, respectively. The measured starch contents of the eight germplasms were 4.476%,
25.611%, 11.036%, 10.206%, 19.584%, 14.728%, 29.386%, and 16.853%, respectively. The measured
amylose–amylopectin ratio of the eight germplasms was 0.300, 0.308, 0.277, 0.309, 0.290, 0.282, 0.315,
and 0.282, respectively. (a), (c), (e), (g), (i), and (k), PCR products obtained using CAPS1, CAPS5,
CAPS6, CAPS3, CAPS2, and CAPS4 primers, respectively. (b), (d), (f), (h), (j) and (l), PCR products
were digested using the corresponding restriction endonucleases. M, marker (Trans2K Plus II DNA
marker, TransGen Biotech), the band size from top to bottom is 8000; 5000; 3000; 2000; 1000; 750; 500;
250; and 100 bp, respectively.

The result of CAPS3 detection confirmed the SNP in IbAGPa2-G2971. InterProscan analysis
predicted that the G2971/C2971 transversion in IbAGPa2 would change Leu423 to Val423 in the
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N-terminal domain interface of the protein. Even though this substitution results in no change in
polarity, it could affect enzyme activity because of its location. However, no functional impact of this
single amino acid polymorphism on the protein was detected using PANTHER, and the biological role
of this variation need to be further investigated.

3.7. Frameshift InDels were Detected

InDels detected in the sequences of the 20 candidate genes mainly ranged from 1 to 10 bp in size.
Most of the InDels were located in introns and would not be expected to significantly affect protein
activity or function (Supplementary Materials Table S8). Twelve of the InDels were located in ORFs
and could lead to frameshifts, premature termination of translation, or amino acid changes (Table 3)
and thus to loss of function of the gene or protein.

Table 3. Frameshift InDels detected in the 20 gene sequences.

No. Gene Position
(bp)

Deletion(D)/
Insertion(I)

Deletion/Insertion
nucleotide Influence on protein

1

IbSPSS67

188–189 I C
Reading frame shift, and translation
pre-terminate 64 bp downstream of

the insertion site

2 234 D A
Reading frame shift, and translation
pre-terminate 32 bp downstream of

the deletion site

3 437–438 I C

Glu to Ala (139 aa), reading frame
shift and translation pre-terminate
22 bp downstream of the insertion

site

4 1776 D T Reading frame shift, amino acid
changed and ORF become longer

5

IbGBSS2

681–682 I A

Met to Ile (176 aa), and reading
frame shift, and translation

pre-terminate 30 bp downstream of
the insertion site

6 873 D A
Asp to Ala (240 aa), reading frame

shift and translation pre-terminate 5
bp downstream of the deletion site

7 914 D G

Val to Trp (254 aa), and reading
frame shift, translation

pre-terminate 51 bp downstream of
the deletion site

8 915 D T

Val to Gly (254 aa), and reading
frame shift and translation

pre-terminate 50 bp downstream of
the deletion site

9 IbSBE1 1835 D C
Ala to Val (553 aa), translation

pre-terminate 32 bp downstream of
the deletion site

10 IbSal 1981–1982 I G His to Gln, reading frame shift and
translation pre-termination

11 IbSP 3580–3581 I T

Amino acid changed from the
insertion site and translation

pre-terminate 26 bp downstream of
the insertion site

12 IbSuSy1 96 I T End coding and translation
pre-termination

The insertion at position 1982 bp in Ibsal causes a premature termination of translation and result
in a protein without a glycosyl hydrolase domain, and the insertion at position 3581 bp in IbSP causes
the change of amino acid sequence and would affect the conserved site. The deletion at position 96 bp
in IbSuSy1 result in a protein without conserved domain. Interestingly, a deletion at position 1,776 bp
in IbSPSS67 causes a shift in reading frame that would extend the ORF from 1827 to 2025 bp and the
encoded protein from 608 to 674 amino acids. Although this frameshift would also change the amino
acid sequence downstream of the deletion site, bioinformatics analysis showed that this sequence
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change is not located in conserved domains. Therefore, further research is needed to determine if this
mutation would alter the activity or function of the enzyme.

3.8. Two Gene Forms were Detected in IbAGPb3

We detected a 79-bp InDel in the fifth exon of the IbAGPb3 reference gene (Figure 4) that could
potentially change the gene’s structure. Gene structure analysis suggested that the 79-bp fragment is
an intron; if indeed so, insertion of this fragment would change the number of exons in IbAGPb3 from
13 to 14, and the number of introns from 12 to 13 (Figure 4a).
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Abundant ILPs were detected in the 20 genes, especially in IbGBSS1 genes. Surprisingly, we 
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Figure 4. The two gene forms detected in the IbAGPb3 gene sequence. (a) Gene structure analysis of
a 79-bp insertion and deletion form of IbAGPb3. (b) Cloning and sequencing of the IbAGPb3 sequences
in sweet potato germplasms. R: reference sequence; the numbers 3, 6, 10, 11, 14, 18, 29, and 51 represent
the sweet potato germplasms shown in Supplementary Materials Table S1. (c) and (d) Detection of
the two gene forms in sweet potato germplasms. M: marker; the numbers represent the sweet potato
germplasms shown in Supplementary Materials Table S1; Y20, sweet potato variety Yanshu No.20.

To verify the InDel, we designed primers to amplify the IbAGPb3 gene sequence containing 79-bp
InDel (Supplementary Materials Table S4), and cloned and sequenced this sequence from several sweet
potato germplasms. We detected both 79-bp fragment inserted form and deleted form of IbAGPb3
(Figure 4b). However, alignment of the cloned sequences showed that the two forms were two alleles.
Except for the difference in the 79-bp sequences, the two alleles showed 95.679%–96.752% of sequence
identities, indicating that the “delete” form might be the intron-loss gene copy with loss of the fifth
intron of “inserted” form.

We next used PCR to screen the presence of the two gene forms in 126 sweet potato germplasms
(Figure 4c shows the PCR products amplified from 10 of the germplasms). DNA from 81 germplasms
showed both forms of the gene, 44 showed only the “inserted” form, and 1 (Yanshu No.20, Figure 4d)
only the “deleted” form. We performed an association analysis of the presence/absence of the gene
forms with starch content and composition, but detected no significant association.
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3.9. Intron Loss in the IbGBSS1-1 Genes

Abundant ILPs were detected in the 20 genes, especially in IbGBSS1 genes. Surprisingly, we cloned
a IbGBSS1-1 gene with a length of 1893-bp that lacked all 13 introns from the genomic DNA of sweet
potato variety Suyu No.1. To confirm that this allele actually exists in the plant, and did not occur
because of errors in cloning or sequencing, we developed ILP markers to detect the intron-loss form in
IbGBSS1-1 genes (Table 4). Alleles lacking introns 1–4 and 7–13 could be detected in the Shangqiu 52-7
and 0929-106 genomes, but not in the D01414 and Sanheshu genomes (Figure 5 and Supplementary
Materials Figure S1). Because we did not successfully develop markers to detect introns 5 and 6,
the sequences containing the two introns were cloned from 23 sweet potato germplasms using primers
FIbGBSS1-B and RIbGBSS1-B (Supplementary Materials Table S4). The sequences with intron loss were
obtained in 15 of the germplasms (Supplementary Materials Figure S2). We further tested these ILP
markers in 192 of the 507 sweet potato germplasms. Intron-loss alleles could be detected in 86–92 of
the tested germplasms, indicating the intron-loss allele exists in the genomes of approximately half of
the germplasms. Thus, there were intron-loss IbGBSS1-1 genes in the sweet potato genome, and these
intron losses were variations between germplasms.Agronomy 2020, 10, x FOR PEER REVIEW 20 of 27 

 

 
Figure 5. Detection of intron losses in IbGBSS1-1. The intron losses in IbGBSS1-1 genes were detected 
in four sweet potato germplasms using the ILP markers shown in Table 4. M, marker. The numbers 3, 
6, 51, and 29 represent the sweet potato germplasms shown in Supplementary Materials Table S1, 
namely, Shangqiu 52-7, D01414, 0929-106, and Sanheshu, respectively. The measured starch content 
of the four germplasms was 4.476%, 26.637%, 10.934%, and 22.360%, respectively. The measured 
amylose–amylopectin ratio of the four germplasms was 0.300, 0.291, 0.300, and 0.302, respectively. 
The bands in red boxes are the PCR products of intron-loss IbGBSS1-1 genes. 

4. Discussion 

4.1. Effective Strategies for Capturing and Identifying Allelic Variations in Hexaploid Sweet Potato 

The large polyploid genome of sweet potato presents a challenge for genetic variation 
discovery, because variations are present within and between germplasms, and the potential 
presence of multiple homoeologous sequence variants (HSVs) and paralogous sequence variants 
(PSVs) will hinder the discovery of allelic variations [32]. In this study, we used several strategies to 
discover allelic variations. First, when we prepared the amplicons for sequencing, we normalized 
the PCR system to confirm that only target gene sequences were obtained. No non-specific PCR 
products were obtained in the clones from 10 sweet potato varieties, and the high mapping rate of 
reads to target genes also exhibited the specificity of amplicons used for NGS. Thus, the sequence 
variations were called from pooled amplicons of each target gene in 507 germplasms, and deep 
sequencing and alignments were performed only in target regions using a candidate gene sequence 
as reference. Second, except for strict quality control and criteria setting, additional filtering was 
performed based on alignment of all the potential gene copies explored from genome data. The 
within-genomic sequence variations, which were shown as variations between gene copies, were 
eliminated. Over 50% of variations were filtered at this step, indicating the high level of variations 
between gene copies in the individual genome. 

However, due to the complexity and heterozygosity of the allohexaploid (B1B1B2B2B2B2) 
genome [31], it is challenging to distinguish homologous, homoeologous, and paralogous genes of 
target genes in the genome, and thus to discriminate all the HSVs and PSVs. Deeply re-sequencing 
of a hexaploid genome in multiple germplasms will help uncover additional sequence information 

Figure 5. Detection of intron losses in IbGBSS1-1. The intron losses in IbGBSS1-1 genes were detected
in four sweet potato germplasms using the ILP markers shown in Table 4. M, marker. The numbers
3, 6, 51, and 29 represent the sweet potato germplasms shown in Supplementary Materials Table S1,
namely, Shangqiu 52-7, D01414, 0929-106, and Sanheshu, respectively. The measured starch content
of the four germplasms was 4.476%, 26.637%, 10.934%, and 22.360%, respectively. The measured
amylose–amylopectin ratio of the four germplasms was 0.300, 0.291, 0.300, and 0.302, respectively.
The bands in red boxes are the PCR products of intron-loss IbGBSS1-1 genes.
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Table 4. Intron length polymorphism (ILP) markers developed based on ILPs detected in IbGBSS1-1.

No. Primer Name Primer Sequence Primer Length Tm
(◦C)

Intron No.
Detected

Start/Stop Site in
Reference Sequence

Length of PCR Products
without and with Intron Loss

1
FIbILP-16 CGTGCTTCCACACTCTTGCAGTAGCTG 27 69.16

1
412 662/166RIbILP-16 CCCCACTTTTGATTCTCCAGAAGTGGCA 27 67.54 1074

2
FIbILP-17 GGACTTGGAGATGTTCTTGGAGGATTGCC 29 68.87

2
1294 444/77RIbILP-17 CGGGGACACACTGTCATAACTCTATGCC 28 69.01 1737

3
FIbILP-18 GTACAAAGATGCTTGGGATACCTGTGTG 28 66.08

3 and 4
1747 392/196RIbILP-18 GTCCTTGTAATCTTTCCCAGCCTTGGG 27 67.64 2139

4
FIbILP-19 CAACCAGTTGCGGTTCAGTTTGTTGTGCC 29 68.87

5 and 6
2139 357/173RIbILP-19 TCATGTAGATTCCTCTCGACTGGTACATGG 30 67.37 2496

5
FIbILP-21 CACGGGTACTTGTAATGGAATGGATACCCA 30 67.37

9
2985 287/206RIbILP-21 TGTCTGAGCCTTTCTGCTCTTCAAGTCTG 29 67.45 3272

6
FIbILP-22 GCAGAAAGGCTCAGACATTCTTTATGCTGC 30 67.37

10
3256 325/235RIbILP-22 GAGACCACACGGCTCAAATCTGCTCG 26 69.32 3581

7
FIbILP-23 GAGCCGTGTGGTCTCTTTCAGTTGCA 26 67.75

11 and 12
3567 371/178RIbILP-23 CAGTGGTTATCACCTTCAGCACGTCCT 27 67.64 3938

8
FIbILP-24 CACTGAAATGATCAAGAACTGCATGTCAC 29 64.62

13
3976 351/137RIbILP-24 CAAGTGGTGCAATTTCGTCTCCTTCAA 27 64.6 4327
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4. Discussion

4.1. Effective Strategies for Capturing and Identifying Allelic Variations in Hexaploid Sweet Potato

The large polyploid genome of sweet potato presents a challenge for genetic variation discovery,
because variations are present within and between germplasms, and the potential presence of multiple
homoeologous sequence variants (HSVs) and paralogous sequence variants (PSVs) will hinder the
discovery of allelic variations [32]. In this study, we used several strategies to discover allelic variations.
First, when we prepared the amplicons for sequencing, we normalized the PCR system to confirm
that only target gene sequences were obtained. No non-specific PCR products were obtained in the
clones from 10 sweet potato varieties, and the high mapping rate of reads to target genes also exhibited
the specificity of amplicons used for NGS. Thus, the sequence variations were called from pooled
amplicons of each target gene in 507 germplasms, and deep sequencing and alignments were performed
only in target regions using a candidate gene sequence as reference. Second, except for strict quality
control and criteria setting, additional filtering was performed based on alignment of all the potential
gene copies explored from genome data. The within-genomic sequence variations, which were shown
as variations between gene copies, were eliminated. Over 50% of variations were filtered at this step,
indicating the high level of variations between gene copies in the individual genome.

However, due to the complexity and heterozygosity of the allohexaploid (B1B1B2B2B2B2)
genome [31], it is challenging to distinguish homologous, homoeologous, and paralogous genes of
target genes in the genome, and thus to discriminate all the HSVs and PSVs. Deeply re-sequencing of
a hexaploid genome in multiple germplasms will help uncover additional sequence information and
DNA sequence polymorphisms. Detailed information of each component of the allohexaploid genome
would facilitate the identification of homozygous variations in sweet potato [2,45].

NGS data can have high error rates due to multiple factors, including base-calling and alignment
errors [27]. In this study, several strategies were used to ensure the efficiency and accuracy of sequence
variation detection. Pooling influences SNP discovery, because not each sample will be amplified
with the same efficiency, even if the DNA samples are extracted using the same method, which may
introduce bias when the pooling DNA is prepared [46]. We used small pools of DNA isolated from
20–21 germplasms each for the PCRs to minimize the chance of biased amplification of target genes and
to improve the chance of generating amplicons from each germplasm. As each pool contained DNA
isolated from germplasms with various starch contents, the chance of capturing variations between
germplasms with different starch properties were also improved. Furthermore, the genes that did not
generate enough amplicons were amplified and sequenced again. These approaches would produce
lower false-positive rates in SNP screens [27]. Thus, these pooling, amplification, sequencing, calling,
and filtering strategies might ensure the identification of allelic variations in sweet potato, and the
variations identified in this study might serve as yardsticks in further variation discovery in sweet
potato through genome re-sequencing.,

4.2. Characteristics of Gene Sequence Variation in Target Genes

Of the 622 SNPs and 58 InDels detected in this study, 169 SNPs (27.170%) and 12 InDels (20.690%)
were located in coding regions. The density of SNPs and InDels was higher in introns than in UTRs
and CDS in the 20 genes. All of the coding region InDels we detected cause frameshifts or premature
termination. Of the coding region SNPs, 70.414% were synonymous and 29.586% were nsSNPs.
Although the nsSNPs are clearly of interest because of their potential to change protein function or
structure, increasing numbers of non-coding SNPs and synonymous SNPs are being identified as
functionally critical in humans and plants [5,47,48]. Thus, the other SNPs we detected are also worth
functional studies to further elucidate their effects on phenotype. Furthermore, we detected fewer
polymorphisms in the 5’ and 3’ UTRs than in the CDS, perhaps because short sequences of UTRs were
amplified in this study, and more SNPs and InDels might be detected in the entire UTRs sequences.
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In this study, we obtained an SNP rate of 10.568/kb and an InDel rate of 0.985/kb in the 20 target
genes, which are higher than the 4.31 SNPs/kb and 0.97 Indels/kb reported in starch-related genes
of diploid rice using a similar method [1]. The high SNP rate for sweet potato could be attributed
to multiple factors. First, we used 507 germplasms with high genetic and phenotypic diversity,
which would be expected to provide abundant polymorphisms. Second, the high coverage ensured
effective variation discovery. Furthermore, the high heterozygosity of sweet potato might contribute
to an actual high SNP frequency, or to a high error rate in SNP calling, which would alter the SNP
frequency [49]. Considering the large number of germplasms and high read coverage, we set the SNP
parameters minimum counts and minimum frequency to 2 and 20%, respectively. Thus, alleles that
were considered SNPs were represented in at least two independent sequences and had a frequency of
or above 20%, and SNPs with a variant frequency of less than 20% were excluded, but the accuracy of
SNP calling was high.

AGPase and GBSSI are critical enzymes in starch and sucrose metabolism in plants [21]. High levels
of variations were detected in their encoding genes in this study, possibly due to the higher read
coverage when compared with other key enzyme encoding genes. The difference among average
coverage obtained for each target gene might be attributed to a difference in amplification efficiency of
these genes. Interestingly, the subunit-encoding genes of AGPase showed different levels of sequence
polymorphisms. The large subunit genes IbAGPb1B and IbAGPb3 and the small subunit genes IbAGPa1
and IbAGPa2 showed high levels of sequence variation in the germplasm collection, and IbAGPa2 and
IbAGPb3 had the highest SNP frequencies (26.792 and 26.266 SNPs/kb, respectively) and high number of
nsSNPs among the 20 genes. By contrast, only 0 and 12 SNPs were detected in IbAGPb1A and IbAGPb2,
respectively, although both genes were sequenced at high coverage (101,057.31 for IbAGPb1A and
61,443.71 for IbAGPb2, respectively, Supplementary Materials Table S6), indicating actual low sequence
variation in these subunit genes. Although small number of SNPs was detected in IbAGPb2, the two
nsSNPs detected in this gene would cause single amino acid change in the conserved domain, and one
of them would influence protein function, indicating the importance of detected variations in IbAGPb2.
As the subunits of AGPase had individual functions and expression patterns [50], they might be under
different selection pressures, which could contribute to different degrees of sequence variation [51].
Our results provide a basis for further investigation and utilization of each subunit of AGPase in
sweet potato.

4.3. CAPS Markers are An Effective Tool for SNP Genotyping in Sweet Potato

SNP genotyping is a major limitation for the comprehensive utilization of SNPs in crops. To address
this problem, an efficient, low-cost, and versatile SNP genotyping method must be developed. We tried
to genotype the detected SNPs using qPCR and MALDI-TOF mass spectrometry, but found these
methods were not available for SNP genotyping in our sweet potato population, due to the polyploidy
and high degree of heterozygosity of the sweet potato genome.

Since we did not find a suitable high-throughput SNP genotyping method for the allohexaploid
sweet potato, we developed CAPS markers to examine the SNPs identified in this study. CAPS markers
are based on PCR amplifications of DNA fragments with specific primers, followed by digestion with
restriction endonucleases and separation of the products in an agarose gel. When compared with
other PCR-based SNP genotyping methods, the restriction enzyme digestion step would eliminate
errors caused by PCR amplification efficiency, and the products would be easier to separate through
electrophoresis. As restriction endonucleases only recognize and digest specific sequences, the accuracy
of genotyping would be markedly improved. Furthermore, the most important characteristics of
CAPS marker is both homo- and heterozygotes could be easily recognized during genotyping [52],
possibly rendering CAPS markers the most accurate and suitable method for SNP or InDel genotyping
in sweet potato.

In this study, using six CAPS markers developed based on nsSNPs, genotyping was performed
and SNP genotypes were easily distinguished among the different sweet potato germplasms. However,
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considering that not all of the SNPs could be converted into CAPS or derived CAPS (dCAPS) markers,
and that it is time-consuming and challenging to perform high-throughput genotyping of the association
population [52], using quantitative liquid chromatography-tandem mass spectrometry (LC-MSMS)
method [53], or establishing an SNP chip/array through detecting and collecting a set of accurate SNPs
might be the ideal strategies to perform high-throughput SNP genotyping of sweet potato.

Three developed CAPS in sweet potato germplasms did not show polymorphisms,
possibly because of the minor alleles present in other germplasms used for polymorphism detection,
but were not present in the eight germplasms used in the marker test. However, these SNPs were
called with a minimum variant frequency of 20%, meaning that these variations should be present in
no less than 20% of the 507 sweet potato germplasms. Thus, these markers should be polymorphic in
a larger set of germplasms.

4.4. Creation of Intron-Loss Alleles Might Be a Characteristic Mechanism of Regulating Gene Expression in
Sweet Potato

Intron losses were detected in IbGBSS1-1 genes. An 1893-bp IbGBSS1-1 gene without any of the
13 introns was isolated from sweet potato variety Suyu No.1 during cloning of reference sequences
and was identified as an experimental error. However, a number of intron losses were detected in the
sequencing data. We then cloned gene fragments from various germplasms, and designed ILP markers
to identify intron-loss IbGBSS1-1 alleles in various sweet potato germplasms. The results confirmed
that intron loss might occur in each of the 13 introns, and that the intron-loss alleles were present in
some germplasms but absent in others.

We also detected a potential intron-loss gene copy of IbAGPb3, and this gene copy was also shown
to be present in some germplasms but absent in others. However, different with that in IbGBSS1-1
genes, the intron loss only occurred in the fifth intron but not exhibited in other intron regions.
Because association analysis showed no significant association between the presence/absence of this
gene copy and starch properties, the biological relevance of loss of the fifth intron and the diversity of
gene copies among sweet potato germplasms remains to be determined.

Intron use is an important component of genome adaptation, and intron gain and loss are the
results of genome responses to strong selective pressures. Introns could be lost by exact genomic
deletion, or by gene double recombination with a reverse-transcribed copy [54]. The all intron-loss
allele might be a new gene created by reverse transcription of mRNA followed by insertion of this
cDNA into the genome [54]. Introns have been shown to increase the transcriptional efficiency of genes
and enhance gene expression [55,56], but increase the time needed for transcription, and intron-less
alleles could be transcribed faster [56].

Genes that are strongly expressed and expressed in all tissues tend to have short introns in
humans [56], and intron losses occur preferentially in highly expressed housekeeping genes in
mammals [57]. Although IbGBSS1-1 is not a housekeeping gene, it plays key roles in starch biosynthesis
in plants, and our previous transcriptome and qRT-PCR analysis demonstrated that IbGBSS1-1 (the
unigene comp84815_c0_seq1 shown in Zhang et al., [10]) was expressed at very high levels in sweet
potato. We speculate that intron loss is an important mechanism affecting IbGBSS1-1 gene expression
through regulating the efficiency, expense, and time of transcription.

However, we did not identify multiple intron losses in other target genes, which also showed
high levels of expression in our previous study [10], the function of all intron-loss IbGBSS1-1 alleles
and the biological meaning of multiple intron losses in IbGBSS1-1 genes require further investigation.
Nevertheless, these discoveries indicated that the creation of intron-loss alleles might be a characteristic
mechanism of regulating gene expression in sweet potato genome and should be emphasized in the
further studies.
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4.5. The Impact of Genetic Variations to Phenotype in Allohexaploid Sweet Potato

In this study, we detected genetic variations in 20 genes. It should be mentioned that there
might be approximate six copies of each gene in the allohexaploid (B1B1B2B2B2B2) sweet potato
genomes [31,58], and our results also showed 1–37 potential homologs or paralogs of each studied gene
in the genome database. During the formation and evolution of polyploid genomes, the duplicated
genes might exhibit expressional, regulatory or functional divergence [53,59]. Thus, the impact of
variations in a specific gene copy on the phenotype might be determined by the contribution of this
gene copy to the phenotype. The SNP or InDel detected in this study might directly affect starch
properties of germplasms, if the gene copy is the major one controlling the phenotype, and this
variation cause a change in the gene expression or function. Otherwise, if the gene copy is not the
major loci controlling starch properties, or its function can be compensated by other gene copy [60],
then, the variations detected in this gene copy probably not impact the starch properties. To reveal
the effect of single gene copy and single genetic variation to the phenotype will help to elucidate the
genetic basis and regulatory mechanism of starch properties in sweet potato.

Furthermore, our results showed that there were a number of multiple copy genes in the sweet
potato genome, and some are unusual alleles, such as the intron-loss alleles. Given the potential
functional divergence among genes, the orthologous and paralogous genes, and also unusual alleles,
should be considered in gene function studies or genetic engineering efforts in sweet potato.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4395/10/5/627/s1,
Figure S1: Detection of the 13th intron loss in IbGBSS1-1 genes in four sweet potato germplasms using the ILP
marker ILP-24 shown in Table 4. M, marker. The numbers 3, 6, 51, and 29 in the figure represent the sweet
potato germplasms shown in Table S1, namely, Shangqiu 52-7, D01414, 0929-106, and Sanheshu, respectively.
Figure S2: The gene sequences cloned from 23 sweet potato germplasms exhibited the 5th and 6th intron losses of
IbGBSS1-1 genes in some of the germplasms. R, the reference gene sequence. The numbers present the sweet
potato germplasms shown in Table S1. Table S1: The sweet potato germplasms used in this study. Table S2: Cluster
analysis of 507 sweet potato germplasms. Table S3: Subpopulation assignment of the sweet potato germplasms in
the population structure analysis. Table S4: Primers used for gene amplification. Table S5: Variation analysis
of 20 genes. Table S6. Summary of statistics of reads mapping to the reference sequences. Table S7: Number of
potential homologous gene copies of 20 genes identified on each pseudochromosome in the sweet potato genome.
Table S8: SNPs and InDels detected in this study. File S1: Reference gene sequences.
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