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Abstract: The number of plants, or planting density, is a key factor in corn crop yield. The objective
of the present research work was to count corn plants using images obtained by sensors mounted on
an unmanned aerial vehicle (UAV). An experiment was set up with five levels of nitrogen fertilization
(140, 200, 260, 320 and 380 kg/ha) and four replicates, resulting in 20 experimental plots. The images
were taken at 23, 44 and 65 days after sowing (DAS) at a flight altitude of 30 m, using two drones
equipped with RGB sensors of 12, 16 and 20 megapixels (Canon PowerShot S100_5.2, Sequoia_4.9,
DJI FC6310_8.8). Counting was done through normalized cross-correlation (NCC) for four, eight and
twelve plant samples or templates in the a* channel of the CIELAB color space because it represented
the green color that allowed plant segmentation. A mean precision of 99% was obtained for a pixel
size of 0.49 cm, with a mean error of 2.2% and a determination coefficient of 0.90 at 44 DAS. Precision
values above 91% were obtained at 23 and 44 DAS, with a mean error between plants counted digitally
and visually of ±5.4%. Increasing the number of samples or templates in the correlation estimation
improved the counting precision. Good precision was achieved in the first growth stages of the crop
when the plants do not overlap and there are no weeds. Using sensors and unmanned aerial vehicles,
it is possible to determine the emergence of seedlings in the field and more precisely evaluate planting
density, having more accurate information for better management of corn fields.
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1. Introduction

Corn, together with wheat and rice, is one of the most important cereals in the world; it supplies
nutritional elements to human beings and animals, being a basic raw material of the transformation
industry to produce starch, oil, proteins, alcoholic drinks, food sweeteners and fuel [1]. Planting density
(number of plants per unit area), the number of cobs per unit area, the number of kernels per cob and
kernel weight are the grain yield components that have an impact on the reachable yield of corn [2].
Several studies have analyzed the response of corn yield to planting density [3,4], concluding that planting
density is a key component in corn yield. The determination of planting density or the number of
plants per hectare is important information to evaluate the physiological characteristics of the crop, and

Agronomy 2020, 10, 469; doi:10.3390/agronomy10040469 www.mdpi.com/journal/agronomy

http://www.mdpi.com/journal/agronomy
http://www.mdpi.com
http://dx.doi.org/10.3390/agronomy10040469
http://www.mdpi.com/journal/agronomy
https://www.mdpi.com/2073-4395/10/4/469?type=check_update&version=3


Agronomy 2020, 10, 469 2 of 16

ultimately, the final yield. Yield can be better estimated by including the precise number of plants in the
models, also to identify the optimum planting density to manage production in corn growing.

With the development of technology, new aerial platforms have become available to acquire
images using mounted sensors with high spatial and temporal resolution to detect and quantify crop
variations; such is the case of unmanned aerial vehicles (UAV) [5–7]. At least four pixels are necessary
to detect the smallest objects on an image [8]. Camera focal length and flight height define the image
scale [9], It is of great importance to define the optimal pixel size according to the specific objectives
and the crop characteristics [10]. Image resolution and object size are critical parameters in the accurate
classification of vegetation [11], thus the sensor type used in image capture plays an important role in
monitoring the vegetation. UAVs are flexible in the timing of image acquisition, without being limited
by weather or terrain conditions, and are equipped with a range of RGB, multispectral, hyperspectral,
thermal and LIDAR sensors [12]. RGB sensors capture radiation in the visible electromagnetic spectrum
of red, green and blue bands, while common multispectral sensors are widely used due to obtaining
spectral information in the red band, the near-infrared and red edge for monitoring vegetation, on the
other hand, hyperspectral sensors capture reflectance in several narrow spectral bands (5–10 nm) [13,14].
Commercial RGB cameras are less expensive than multispectral or hyperspectral sensors and have
high spatial resolution.

The images captured by these cameras are used to calculate vegetation indexes (IV) and to
generate digital elevation models and plant height maps [15]. This technology has been successfully
implemented to estimate biomass, estimate the fractional plant cover, height and weed detection and
classification, [16–20]. Recently, RGB images obtained with these platforms have been used to count
plants in safflower, wheat, rapeseed and germination in cotton and potato [12,21–25]. UAV platforms
offer advantages to estimate corn plant counting and planting density. Some methods used in automatic
counting of plants are affected by the growth stages of the crop, with different estimations for different
growth stages [23,26]. Also, the presence of weeds and blurry effects in the images affects automatic
corn plant counting, causing errors [22]. Zhang et al. [27] Extracted corn plants using vegetation indices
and image segmentation techniques, on the other hand, Shuai et al. [28] applied the same method for
counting corn plants and found accuracies greater than 95%. Gnädinger y Schmidhalter [22] counted
corn plants in images, improving the image contrast and using segmentation techniques with an
error smaller than 5%; some other authors used deep learning, segmentation algorithms and neural
networks to count corn plants. [29–31].

The use of conventional RGB (Red, Green, Blue) digital images tends to be a low-cost alternative [32].
Some studies have been done to identify and separate the vegetation in crop images [33,34] using
vegetation indexes (excess green index, ExG; vegetative index, VEG, others). Other studies have used
conversions from the RGB color model to HSI, CIELAB and CIELUV color models, extensively, and
successfully in order to separate the green color (vegetation) from the images and provide phenotypic
and genotypic data at different growth conditions [35–38]. The CIELAB color model depends less on
illumination [39] defining colors more according to the color perception by the human eye. This color
model is considered uniform, this is to say, the distance between two colors is a linear color space that
corresponds to the differences perceived between them [40]. The CIELAB color space is based on the
concept that colors can be considered as combinations of red and yellow; red and blue; green and
yellow; and green and blue. To determine the exact combination of colors of a product, coordinates are
assigned in a three-dimensional color space (L*, a*, b*). The three color coordinates are luminosity,
red/green coordinates and yellow/blue coordinates, respectively [41].

Object detection methods, like template comparison, are used in remote sensing to discriminate
objects present in an image and their location [42]. Template comparison is one of the first and
simplest methods but involves a high error margin in complex images [43,44]. In template comparison,
understood as a technique to classify objects, a template or image sample is used and the general
image is scanned to find the sample image through normalized cross-correlation. Correlation is a
measure of the degree at which two variables or signals agree, not necessarily in real values but rather
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in the general performance of the same variables or signals; in the case of images, these two variables
being the corresponding pixel values in both images (Pattern and image) [45]. Koh et al. [12] used the
template comparison method to detect safflower seedlings in the early stages of growth, using a group
of templates obtaining an R squared of 0.86 between manual and digital counts. Nuijten et al. [44]
used this method to classify crops with a precision of 99.8%, Kalantar et al. [46] employed template
comparisons in the oil palm count finding precisions around 86%.

As far as we know the normalized cross-correlation and template comparison, in combination
with the CIELAB color space has not been reported in the literature for the corn plant count, therefore,
this paper investigates whether this relatively simple methodology can be accurate in corn plant
counting. A corn crop was established to obtain images using an unmanned aerial vehicle platform
with RGB sensors, obtaining images at different stages of crop development to evaluate automatic
counting precision through the use of templates and normalized cross-correlation (NCC), as well as
observe the differences in precision using three types of RGB Sensors.

2. Materials and Methods

2.1. Study Site

The experiment was established on April 5th, 2018 in an experimental plot in the Colegio de
Postgraduados, Campus Montecillo, located on the Mexico-Texcoco highway, km 36.5, Montecillo,
Texcoco (19◦27′40.58” N, 98◦54′8.57” W, 2250 MASL). Soil texture is sandy loam with an apparent
density of 1.45 g cm−3, O.M. 1.59%, pH 9.1 and electrical conductivity of 1.72 dS m−1. Five nitrogen
levels were evaluated (140, 200, 260, 320 and 380 kg ha−1) in a completely randomized block design
with four replicates, resulting in 20 experimental units (120 m2 per unit) of the Asgrow Albatross corn
variety. A drip irrigation system was designed using drip tape and drippers separated to 20 cm and
1.6 Lh−1 water use in each experimental unit. The five nitrogen levels were applied directly with the
irrigation water at 30% dose during the first 40 days, 50% dose from 40 to 80 days and 20% dose after
80 days. Sowing was done manually, with 80 cm between rows, and 30 cm between plants with three
seeds; weeds were controlled by hand.

2.2. Image Acquisition and Processing

Aerial images were taken with an unmanned aerial vehicle at a height of 30 m over the terrain,
covering a crop area of 2500 m2, at 27, 44 and 67 days after sowing (DAS) during 2018. Table 1 shows
the summary of the flights.

Table 1. Flight log at different days after sowing (DAS).

DAS Date Development
Stages Sensor N◦ of

Images
Area
(m2)

Pixel
Size

23 April 27 V2 Sequoia_4.9_4608 × 3456 (RGB) 41 3545 0.56

44 May 18 V5 Sequoia_4.9_4608 × 3456 (RGB) 157 6309 0.53

44 May 18 V5 DJI FC6310_8.8_5472 × 3648 (RGB) 272 10,067 0.49

44 May 18 V5 CanonPowerShotS100_5.2_4000 ×
3000 (RGB) 120 6977 0.88

67 June 8 V9 CanonPowerShotS100_5.2_4000 ×
3000 (RGB) 80 13,543 1.05

A 3DR SOLO drone (3D Robotics, Berkeley, CA, USA) was used, 20 min flight autonomy, with a
precision range of 1–2 m where a sensor is placed for image acquisition. To capture the images, the drone
was equipped with a Canon S100 camera (Canon, Tokyo, Japan), weighing 200 g, high sensitivity CMOS
sensor by Canon, type 1/17, 12.1 megapixels, real color with three channels (red, green, blue—RGB),
image size 4000 × 3000 pixels in each channel. Another type of sensor used was a multispectral Parrot
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Sequoia (Parrot SA, Paris, France), weighing 72 g, to capture RGB images at 16 megapixels, image size
4608 × 3456 pixels. It also incorporates 4 sensors in green (550 nm), red (660 nm), red edge (725 nm) and
near infrared (790 nm) channels, 1.2 megapixels, image size 1280 × 960 pixels and a 35 g solar sensor.
Flights were carried out a height of 30 m and 80% frontal and lateral overlap during crop development
from April 27th to July 19th, 2018, between 12:00 p.m. and 3:30 p.m. A UAV flight was carried out
at 44 DAS with a Dji Phantom 4 drone (DJI, Shenzhen, Guangdong, China) equipped with a 1-inch
CMOS sensor, 20 megapixels in compound true color with three channels (red, green, blue—RGB),
image size 5472 × 3078 pixels in each channel; load-capacity of 1.388 kg and 30 min flight autonomy.
It is equipped with a GPS/GLONASS satellite positioning system with a vertical precision range of
±0.5 m and a horizontal precision range of 1.5 m.

Flight configuration to take the images was done using the Pix4D capture application for mobile
phones. Six ground control points (GCP) were placed. Figure 1 shows the distribution of the GCPs.
For each flight, a Hi-target GNSS RTK V90 PLUS system (Hi-Target Surveying Instrument Co., Ltd,
Guangzhou, China) was used to register the center of each control point with RTK precision, H: 8 mm +

1 ppm RMS and V: 15 mm + 1 ppm RMS. The images captured by the different sensors and the ground
control points were processed with the Pix4D mapper software (Pix4D SA, Lausanne, Switzerland) for
each flight, obtaining an orthomosaic, a surface digital model and a point cloud.
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Figure 1. (a) Established corn experimental field; (b) Ground control points (GCP); (c) 3DR Solo UAV;
(d) DJI Phantom UAV.

2.3. Image Color Pre-Processing

The images taken by the sensors mounted on the unmanned aerial vehicle were registered in the
RGB color space. The L*a*b* color space also referred to as CIELAB, is one of the color spaces that
least depends on illumination and pretends to emulate how humans perceive color. The colors in
this space are located more intuitively, it being one of the most popular and uniform color spaces
used to evaluate the color of an object [41]. It was developed by the Commission internationale
de l’éclairage (International Commission of Illumination) (CIE). The L* value is the component that
represents luminosity of color (low L* values indicate little brightness, while high L* values indicate
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high brightness). The a* parameter represents color in the red-green axis in a [−86.1367, 98.2964] range
(+a indicates red, −a indicates green). The b* parameter represents color in the yellow-blue axis in
a [−107.8650, 94.4756] range (+b indicates yellow, −b indicates blue). In order to transform the RGB
color space to CIELAB, Equation (1) is used to transform to the CIEXYZ space [47,48].

X
Y
Z

 =


0.490 0.310 0.200
0.177 0.813 0.011
0.000 0.010 0.990




R
G
B

, (1)

In the X, Y, Z space, luminosity is transformed through Equation (2):

L∗ =

 116
(

Y
Yn

)1/3
− 16, si Y

Yn
> 0.008856

903.3
(

Y
Yn

)1/3
si Y

Yn
< 0.008856

, (2)

Parameters a* and b* are obtained through Equations (3) and (4):

a∗ = 500
[

f
( X

Xn

)
− f

( Y
Yn

)]
, (3)

b∗ = 200
[

f
( Y

Yn

)
− f

( Z
Zn

)]
, (4)

where f (t) = t1/3 for t > 0.008856 and f (t) = 7.787t + 16/116 for t < 0.008856. Xn, Yn, Zn are the values for
white, referencing the illuminator/observed used.

The images that were captured, registered and processed by the sensors in the RGB color space
were transformed to the CIELAB color space for each orthomosaic. Once the images were transformed
to the CIELAB color space, we got three available channels: L*, a* and b*. The value of the radiation
that was absorbed, transmitted and reflected among the vegetation depended on its wavelength and
the absorption selectivity of the pigments in the leaves—which may be characteristic of the species
or caused by diseases or nutrient deficiencies [49]. Reflectance in the green channel in the interval of
the electromagnetic spectrum is reflected by photosynthesis in leaves, for which reason vegetation
is observed as green in the visible spectrum. The reflectance spectrum of green vegetation shows
absorption peaks around 420 nm (violet), 490 nm (blue) and 660 nm (red). These are caused by strong
absorption by chlorophyll [49]. For this study, we used channel a*, which represents color in the
green-red axis in a [−86.1367, 98.2964] range (+a indicates red, −a indicates green). Vegetation is
represented as green in the visible spectrum; thus, we proceed to filter the negative pixels in the a*
channel of the CIELAB space to separate vegetation. The segmentation of the green pixels was done
with MATLAB (Mathworks, Natik, MA, USA).

2.4. Selection of Samples or Templates (Plants)

In this stage, representative plants in the image are selected; these must be distinctive and with
good quality. The selected plants must be distinguishable in the image and without overlap with other
plants. Four, eight and twelve samples were selected based on the size or diameter of the corn plants,
in pixels, in the image; two for small plants, two for large plants, with respect to those present in the
image and the remaining four and eight for intermediate sizes in the different sample sizes. This means
that it resulted in a total of 80, 160 and 240 samples for each flight date (Figure 2).

2.5. Normalized Cross Correlation

In the coincidence of the templates, understood as a technique to classify objects, a template or
image sample is used; the general image is scanned to find the sample image through normalized
cross-correlation. Correlation is a measure of the degree to which two variables or signals agree, not
necessarily in real values but rather in the general performance of the same variables or signals; the
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two variables in the case of the images being the values of the corresponding pixels in both images
(master and image) [45]. Correlation is an important tool in image processing, pattern recognition
and other characteristics between two signals (cross-correlation); it is a standard approach to detect
characteristics or patterns. The energy in an image shows variations, so cross-correlation between a
characteristic and a region, both exactly equal, can fail. This also depends on the size of the template
or sample. The correlation coefficient overcomes these difficulties by normalizing the image and the
characteristics vectors to a longitude unit, producing a correlation coefficient similar to the cosine [50].
Comparison algorithms based on correlation techniques can directly use the images without any
previous step to extract characteristics [51]. Normalized cross-correlation is a method commonly used
to find 2D patterns in images from a template or sample T of (2 h + 1) × (2 W + 1) correlated to an
image X. In locating the image (u,v), correlation is calculated through Equation (5) as:

C(u, v) =

∑
x,y

[
f (x, y) − fu,v

][
t(x− u, y− v) − t

]
{∑

x,y

[
f (x, y) − fu,v

]2 ∑
x,y

[
t(x− u, y− v) − t

]2
}1/2

, (5)

where: f is the image, t is the template mean and f (u,v) is the mean of f (x,y) in the region under
the template.

Normalized cross-correlation between the a* channel—where we filtered the green color and the
selected samples—was done with Matlab, using the normxcorr2 function and command for each of
the samples, obtaining an equal number of normalized cross-correlation matrices. In the resulting
correlation images, we obtained values between −1 and +1, where the +1 value represented the selected
sample and values under +1 represent certain coincidence with the master or correlated sample. Thus,
a segmentation of the correlation coefficients was done, filtering values greater than the maximum
correlation divided by four, which represents positive values (direct correlation) over 25% of the filtered
sample. Once the correlation matrices between samples and the a* channel were filtered, we obtained
the mean of the filtered matrices in a new means matrix. This matrix was then subjected to a new
filtering process where values over 1/3 (0.33) were filtered from the means correlation matrix.
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Figure 2. Selection of corn plant samples on the orthomosaic generated using the camera DJI FC6310.
(a) Selection of samples in the RGB image; (c) Samples selected for counting in the a* channel; (b) Samples
selected in the RGB image; (d) Samples with pre-processing in the a* channel of the CIELAB model.

2.6. Description of the Analysis Process and Plant Counting

During plant counting and their distribution in the cropland, the plants are required to be free of
weeds and in a development stage when there is no overlap yet. The orthomosaics generated from the
images taken by the drone were used in the counting process, in which only the crop area was outlined
in the orthomosaics using the ImageJ program (Wayne Rasband, NIH, Bethesda, MD, USA) in 20 plots.

To identify the objects extant in the images, it was necessary to differentiate the regions through a
component labeling technique in binary images, assigning a label (1,2,3–i) to a subset of points that
commonly integrate objects. The condition for a pixel to belong to a region is that it must be connected
to the said region [40]. In the process of cross-correlation and obtainment of the correlation mean
of the samples; the resulting matrix is a binary image (1 for white and 0 for black). Though Matlab,
labeling was done for objects connected to 8, which in this case, are the plants identified through
cross-correlation and filtered based on a mean correlation of sampler greater than the maximum
(correlation matrix)/5 of the maximum positive correlation found in the process. The perimeter of the
objects was used as a parameter to filter connected objects and only extract those that are plants.

2.7. Data Analysis

Twenty plots per image—120 m2 each—were processed for each orthomosaic on three flight
dates (23, 44 and 65 days after sowing) during crop development, resulting in a total of 60 polygons.
The count of the number of plants through the cross-correlation method for each polygon and sensor
was registered in a table. The precision of the plant count obtained through normalized cross-correlation
was compared against a manual count done for all 60 polygons in the experiment with the established
corn crop at different stages.

As a validation of the automatic count through the normalized cross-correlation, it was compared
against a manual count done in each of the 20 outlined plots using the root mean square error (RMSE)
through Equation (9), mean absolute error (MAE), precision in the estimation (Ps) (Equation (6)),
correlation coefficient (r) and determination coefficient (r2).

Ps = (Estimated plants)/(Counted plants), (6)
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Es = (Estimated plants − Counted plants)/(Counted plants), (7)

MAE =
1
N

∑N
i=1

∣∣∣(Es)i

∣∣∣, (8)

RMSE =

√∑N
i=1(Estimated plants − Counted plants)2

N
, (9)

r2 = (σij
2)/(σi × σj), (10)

where N is the number of validated plots, |(Es)i| is the absolute of Es of the ith validation, σi is the
standard deviation and σij is the covariance of the estimated and counted values.

3. Results and Discussion

Counting was done at 23, 44 and 67 days after sowing the corn plants through normalized
cross-correlation, with four, eight and twelve samples in 20 outlined zones of the processed orthomosaics
of the images taken by the sensor mounted on the UAV. The results are shown below.

3.1. Normalized Cross Correlation in Counting Corn Plants

The conversion of the RGB images into the CIELAB color space separated the green pixels in the
a* channel in the image corresponding to vegetation pixels (plants). In the image filtering process,
a threshold was used to separate the pixels into two types: vegetation and ground. The threshold
(u) used was u = mean (a*) + mean (a*)/4 (Figures 2 and 3). The edge in the mean (a+) threshold,
according to the histogram of channel a*, places us at the pixels corresponding to the green color when
adding 25% (mean (a+)/4); it places us in the histogram in the zone of greener pixels. When doing the
extraction through the threshold, if the selected threshold is located in the green zone in channel a* in
the color histogram, it allows us to do stronger filtering, thus separating overlapping plants; however,
smaller plants and those with few leaves are eliminated, thus causing a lower estimation of the number
of plants. This makes the selection of the threshold a key factor in vegetation extraction.

Having grouped the pixels into two types, the normalized cross-correlation (NCC) was done for
four, eight and twelve samples (Table 2). When selecting the sample plants, it was important to take
into account the representation of all plant shapes and sizes within the image to obtain good results
in the counting through correlation. An important aspect that happens in the sample selection is if a
small plant is selected as a sample, when the correlation is done with a plant twice the area size or
more in the image, an overestimation error is made in the count.
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Figure 3. Green pixel filtering in channel a*, from left to right: (a) RGB image; (b) threshold = 0;
(c) threshold = mean (a*); (d) threshold = mean (a*) + mean (a*)/4.

Table 2. Precision (Ps) in corn plant count with respect to the sensor and pixel size 44 days after sowing
(V5 stage).

Samples Pixel Size (cm) Ps (%) RMSE r r2 MAE (%)

4
0.53 95 21.8 0.59 0.35 7.7
0.88 93 22.9 0.74 0.54 8.2
0.49 97 12.2 0.91 0.82 4.7

8
0.53 98 11.5 0.86 0.74 3.9
0.88 92 25.5 0.68 0.46 8.6
0.49 98 8.4 0.94 0.89 3.0

12
0.53 98 7.5 0.97 0.93 3.0
0.88 93 20.6 0.81 0.65 7.5
0.49 99 6.6 0.95 0.90 2.2

In the plant counting process through the labeling of connected regions (Figure 4), one criterion to
classify whether or not a region belongs to a plant is through the area in pixels in the image, hence
the area of the corn plant was obtained from the selected samples (Figures 2 and 3). The criterion
was to select the area of the smallest plant in the samples, minus 20% of the area of the smallest plant;
then, areas of this size or larger were considered as corn plants. In contrast, smaller areas were not
considered as plants.

In the automatic counting of plants 44 DAS, images were taken with three different RGB sensors
(Sequoia_4.9_4608 × 3456, FC6310_8.8_5472 × 3648 and Canon PowerShot S100_5.2_4000 × 3000),
resulting in orthomosaics with a pixel size (ground sample distance—GSD) of 0.53, 0.49 and 0.88
cm, with respect to the image taken by the sensor (Table 2 and Figure 5). Precision in the automatic
counting of plants was over 90% for all three resolutions of the three sensors and different sample
sizes. A precision over 99% was obtained for twelve samples in the automatic counting through NCC
in the case of orthomosaics generated with the FC6310_8.8_5472 × 3648 camera/sensor with a pixel
size of 0.49 cm, with a determination coefficient r2 = 0.90, which has good data fit, root mean square
error RMSE = 6.6 and mean absolute error MAE = 2.2%; with a mean planting density of 5 plants x
m2. According to Table 2, bigger errors and lower precision were present when only 4 samples were
selected, with corresponding greater precision and lower error with a larger sample selection. The
sensor which presented the greatest error in the counting at different sample sizes (8.2, 8.6 and 7.5%)
was the Canon PowerShotS100_5.2_4000 × 3000 with a pixel size (GSD) of 0.88 cm. Another important
aspect in the correlation and selection of four, eight and twelve samples, is the computer processing
time; four samples having a lower processing cost than the processing time needed for twelve samples.
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Figure 4. (a) Binary images of the normalized cross-correlation of eight samples with respect to the
image; (b) image resulting from the mean correlation of eight samples.
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Figure 5. Corn plant count with respect to the sensor and pixel size 44 days after sowing (V5 stage).
(a) correlation in the count for four samples; (b) correlation in the count for eight samples; (c) correlation
in the count for twelve samples.

3.2. Precision in Plant Counting

Table 3 and Figure 6 show the results, which in turn show a lower error (2.2%–11%) in the counting
for different sample sizes through NCC for 23 and 44 DAS (V2, V5 stage). Meanwhile, for larger
plant size, at 67 DAS (V9 stage), the error in counting increases (14.2%–17.6%). The best precision
(95%–98%) and lowest error (4.7%–2.2%) in counting were at 44 DAS when the plants had emerged but
not yet overlapped. The lowest precision (74%) and highest error (25.7%) at 67 DAS were generated
because the plants overlapped, thus making them impossible to separate in the filtering process by
area, based on the sample plant. A better counting could be achieved through a process of separating
the green pixels, increasing the green color filter. Similar errors are mentioned by Gnädinger and
Schmidhalter [22]. In the case of 23 DAS, there were some zones where the plants were still in the
emergence stage, thus in the filtering process by plant area, the plants in the emergence stage showed a
too small pixel area and were therefore discarded in the filtering process.

Table 3. Results between counting through the normalized cross-correlation and manual counting
for the different cameras used during the corn growing season showing precision in the estimation
(Ps), root mean square error (RMSE), correlation coefficient (r), determination coefficient (r2) and mean
absolute error (MAE).

DAS Sensor Samples Ps(%) RMSE r r2 MAE (%)

23
Sequoia_4.9_4608 × 3456

(RGB)

4 91 25.87 0.99 0.98 11.0
8 93 19.17 0.82 0.67 7.2

12 97 13.17 0.88 0.77 4.7

44
DJI FC6310_8.8_5472 × 3648

(RGB)

4 95 1 12.24 0.91 0.82 4.7
8 98 8.41 0.94 0.89 3.0

12 98 6.61 0.95 0.90 2.2

67
CanonPowerShotS100_5.2_4000

× 3000 (RGB)

4 87 43.05 0.08 0.01 14.2
8 74 93.15 0.23 0.05 25.7

12 83 46.62 0.40 0.16 17.6
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Figure 6. Manual count and automatic count through NCC of corn plants at different days after sowing
(DAS). (a) corn plant count at 23 DAS (V2 stage) through NCC; (b) corn plant count at 44 DAS (V5 stage)
through NCC; (c) corn plant count at 67 DAS (V9 stage) through NCC.

4. Discussion

The development of unmanned aerial vehicles technology and its potential application for
agriculture afforded by the spatial precision with which data can be obtained and the temporal
availability of these data—together with precision agriculture—can facilitate differentiated management
of crops, based on the knowledge of the variability extant in agricultural exploitation. Therefore,
studies have been recently realized involving counting of cotton, rapeseed, sunflower, corn, potato and
wheat plants [22–26].

The use of samples or templates in normalized cross-correlation (NCC) in counting corn plants is
a relatively simple method to implement. This method gives the operator the selection of samples for
counting based on the available images of the corn crops. Doing counting with RGB images enables
the method to be implemented without the use of special sensors with special characteristics. This is
an important factor with regard to the cost of the sensor, as sensors in the RGB color space are less
expensive and more accessible. The results obtained in counting through samples and NCC are easy to
interpret, since the obtained results can be visualized and verified quite promptly and exported to a
geographical information system, overlaying it on the RGB image.

Another important aspect of NCC counting is the presence of weeds in the crops, which would
result in a higher count in the number of plants that are present in the crop. Peña et al. [52] developed
an image analysis process based on objects to discriminate corn crops from weeds. Some other methods
use color and shape to identify weeds and separate plants [53,54]. In the established crop, manual and
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chemical control of weeds was undertaken, thus there was no perturbation associated to weeds in the
counting done. In the obtained results, there was only an effect on counting from two overlapping
plants, especially at 67 DAS (V9 stage), when the plants show greater coverage and leaf area. Counting
corn plants through normalized cross-correlation in the first stages of corn crops grants significant
savings in time and money when monitoring, following-up and carrying out the cultural labors of
corn crops. This is true in the small and large scale, as well as in experiments where plant counting is a
required phenotypic characteristic. It is also useful in modeling and estimating crop yield.

5. Conclusions

In the present study, automatic counting of corn plants through comparing templates with
normalized cross-correlation (NCC) was done and validated. This was done in the first growth stages
of the crop using RGB images acquired with an unmanned aerial vehicle. Automatic counting with
template comparison through NCC resulted in a counting precision of over 90% up to 44 days after
sowing (V5 stage), with 99% precision at 44 DAS with 12 templates (samples)/120 m2. With regard
to pixel size (ground sample distance, GSD) and sensors, the precision in the estimation increased as
the sensor resolution increased, resulting in precision over 97% and a mean error of 2.2%. The results
indicate that UAV technology and template comparison through NCC provide good results in corn-
plant counting during the early development stages of the crop, offering a good estimation of planting
density in the crop. This facilitates field data compilation with high precision.
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