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Abstract: To realize quick localization of plant maize, a new real-time localization approach is
proposed for maize cores at the seedling stage, which can meet the basic demands for localization
and quantitative fertilization in precision agriculture and reduce environmental pollution and the
use of chemical fertilizers. In the first stage, by taking pictures of maize at the seedling stage in a
field with a monocular camera, the maize is segmented from the weed background of the picture.
And then the three most-effective methods (i.e., minimum cross entropy, ISODATA, and the Otsu
algorithm) are found from six common segmentation algorithms after comparing the accuracy rate
of extracting maize and the time efficiency of segmentation. In the second stage, plant core from
segmented maize image is recognized, and localized, based on different brightness of the rest part of
maize core and plant. Then the geometric center of maize core is considered as localization point. the
best effect of extracting maize core was found from the minimum cross entropy method based on
gray level. According to experimental validation using many field pictures, under weedy conditions
on sunny days, the proposed method has a minimum recognition rate of 88.37% for maize cores and
is more robust at excluding weeds.

Keywords: minimum cross entropy; maize core; real-time localization

1. Introduction

With the development and application of precision agricultural technology, precise fertilization
is increasingly popular in agricultural production, being an important technological means for
controlling excessive application of chemical fertilizers., variable-rate fertilization [1] and localization
and quantitative fertilization can be used to combat existing excess fertilization and environmental
pollution. For maize, localization and fertilization can be realized by localizing the real-time position
of each maize plant, and then appropriate chemical fertilizer is applied to each plant with a fertilizer
distributor at a fixed point. This is an improvement on the current main fertilization methods of drill
fertilization and broadcast application, thereby decreasing fertilization, and enhancing efficiency.

Implementing weeding, spraying, and navigation work through recognition and localization
for crops, such as maize, has long been a research focus regarding the technology and equipment of
precise agriculture [2–4]. The predecessors have distinguished weeds through localizing position of
crops with machine vision technology [5–7], to implement weeding work [8,9] and determine crop
diseases and position for spraying. Also, by extracting crop rows and generating navigation lines [10],
it is convenient to design routes for agricultural machines in fields [11].
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At the seedling stage, the agricultural requirements for maize are for fertilization up to 10 cm on
either side of each row and to a depth of 10 cm. However, precise recognition made by predecessors
for crops and weeds [12–15] mainly lies in how to accurately detect distribution of weeds and crops,
and how to determine weedy conditions in field (e.g., location, density, variety) in intelligent way.
In most cases (e.g., when leaves grow asymmetrically or indicate defective conditions), the results of
maize image localization [16,17] do not reflect the central position of each maize plant. Direct localization
of the root position may shield the leaves [18,19], which will have large influences on the precision
of localization and fertilization based on machine vision. Therefore, by collecting image information
about the maize canopy, in a vertical way with a monocular camera, the central position formed from
wrapped leaves at the top of the maize stem (i.e., the core position), is used to determine the position
of each maize plant in the present study.

According to the literature, there are multiple approaches to image segmentation. However, the
common methods used for maize segmentation [20–31] have not yet been systematically compared
with respect to their ability to recognize maize cores. To guide real-world applications of localization
and fertilization for maize, this study collected a large number of images of maize at the seedling
stage, under different weather and field conditions (i.e., images with more weeds on sunny days (MS),
images with fewer weeds on sunny days (FS), images with more weeds on cloudy days (MC), and
images with fewer weeds on cloudy days(FC)). In this study, we first apply a minimum cross entropy
model to recognize the maize cores, and we systematically compare different image segmentation
algorithms [25–31] with respect to accuracy and time efficiency when recognizing the maize cores.
We find that the minimum cross entropy model based on the gray level has a better performance,
and we recommend using such a model in the real-time localization of maize cores under complex
field environments.

2. Materials and Methods

2.1. Design of Image Recognition System

The main parts of the image recognition system are (i) a Lenovo ThinkPadP52s graphic workstation,
(ii) an LBAS-U350-60C industrial camera, (iii) a lens, and (iv) a USB cable and holder. The image
processing runs on Intel processors with a processing rate of 2.00 GHz and 32 GB of memory. The camera
resolution is 2592 × 2048 pixels, and the frame rate for image acquisition is 12 fps. When shooting
the canopy vertically, the lens of the camera was approximately 0.5 m from the canopy. This study
used an HC1205A prime lens with a field of view of 0.53 m × 0.4 m and a minimum depth of field
(focus distance) of 0.1 m. The auto white balance settings and exposure for the camera system were
determined based on changes in the illuminance at the time of exposure, to correct the color and to
adjust the exposure parameters. We reduced the exposure time and improved the gain to decrease
possible smear problems in the video, by using an adjustment function for the aperture of the lens,
within the proper range of adjustment.

Images of maize at the seedling stage (the period of emergence with four to six leaves) were
collected between May and June in 2017–2019. To increase the data acquisition time and data volume,
CAU 86 Maize was planted in different time in zone with area of 10 m × 15 m in the Shangzhuang
Experimental Station, and the planting density was designed as a line spacing of 0.6 m and a row
spacing of 0.2 m. The camera was fixed on a universal adjustable holder, in vertical high angle shot way,
to collect images of maize canopy, with mobile trolley during movement in the field. Many images and
videos were taken of maize in the seedling stage and during growth, under different light conditions in
the large field. For the present experiment to validate the real-time localization approach for maize
core, 219 typical images were selected from a total of 7778 images. See Figure 1 for an example of the
original pictures that were collected. In the present study, the monocular camera was used to collect
images of the maize canopy dynamically.
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Figure 1. Canopy structure of maize.

2.2. Real-time Recognition Algorithm for Maize Cores at Seedling Stage

In the process of operating a fertilizer distributor in a field, a high accuracy rate and real-time
performance for the core localization approach is required to implement localization and fertilization,
using collected images of maize.

First the images is processed based on the extra-green index, which realized significant inhibition
for shadows, weeds, and soil in the images. The vegetation zone of the images were highlighted by
extracting the G component and fading the R and B components [21]. The extra-green index was used
to distinguish between vegetation and background.

Next, an image segmentation algorithm is used to separate the maize zone from the weedy
background, based on connected-domain analysis and gap filling [32].

Finally, the maize cores are recognized based on their different brightness from that of the rest of
the maize plant. The geometric center of each maize core is considered as the localization point.

By comparing the accuracy rates and segmentation times of six common algorithms(i.e., (i) the
continuous max-flow algorithm, (ii) minimum cross entropy, (iii) ISODATA, (iv) Otsu, (v) k-means,
and (vi) fuzzy thresholding segmentation) [25–31], we select the three with the best segmentation results
(i.e., minimum cross entropy, ISODATA, and the Otsu algorithm) and use them to recognize the positions
of maize cores based on four core brightness indexes (i.e., gray, Y, vHSV, and extra-green) [21,33–35]
(12 combined strategies in total). After experimental validation with many field images, the core
localization effects of 12 combined strategies are compared. We find that the minimum cross entropy
method based on gray is best at extracting maize cores, which can deliver real-time and accurate
fertilization in the field. The minimum cross entropy method [26] solves the problem of selecting
threshold values in image segmentation, through the minimum cross entropy between the image and
other zones. Figure 2 shows a flowchart of the algorithm for the real-time recognition of maize cores at
the seedling stage.
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Figure 2. Flowchart of algorithm for real-time recognition of maize cores at seedling stage.

2.2.1. Extraction of Maize Zone at Seedling Stage

The canopy structure of the maize will be distinguished better from the soil background, using the
extra-green characteristic method to extract characteristics. The method is based on the different
reflection characteristics of red, green and blue visible light bands of vegetation and soil background [36].
However, maize and weeds have similar spectra, and weeds influence the extraction of the maize
zone in images [20]. Based on the fact that the area proportion of the canopy of maize is higher than
that of weeds, the latter can be removed by calculating area of image object. Therefore, the method
used herein to extract the maize zone is to use the extra-green index to distinguish between vegetation
and background (Figure 3b). Then image segmentation is used to separate the vegetation from the
background (Figure 3c). Connected-domain analysis and the removal of small-area objects [32] will
eliminate the influences of weeds and noise, which is based on the fact that the area proportion of the
canopy of maize is higher than that of weeds, the latter can be removed by calculating area of image
object. (Figure 3d).
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Figure 3. An example extraction of a maize zone.

Index Structure

Based on large difference in color of soil and plant, vegetation and background will be distinguished
in field environment. Extracting green characteristic of maize before image graying, will greatly decline
calculation amount of subsequent graying and improve real-time performance. Using obvious green
vegetation in RGB true-color images, Woebbecke et al. [21] extracted the G component and fading
the R and B components, which realized significant inhibition for shadows, weeds, and soil in the
images, and highlighted the vegetation zone. The common methods for calculating the extra-green
characterization factor include 2G−R−B [21] and 1.262G + 0.884R + 0.311B [22]. After calculation,
2G−R−B is better at distinguishing between vegetation and soil, therefore we use 2G−R−B herein to
calculate the extra-green characteristic factor.

Image Segmentation

Current methods for vegetation segmentation remain challenged by light conditions, shadows, and
complicated backgrounds. Under differing light conditions, the method based on learning supervision
requires many training samples and depends on a training stage to acquire reliable segmentation results,
thereby increasing the calculation time and failing to meet real-time application requirements. Also,
the method based on color index segmentation is influenced greatly by light conditions [20]. Therefore,
in the present study we subjected six common image segmentation methods based on threshold values
(i.e., (i) the continuous max-flow algorithm, (ii) minimum cross entropy, (iii) ISODATA, (iv) Otsu, (v)
k-means, and (vi) fuzzy thresholding segmentation). Three for core recognition and localization will
be selected from a contrast experiment for the same set of sample images, in consideration of the
segmentation effects and time.

Based on the active contour model and the level-set method, the method of image segmentation
can improve model robustness for initial values and noise interference, as well as the stability of the
numerical algorithm; however, real-time performance cannot be realized, because of the large amount
of calculations required to solve the model [23]. Besides, the effect of applying the active contour
model is not ideal under poor image contrast and a complicated background [24]. Therefore, the image
segmentation method based on the active contour model and the level-set method was excluded from
the contrast experiment.
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In the experiment, the following six common image segmentation methods were applied to the
gray images obtained by the extra-green index, thereby classifying the images into soil background
and vegetation.

a. Continuous Max-flow Model and Algorithm

Yuan et al. [25] proposed the continuous max-flow and min-cut method, which is superior given
its fast convergence and wide selection of parameters. Based on image structure network, this method
converts the energy-functional minimization problem into the min-cut problem. Then max-flow/min-cut
theory is use to convert the min-cut problem into the max-flow problem. The solution of the image
segmentation model will be obtained by solving the max-flow problem. The continuous max-flow
image segmentation method has attracted wide attention because of its small measurement error and
parallel realization.

b. Minimum Cross Entropy

Li et al. [26] proposed the method of image thresholding segmentation with minimum cross
entropy. The method solves the problem of selecting threshold values in image segmentation,
through the minimum cross entropy between the image and other zones. This method makes an
unbiased estimation of a binary image from the perspective of information theory, thereby no prior
knowledge is required about the gray distribution of the image. This thresholding segmentation
is simple to implement and can run quickly, while binarization image is also suitable to template
matching through correlation and real-time recognition in hardware.

c. ISODATA

The ISODATA algorithm [27] uses a merging and splitting mechanism, and exhibits high calculation
efficiency and good adaptability. Before segmentation, the algorithm can determine artificially the
number of classes, in which sample number and maximum iteration shall be contained at least. To a
certain extent, it has decreased blind clustering based on existing knowledge and expert experience,
which will help achieve better segmentation effects.

d. Otsu algorithm

With a simple and stable calculation process, the Otsu algorithm [28] is a method for selecting
threshold values automatically without artificially setting other parameters. Its main concept is to
establish a target zone and a background zone for binarization segmentation, based on statistical
characteristics, maximizing the between-class variance of both zones.

e. k-means clustering

The k-means clustering algorithm is a typical object-oriented and unsupervised real-time clustering
algorithm. The data based on minimum error function is classified into predetermined Grade K,
and the clustering centers are determined by iterative operation of sample average. Because of its
conciseness and high efficiency, the k-means clustering algorithm is among the most widely used of its
type [29,30].

f. Fuzzy thresholding segmentation

Santiago et al. [31] proposed a local fuzzy thresholding method for multi-regional image
segmentation. This eliminates the fake shadows and noise of traditional thresholding methods,
realizes full automation, and avoids manual intervention.

After segmenting the image of the maize canopy, binarization was realized, with the vegetation
classed as zone 1 and the background classed as zone 0.
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Extraction of Maize Zone

After segmenting the image of the maize canopy, the connected-domain with the maximum area
(the light blue area shown in Figure 3d) is extracted from the image as the maize zone, based on the
higher area proportion of maize at the seedling stage than that of weeds. The influences of noise and
light conditions can lead to gaps in the maize connected-domain. These gaps are filled through image
morphological method to obtain the images of the maize zone. Figure 4 shows a flowchart of the
connected-domain analysis [32] for images after removing the soil background.
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2.2.2. Recognition and Localization of Maize Cores

From analyzing the images of the maize zone, the maize cores are less bright than the other parts
of the plant, because the leaves wrap around the core zone at the top of the maize stem. The maize
zone segmented from the canopy image includes the maize cores and other parts of the plant. Herein,
core recognition, and localization involves three steps, namely (1) selection of brightness index (i.e.,
gray, Y, vHSV, and extra-green), (2) Extraction of Maize Core, using image segmentation to separate
the maize cores from the other parts of the maize zone, and (3) Core Recognition and Localization,
noise elimination and calculated the centroid of the core zone (Figure 5).
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Selection of Brightness Index

To describe the difference in brightness between the maize core and the other parts of the plant,
from the literature [16,17,21,33–35] we selected four brightness indexes. Then the suitable brightness
index will be selected by comparing their effectiveness at core recognition.

a. Gray

The processing of grayscale transformation is to convert color image into grayscale image.
The purpose of grayscale transformation is to reduce the amount of color data in the image, so as
to accelerate the subsequent image processing. The naked eye is more sensitive to the brightness
component in YCbCr [33]. To maintain the color difference between a maize core and its background in
the color maize zone image, we use the common gray = 0.299R + 0.587G + 0.114B in image processing
as the brightness index.

b. Y

Zheng et al. [35] designed a new method for vein extraction to transform the gray scale by using
the information of hue and intensity. The brightness index namely Y = (((H + 90)/360)/360 + 1 − V)/2,
where H and V are the hue component and value (intensity) component, respectively, of pixel color
in the HSV color space. This brightness index can maintain the color difference between a core
and its background from a color maize zone image, showing stronger adaptability to the grayscale
transformation than common methods during core extraction.

c. vHSV

HSV (hue, saturation, value) is a color space that is based on the intuitive characteristics of color.
The HSV color space is used to describe color quantitatively, and is applied in many image-analysis
tasks [34]. Herein, the HSV color space is used to calculate the color information in the color maize
zone image, and the brightness value V is used as the brightness index. The three components of the
HSV color space are relatively independent, which is one of the reasons for selecting the HSV color
space for core recognition, while the H, and S components are influenced slightly by light conditions
and shadows. This form of color expression is very close to the Munsell color model, and is the same
as visual perception of color information. Because the human eye can distinguish maize cores easily,
it is better to select this color model to a certain extent.

d. Extra-green

When comparing and analyzing the reflection characteristics of maize cores and leaves in red,
green, and blue visible light bands, we see slight differences among the R, G, and B values of a maize
core, while the G value of maize leaves is much higher than the R value and B value. Therefore, we use
the extra-green index (2G−R−B) for extracting characteristics [21], to better distinguish the maize core
from the other parts of the maize zone.

Extraction of Maize Core

Previous experimental results of segmenting maize zone from the maize canopy images suggest
that three segmentation algorithms are better than the others (i.e.,minimum cross entropy, ISODATA,
and Otsu),therefore only these three image segmentation results are tested here. Based on the core
being less bright than other parts in a maize zone image, we classified the maize zone image into cores,
and other plant parts, and then compared the effectiveness of core extraction through 12 combined
strategies (from three segmentation methods and four brightness indexes).
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Core Recognition and Localization

The influences of noise and light mean that the “core sections” after image segmentation are
multiple non-continuous small zones; see Figure 5c. We conducted connected-domain analysis [32] for
the “core sections” and selected the zone with the largest area as the actual core zone, because the area
of noise interference is small. Finally, we calculated the centroid of the actual core zone, namely the
position of the maize core. The calculation steps are described as follows.

Given an m × n dimensional binary image I(x, y), where the maize core zone is A and the
background zone is B, i.e.,

I(x, y) =
{

1(x, y) ∈ A
0(x, y) ∈ B

, (1)

the centroid (x0, y0) of the core zone is defined as
x0 =

∑
(x,y)∈A

xI(x,y)∑
(x,y)∈A

I(x,y)

y0 =

∑
(x,y)∈A

yI(x,y)∑
(x,y)∈A

I(x,y)

. (2)

When the sum of the squares of the distances from the x-coordinate x0 of the core position to the
x-coordinates of all other points in the target is compared with that of any other point, its value is
minimum (the same applies for y0).

3. Results and Discussion

3.1. Effects of Segmentation for Maize Zone at Seedling Stage

In this study, the image samples were classified into four categories according to their illumination
intensity and the amount of weeds. The purpose of classifying samples is to verify whether the
accuracy of our method is affected, and how much it is affected, by interference due to different
degrees of illumination and weed backgrounds. Based on illumination intensity and amount of
weeds, we classified 219 images of maize samples into 42 images with more weeds on sunny days
(MS), 86 images with fewer weeds on sunny days (FS), 42 images with more weeds on cloudy days
(MC), and 49 images with fewer weeds on cloudy days (FC). Six segmentation methods (i.e., (i) the
continuous max-flow algorithm, (ii) minimum cross entropy, (iii) ISODATA, (iv) Otsu, (v) k-means,
and (vi) fuzzy thresholding segmentation) were used to segment the maize zone from the background
weeds. By comparing the accuracy rate and segmentation time, we selected the three fastest and
most-accurate methods; see Figure 6 for the effects of the six segmentation methods.

After obtaining the image processing results for the extracted maize zone, the results were
classified and analyzed using Excel. We divided the segmented images of the maize zone into four
processing results, namely, (a) the maize zone is extracted correctly; (b) the background with part of
the weeds is also extracted when the maize zone is extracted; (c) the soil background is also extracted
when the maize zone is extracted; and (d) incorrect extraction, i.e., the maize zone is not extracted or
is extracted incompletely. Such statistical and classification results are useful to strictly distinguish
the image segmentation results and to avoid the influence of subjective factors. To adhere to the
requirements of the subsequent analysis, we labeled (a) as “correct extractions“ (CE); integrated (b)
and (c) and labeled them as “multiple extractions“ (ME); and labeled (d) as “wrong extractions“
(WE). Figure 7 shows the statistical results of the six segmentation methods (i.e., (i) the continuous
max-flow algorithm, (ii) minimum cross entropy, (iii) ISODATA, (iv) Otsu, (v) k-means, and (vi)
fuzzy thresholding segmentation). The x-coordinate indicates the three processing results for the six
segmentation methods, while the y-coordinate indicates the amount of each processing result. Different
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colors represent different sample classes, i.e., image samples collected under different illumination and
weed conditions.
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Figure 7. Statistical chart of the six segmentation results for images of different classes of maize samples.

According to Figure 7, the extraction effects of the six segmentation methods in maize images with
fewer weeds on a sunny day are better. Compared with the other methods, the continuous max-flow
algorithm shows a higher accuracy rate. In particular, the effect of a sample with more weeds on a
cloudy day is better. However, the six methods were also assessed based on the segmentation time, in
which three applicable segmentation methods will be selected after comprehensive consideration.

Figure 8 shows the average time (avg) and standard deviation (σ) for extracting images of the
four classes of samples with the six segmentation methods. According to Figure 8, because of their
shorter segmentation times and smaller standard deviations, minimum cross entropy, ISODATA, and
Otsu run stably, and faster. Then combined with the statistical results for the accuracy rate as shown
in Figure 7, we selected these three segmentation methods for core recognition and localization, i.e.,
minimum cross entropy, ISODATA, and Otsu.
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3.2. Evaluation of Effectiveness of Core Localization

Based on the difference in brightness between the maize core and the other parts of the plant,
we selected three segmentation methods (i.e., minimum cross entropy, ISODATA, and Otsu) and
four brightness indexes (i.e., gray, Y, vHSV, and extra-green) for core recognition. The effects of 12
combination strategies were compared (from three segmentation methods and four brightness indexes);
see Figure 9 for the effects.
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The quantity statistics for the effects of core recognition and localization with the 12 combined
strategies were made. The deviation of the recognized core position from the actual position is
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considered as failed recognition. and the core recognition rate is calculated for different classes of
samples (i.e., MS, FS, MC, FC). See Figure 9 for the results. In the process of collecting information
about the effects of core recognition, the standard of identification is whether a recognized localization
point for a maize core comes from the core area. Accordingly, the recognition and localization results
were easily and visually identified. and the image segmentation results were strictly distinguished,
avoiding the influence of subjective factors.

In this paper, the core recognition ratio was calculated after counting the number of successful core
recognitions. Then the histogram shown in Figure 10 was generated. The x-coordinate indicates the
results of recognizing maize cores with the four brightness indexes(i.e., gray, Y, vHSV, and extra-green)
over the three processing results of the three segmentation methods (i.e., minimum cross entropy,
ISODATA, and Otsu), while the y-coordinate indicates the recognition ratio, where different colors
indicate different sample classes(i.e., MS, FS, MC, FC). The core recognition ratio of 12 combined
strategies in Figure 10 was used to compare and analyze the effects of core recognition, as well as the
anti-interference capacities.
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Figure 10. Statistical chart of recognition rate for maize core.

According to the statistical results shown in Figure 10, the effect of extracting the maize core with
minimum cross entropy based on gray was found the best, and we consider this method as a new
method for real-time core localization. After validation with four categories of sample images (i.e., MS,
FS, MC, FC), there is a slight difference in the recognition rate for MS and FS samples with the minimum
cross entropy model based on gray, indicating good robustness against weed interference on sunny
days. Besides, the accuracy rate of recognition on sunny days is over 88.37%, which is significantly
higher than the recognition results of the other 11 combined strategies. Among the statistical results, the
recognition rate for samples with this method(minimum cross entropy based on gray) is 54.74–79.59%,
not lower than the other recognition results on cloudy days, which is influenced mainly by the quantity
of weeds. As a result, under low light conditions, the core recognition rate of this method is greatly
influenced by weeds. Supplementary lighting can be considered to improve the stability of this method
herein. Under field conditions, the method of the minimum cross entropy model based on gray
is more applicable to the environment with fewer weeds on a sunny day. As shown in Figure 11,
core recognition may be inaccurate when there are more weeds on a cloudy day.
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3.3. Spatial Orientation of the Maize Core

To comply with agronomic requirements, the localization fertilization requires the granular
fertilizer to be applied and distributed to the position of 10 cm on the side of the maize line and
10 cm in depth, through ditching and earth-covering fertilizer functions, which is distinguished from a
traditional fertilization. When the maize core is recognized in the maize canopy image, the localization
fertilization method needs to calculate the relative distance L between the maize plant core P and the
fertilization mouth O of the fertilizer, in the projection direction of the fertilizing line.

When collecting data, the camera is vertically installed at the front of the fertilizer with the lens
directed downward. Therefore, in the projection direction of the fertilizing line, the spatial orientation
distance L depends on the relative distance L1, which between the core P and the central field of view
point O of the camera, and the relative distance L2 from the point O of the camera to the fertilization
mouth F, see Figure 12. Due to the fixed installation angle and height and the other camera parameters,
L2 is a measurable value. The distance L1 can be calculated using a camera calibration method based
on a single-plane checkerboard [37]. The error due to vibration can be decreased and compensated for,
by installing a shock attenuation device and an angle stabilometer as required.
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Due to the consistency of the maize variety and seedling management, based on the real
measurements, the height of a sample maize plant should not exceed 10 cm with respect to the
deviation, compared to the average plant height 30 cm. In this study, based on the parameters of the
camera and lens, the field of view is 53.33 cm × 40 cm, and the distance in the marching direction |PQ|

is 40 cm for the object distance of the collected image. As a result, the distance L1 from the recognized
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maize core P, localized to the central field of view point O, does not exceed 20 cm. When there are large
changes in the height of the maize plant, as the lens is in focus and the field of view Angle is constant,
according to the theory of similar triangles, the distance error of the core localization ∆L1 is less than
4 cm, as shown in the following calculations and Figure 13.
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When plant height was higher than the average, but within 10 cm,

|AE|
|OE|

=
|AB|
|OP|

(3)

∆L1 = |OP| − |AB| (4)

Similarly, when the plant height was below the average but within 10 cm,

∆L1 = |CD| − |OP| (5)

If the plant distance is 20 cm and the stem diameter is approximately 2 cm, the error ∆L1 is within
the requirements for applying localization and fertilization. The maize core is localized in front of the
fertilizer device, then the relative distance L is calculated in the projection direction of the fertilizing
line, and the localization fertilization is finally conducted for maize by controlling the marching speed
of the fertilization device.

4. Conclusions

The real-time core localization can be realized by the minimum cross entropy method based on
gray level herein, for dynamically collected maize images in an environment with weeds. The positions
of maize plants can be quickly localized for fertilization, and the basic demands of localization
fertilization in precision agriculture can be met by this method. According to experimental validation,
in an environment with weeds on a sunny day, the core recognition rate of the methods herein can
exceed 88.37%. The method is more applicable to recognizing individual maize cores in an environment
with fewer weeds on a sunny day, but the recognition results may be inaccurate when there are much
more weeds. The recognition rate for samples with this method(minimum cross entropy based on
gray) is 54.74–79.59%, not lower than the other recognition results on cloudy days, which is influenced
mainly by the quantity of weeds. Future work is to solve the problem of localizing multiple maize
plants in a complicated environment.
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