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Abstract: The assimilation of LAI measurements, repeatedly taken at sub-field level, into dynamic
crop simulation models could provide valuable information for precision farming applications.
Commonly used updating methods such as the Ensemble Kalman Filter (EnKF) rely on an ensemble of
model runs to update a limited set of state variables every time a new observation becomes available.
This threatens the model’s integrity, as not the entire table of model states is updated. In this study, we
present the Weighted Mean (WM) approach that relies on a model ensemble that runs from simulation
start to simulation end without compromising the consistency and integrity of the state variables. We
measured LAI on 14 winter wheat fields across France, Germany and the Netherlands and assimilated
these observations into the LINTUL5 crop model using the EnKF and WM approaches, where the
ensembles were created using one set of crop component (CC) ensemble generation variables and
one set of soil and crop component (SCC) ensemble generation variables. The model predictions
for total aboveground biomass and grain yield at harvest were evaluated against measurements
collected in the fields. Our findings showed that (a) the performance of the WM approach was
very similar to the EnKF approach when SCC variables were used for the ensemble generation, but
outperformed the EnKF approach when only CC variables were considered, (b) the difference in
site-specific performance largely depended on the choice of the set of ensemble generation variables,
with SCC outperforming CC with regard to both biomass and grain yield, and (c) both EnKF and WM
improved accuracy of biomass and yield estimates over standard model runs or the ensemble mean.
We conclude that the WM data assimilation approach is equally efficient to the improvement of model
accuracy, compared to the updating methods, but it has the advantage that it does not compromise
the integrity and consistency of the state variables.

Keywords: Data assimilation; Dynamic Crop Simulation Model; Leaf Area Index; Ensemble Kalman
Filter; Ensemble Generation; Weighted Mean

1. Introduction

Dynamic crop simulation models are widely used to simulate crop growth, crop yield and
soil-plant-atmosphere interactions. Originally developed for point-based applications without
consideration of spatial variation of weather, soil and management, crop models have been increasingly
used for field-, regional-, national- and global scale purposes [1]. The detailed spatial characteristics of
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those inputs, however, are often difficult to measure and thus generalized or unknown [2]. Even if
available, the resolution of the available data affects the results of the simulation and needs to be taken
into consideration when interpreting the results [3–7].

A successful application of dynamic crop models at sub-field level could provide valuable
information for precision farming applications, such as detailed yield forecasts, timing of pesticide
application and estimation of potential for variable rate application of fertilizers in the field. The
technological advancement of remote sensing (RS) platforms and instruments allows for the repeated
measurements of heterogeneous biophysical plant canopy variables at small scale in the field [8]. The
assimilation of this information into a dynamic crop model could help to account for the changes of
spatial characteristics within a field.

The idea of data assimilation for dynamic crop models is to incorporate one or several observations
of model state variables during the period of crop growth. Based on these measurements, the model
can be modified and used to make predictions about future states of the crop [9]. A range of different
observations, either field measurements or derived from remote sensing, have been assimilated into crop
models: phenology [10,11], soil moisture content [12–17], canopy cover [18,19], and, most-frequently
used, leaf area index (LAI) [10,14–16,18,20–28]. Defined as the total one-sided area of leaf tissue per
unit of ground surface area (provided in m2 m−2), LAI is one of the key parameters in crop growth
analysis due to its influence on light interception, biomass production, plant growth and ultimately on
crop yield, and it is critical to understand the functioning of many crop management practices [29,30].

Three different methods have widely been implemented to assimilate field-measured or RS-derived
state variables into crop models: (a) crop model calibration, (b) forcing and (c) updating [31–33].
The calibration method typically finds optimal agreement between simulated and observed state
variables via the variation of one or several parameter values using optimization algorithms such as the
Differential Evolution Adaptive Metropolis (DREAM) [34], Particle Swarm Optimization (PSO) [35] or
Shuffled Complex Evolution (SCE-UA) [23]. The model is run iteratively to reinitialize or reparametrize
state variables, which requires excessive computing time. Errors from observations are typically
neglected. The forcing method utilizes the observed data directly to replace the state variables or
initial input data of the crop simulation model [36]. However, model and observation uncertainties
are ignored, and erroneous observations could be integrated into the model. The updating method
comprises the continuous updating of model state variables every time a new observation becomes
available (‘sequential data assimilation’). Here, the assumption is that a corrected state variable at time
t will subsequently improve the simulation output at subsequent time steps t+n [31]. The updating
method is computationally inexpensive because the crop simulation model is run only once [32].

A number of algorithms have been tested to update crop model state variables sequentially,
such as the Particle Filter (PF) [14,37–39], the Proper Orthogonal Decomposition-based Ensemble
Four-Dimensional Variational Strategy (POD4DVar) [24,40] and the Ensemble Kalman Filter (EnKF)
[12,13,15,27,28,41–43]. EnKF, among others, uses a Monte Carlo approach to propagate model responses
(state variables) forward in time based on a finite number of model replicates (ensemble) and the
incorporated available observations [42].

The performance of those data assimilation algorithms that rely on a Monte Carlo setup highly
depends on the composition of the set of variables that are perturbed to generate the model ensemble.
We studied publications dealing with the assimilation of LAI observations into dynamic crop models
and found that the majority of studies relied on those variables that influence LAI development directly
in the crop component (CC) of the respective model (see Table A1 in the Appendix A for overview of
variables used in selected publications).

This CC-based approach is possibly appropriate when assimilating LAI information from greater
spatial scales (farm to regional level) into a crop model, as the generated ensemble approximates
differences that arise from variation of cultivar specifics, planting dates and phenology.

Within-field heterogeneity of crop growth and yield are, however, caused by variable site
characteristics, rather than by strong variation of cultivar-specific crop component variables [44].
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A Monte Carlo assimilation approach that incorporates a combination of soil component (e.g., soil
water content) and crop component (SCC) ensemble generation variables might therefore be a
more appropriate solution when assimilating LAI information at field to sub-field level, because
soil-influenced dynamics are incorporated into the generation of the ensemble. To our knowledge, no
published study has thoroughly looked at the impacts of the composition of the ensemble generating
variables on the performance of data assimilation before.

Updating methods using EnKF or PF commonly update state variables every time a new
observation becomes available. Crop models are increasingly implemented modularly to facilitate
development, documentation, maintenance, sharing and exchange [45]. Where model complexity
rises, elaborate understanding is necessary to understand how the update of only one or few state
variables affects other, interdependent variables. Updating sequentially could have unforeseen
consequences, ultimately threatening the model’s integrity and causing an undefined state of the
model (e.g., a threshold value for a state variable is reached and triggers a new module, but the filter
updates the state variable to a value < threshold during the next simulation step).

The underlying idea of this study was to investigate on how to improve the biomass yield
prediction accuracy of crop simulation models at field level via the assimilation of observational field
data, by testing (a) the influence of varying ensemble generation variables, and (b) different assimilation
algorithms. The EnKF was selected as it is the most-widely used, well-documented updating method
in literature. We furthermore developed the ‘Weighted Mean’ (WM) approach that assimilates state
variable observations into the model without changing the model’s internal variables in an effort to
avoid the risks mentioned above. Moreover, this method is computationally inexpensive and takes
both simulation and observation errors into account. The approach relies on a model ensemble that
runs from simulation start to simulation end without sequential updating; the subsequent calculation
of the weighted mean accounts for the observational values.

Therefore, we addressed the following research questions in the paper:

1. Does the WM approach outperform the EnKF approach regarding the estimation of total
aboveground biomass and grain yield at harvest using a dynamic crop model?

2. With detailed soil information available, do the ensemble-based assimilation approaches EnKF
and WM improve accuracy over standard model runs (SR) and the ensemble mean (EM) with
regard to average total aboveground biomass and grain yield per field?

3. Does the performance of the assimilation approaches depend on the composition of the ensemble
generation variables (either crop component-based (CC) or soil and crop component-based (SCC))?

2. Materials and Methods

2.1. Experimental Sites and LAI Measurements

Embedded in the locally practiced crop rotation, winter wheat was grown on commercial fields
in different locations across Germany (4 sites), France (2 sites) and the Netherlands (1 site) during
the growing season (GS) 2016/2017, and on seven sites across Germany during the GS 2017/2018 (see
Table 1 for overview). All sites were located in the warm, temperate, humid climate of Western and
Central Europe with warm summers [46]. The sum of precipitation and average temperature for the
period from September 2016 to August 2017 ranged from 490 mm and 12.9 ◦C in Western France to
647 mm and 10.2 ◦C in Eastern Germany.
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Table 1. List of study sites and locations. BMY: Average Total Aboveground Biomass Yield (t ha−1),
GY: Average Grain Yield (t ha−1), HI: Harvest Index (HI = GY/BMY), DE: Germany, FR: France,
NL: Netherlands.

Country Growing
Season Site Location Cultivar

Grown
Planting

Date BMY GY HI

DE 2016/2017 1
Central
Saxony Benchmark

2016-10-19
16.45 9.12 0.552016-11-30

DE 2016/2017 2
Southern

Northrine-
Westphalia

Jonny 2016-10-25 14.55 5.97 0.41

DE 2016/2017 3 Northern
Hesse

Julius 2016-10-04
19.59 10.23 0.522016-10-28

DE 2016/2017 4 Northern
Bavaria

RGT Reform
2016-10-05

17.37 9.05 0.542016-10-19

FR 2016/2017 5 Northwestern
Charente

Bologna 2016-10-29
9.69 4.34 0.442016-11-15

FR 2016/2017 6 Northern
Oise

Lyrik 2016-10-03
15.79 8.68 0.542016-10-18

NL 2016/2017 7 Eastern
Drenthe

RGT Reform
2016-10-19

15.73 8.76 0.552016-11-03
2016-11-14

DE 2017/2018 8
Northern
Bavaria

RGT Reform
2017-11-03 14.51 7.73 0.53JB Asano

DE 2017/2018 9
RGT Reform

2017-11-16 16.40 8.09 0.49JB Asano

DE 2017/2018 10 Central
Saxony

RGT Reform
2017-09-21 18.89 10.08 0.53JB Asano

DE 2017/2018 11
RGT Reform

2017-10-16 18.82 9.54 0.50JB Asano

DE 2017/2018 12
Central

Thuringia
JB Asano 2017-09-19,

2017-10-19
12.42 5.27 0.42RGT Reform

DE 2017/2018 13 Central
Lower
Saxony

RGT Reform
2017-11-03 14.51 8.08 0.55JB Asano

DE 2017/2018 14
RGT Reform

2017-10-17 17.95 8.89 0.49JB Asano

For the GS 2016/2017, one commercially available cultivar was planted in each location. Sowing
took place on at least two different dates, with site 2 being the only exception (one planting date only).
For the GS 2017/2018, two cultivars were planted per field one the same date (with site 12 being an
exception, where seeds from both cultivars were planted on two dates). Pesticides, growth regulators
and fertilizers were applied based on best practice guidelines. No irrigation was applied.

40 to 60 sampling points were randomly distributed across each field; their location was measured
using a differential GPS. LAI measurements were conducted using the LI-COR LAI-2200C Plant
Canopy Analyzer (LI-COR Inc., Nebraska, U.S.A.) at each sampling point five times during the growing
season, with the earliest measurements starting in April of every year. Growth stages according to
the BBCH scale [47] were scouted five times during the growing season at the same dates as the
LAI measurements.

Around maturity (BBCH 99), aboveground biomass was sampled at each sampling point on an
area of one m2 and split into the grain, stem and leaf components. Each component was oven dried at
105 ◦C until no further weight loss occurred, and weighed subsequently.
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2.2. Soil Samples

Soil samples were collected at each sampling point before planting, and subsequently analyzed
for texture and nutrient content in the laboratory. German sites were sampled up to a depth of 90 cm,
and up to 60 cm on the French and Dutch sites. Some points in site 5 were sampled to a depth of 30 cm
only, due to the presence of solid gypsum in deeper layers. Detailed information on measured soil
texture in the fields can be found in [48].

2.3. Weather Data

Daily weather data (precipitation, minimum and maximum temperature at 2 m height, solar
radiation and average wind speed) were collected from weather stations installed adjacent to the fields
(Adcon Telemetry, Klosterneuburg, Austria).

2.4. Crop Model

We employed the generic LINTUL5 model implemented in the modeling framework SIMPLACE
(Scientific Impact Assessment and Modelling Platform for Advanced Crop and Ecosystem Management,
see website at www.simplace.net, accessed 9 December 2019) to simulate daily leaf area and biomass
development at all sites. LINTUL5 is a crop growth simulation model developed for potential
water-limited, N-limited and NPK-limited conditions [49], and has been used widely for crop response
assessments [50–52].

SIMPLACE is a model framework that allows the solution of a modeling problem to be
modularized into a number of discrete, replaceable and interchangeable software units (so-called
SimComponents) [53]. The solution used for this study was a combination of the SimComponents
LINTUL5, SlimRoots, SlimWater and STMPsim.

Crop growth in LINTUL5 is a function of intercepted radiation, temperature and radiation use
efficiency (RUE). Daily LAI is calculated as the product of the development stage-dependent specific
leaf area (SLA) and the weight of the living green leaves (WLVG).

Soil water balance was simulated using SlimWater, where the daily change in soil water content in
a multiple layered soil profile is based on the volumes of crop water uptake, soil evaporation, surface
run-off and seepage below the root zone [54]. Root growth was simulated using the SimComponent
SlimRoots, where the daily increase in biomass of seminal and lateral roots depends on the input of
assimilated biomass from the shoot (see [53] for more information). We assumed no occurrence of
disease stress and optimal nutrient supply at all times. Thus, water stress was the only growth-inhibiting
factor considered in the model.

Soil hydraulic properties based on the derived texture (see Section 2.2) were calculated using the
database of hydraulic properties of European soils (HYPRES) [55] for each soil profile. The layered
soil profile was extended to 200 cm soil depth, assuming the same in-situ texture present as in the
60–90 cm layer.

SIMPLACE <LINTUL5, SLIM> ran in daily time steps. Daily phenology data was provided by
a xarvioTM (www.xarvio.com, accessed 9 December 2019) in-house developed, commercial growth
stage model that estimated cultivar-specific BBCH stages of winter wheat based on accumulated
thermal temperature, vernalisation and photoperiod (see Table A2 in the Appendix A for estimated
dates of BBCH stages). The growth stage model has been validated with roughly 30,000 records in
Germany. The BBCH stages were transformed into the LINTUL-internal development stages (DVS)
based on a lookup-table, and linked to all SimComponents that required DVS information. For all
winter wheat-specific variables beyond phenology, we used the generic values (i.e., no calibration of
cultivar specifics).

We only considered LAI measurements for assimilation that were conducted before flowering
(i.e., < BBCH 65 = DVS 1) due to two reasons: (1) The default LINTUL5 winter wheat configuration did
not consider the partitioning of assimilates into the leaves after flowering, and (2) the field-measured

www.simplace.net
www.xarvio.com
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LAI was a combination of green and senescent plant material; the simulated LAI however comprised
green, living plant material only.

2.5. Data Assimilation and Ensemble Generation Approaches

We implemented two approaches to assimilate LAI values into SIMPLACE <LINTUL5, SLIM>:
The well-established EnKF and a newly-developed WM method. The main advantage of the new WM
approach is the fact that it performs a ‘virtual assimilation’ of the observations, and therefore does
not change any state variable during the model run. Hence, the relations between the state variables
are maintained consistent throughout the ensemble simulations. To our knowledge, until present, no
other data assimilation updating method has been published that maintains full consistency of all state
variables during the model runs.

EnKF has gained popularity in the scientific community due to its simple conceptual formulation
and ease of implementation, plus its low computational requirements [56]. It combines an ensemble
forecast and the Kalman Filter to calculate the prediction error covariance using the Monte Carlo
method [32]. State variables are updated sequentially, taking the uncertainties of the simulation
results and observations into account [57]. For detailed information about the EnKF, the reader is
kindly referred to other publications [9,56]. We used the implementation of EnKF in R provided by
Stefan Gelissen (http://blogs2.datall-analyse.nl/2016/06/08/rcode_ensemble_kalman_filter/, accessed 9
December 2019). The integration of EnKF into SIMPLACE<LINTUL5, SLIM> was done in R [58] using
the SIMPLACE R wrapper [59]. The workflow is constituted as follows: First, the ensemble members
were randomly generated based on chosen initial values and variance. Secondly, the model runs using
the sets of variables as input were invoked. Simulations ran until the first LAI observation became
available. Each model run was then interrupted, EnKF updated the LAI value accordingly, and the
runs were re-invoked until the next observations became available.

The WM approach assumes that, out of a model ensemble that runs from season start to end without
any assimilation (Figure 1a), one or a few ensemble members’ simulated LAI values approximate the
observed LAI values at each day an observation becomes available (not necessarily the same one at
different dates).

Thus, in the subsequent daily weighted mean calculation for the ensemble, the simulated LAI
values of the ensemble members closer to the observed value are given a greater weight (Figure 1b–d).
Contrary to EnKF or other existing updating methods, no state variables are updated during the
simulation runs.

To predict the state X̂(t) of the system, we used the weighted mean of the ensemble Xi(t):

X̂(t) =
∑N

i=1 wi(t)Xi(t)∑N
i=1 wi(t)

(1)

where each weight w of ensemble member i at day t is calculated from the likelihood P that the
observation O at time tk approximates the simulated value

wi(t) = P(O(tk)
∣∣∣Xi(tk)) for tk ≤ t < tk+1 (2)

We assumed that the observation errors on day tk were normally distributed, where O(tk) is the
mean and σk the standard deviation of the distribution. Thus, we applied the following equation for
the calculation of the likelihood P:

P(O(tk)
∣∣∣Xi(tk)) =

1√
2πσ2

k

exp

− (h((tk)) −O(tk))2

σ2
k

 (3)

where h mapped the states to the observational variables.

http://blogs2.datall-analyse.nl/2016/06/08/rcode_ensemble_kalman_filter/
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The weights calculated for the first observation day (t1) were propagated until the next observation
(t2) becomes available, and they were also used to calculate the weighted mean of other state variables
(aboveground biomass, grain yield). Weights were re-calculated every time an observation became
available (i.e., no calculation of running mean, and each observation was used independently from the
previous ones). If the value of the LAI observation was way outside the range of simulated values within
the ensemble (i.e., higher or lower than the value of the most extreme ensemble member), the entire
weights were given to the closest ensemble member. The WM approach can account for reasonable
errors (e.g., standard measurement errors). Large errors (e.g., from mishandling the measurement
instrument) cannot be accounted for and will eventually results in a low prediction performance.

Figure 1. Example of Weighted Mean (WM) approach demonstrating the new ‘virtual data assimilation’
methodology. (a) An ensemble is created (orange line shows calculated mean of all ensemble members),
(b) First LAI observation becomes available (red cross) and the contribution of each ensemble member
to the ensemble mean is re-calculated, based on weights that depend on the proximity of the simulated
value of the state variable to the observation (Equations (2) and (3)). The weights are propagated until
(c) the next LAI observation becomes available, and a re-calculation of weights is triggered. (d) A third
observation becomes available. No model ensemble member status variable is updated at any point
in time.

Both approaches (EnKF and WM) relied on the generation of a model ensemble. We tested two
sets of ensemble generating variables, consisting of three variables each, in combination with the
assimilation approaches mentioned above: the crop component (CC) set and the combinational set of
soil and crop components (SCC).

The CC set was created by varying the three variables ScaleFactorSLA (cScaleFactorSLA),
ScaleFactorRUE and the maximal relative increase in LAI (RGRLAI). LINTUL5 accounts for
DVS-dependent specific leaf area, which was shown to be a realistic approach [60]. ScaleFactorSLA
scales uniformly all predefined DVS-dependent SLA values and ScaleFactorRUE scales all predefined
DVS-dependent RUE values accordingly. RGRLAI describes the maximal relative increase in LAI
(m2 m−2 d−1) during the juvenile stage of the plant, when the leaf growth is not limited by the available
assimilates [49]. This variable is only active during the early growth period (DVS < 0.2 = BBCH < 21)
and LAI values < 0.75. We selected those variables because a preceding sensitivity analysis showed
high impact on LAI dynamics and biomass accumulation in the model (data not shown). Scaling the
SLA automatically scaled the initial LAI.
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The SCC set comprised the combination of three parameters that scaled (1) the soil water content
at simulation start (SoilWaterInit), (2) the maximal rooting depth that could be reached by the plants
(MaximalRootDepth [in meters]), and (3) a scaling factor for the DVS-dependent specific leaf area
(ScaleFactorSLA). By perturbing the first two parameters at initialization, the model induced water
stress (by reducing the transpiration reduction factor (TRANRF)) at varying points in time during the
growing season, thereby expanding the range of LAI values at any given point in time in the ensemble.
The parameters SoilWaterInit and MaximalRootDepth were not altered after initialization for reasons
of consistency.

The initial soil water content SoilWaterInit in soil layer k was calculated as

SoilWaterInitk = ScalingFactor×VolumetricWaterContent33to1500k + VolumetricWaterContent1500k, (4)

where VolumetricWaterContent33to1500 describes the volumetric soil water content from field capacity
to wilting point (i.e., plant available water), and VolumetricWaterContent1500 the volumetric soil water
content at permanent wilting point. Both values were returned by the pedotransfer function (see
Section 2.4), based on measured soil texture. We incorporated the ScalingFactorSLA as to cover
influences of possible hidden factors (such as nutrient stress). For WM, we chose a uniform distribution
of the variables, with defined minimum and maximum values (see Table 2 for values). EnKF creates an
ensemble using a randomly generated Gaussian distribution of the parameters (see Table 2 for initial
mean values of distribution). For the SCC set, simulations started the day preceding sowing, to achieve
a maximum effect of the initial soil conditions on plant development (i.e., no spin up time). For both
approaches, the LAI measurement error was assumed to be 0.3.

Table 2. Initial mean values for variables that were used by the Ensemble Kalman Filter (EnKF) to
create a Gaussian distribution for ensemble generation, and range of values used by the Weighted
Mean (WM) to create a uniform distribution for the ensemble generation. Two sets of variables were
used: the crop component (CC) set or the combinational set of soil and crop components (SCC).

Set Variable EnKF WM

CC
ScaleFactorSLA 1 0.75–1.25
ScaleFactorRUE 1 0.75–1.25

RGRLAI 0.00817 0.005–0.01134

SCC
SoilWaterInit 0.65 0.3–1

MaximalRootDepth 1.25 0.5–2
ScaleFactorSLA 1.25 0.75–1.25

2.6. Evaluation of Model Performance

SIMPLACE<LINTUL5, SLIM> ran in daily time steps for every sampling point in every field that
was part of this study, considering both weather and soil texture data as input. The LAI measurements
were assimilated into the model using the approaches EnKF and WM in combination with the two sets
of ensemble generation variables (CC and SCC). To evaluate the potential benefit of data assimilation,
we also included the EM (i.e., no data assimilation). The EM was calculated by averaging aboveground
biomass and grain yield at harvest day from all ensemble member simulations, where the ensemble was
generated using the same method as for the WM approach and the model’s standard runs (SR) (i.e., no
data assimilation, no ensemble creation, simulation run with standard configuration) in the analysis.

The evaluation was based on the comparison of measured and simulated total aboveground
biomass and grain yield at harvest day. We calculated the three metrics Root Mean Squared Error
(RMSE), Mean Absolute Percentage Error (MAPE) and the Bias. RMSE indicated the magnitude
of error in the unit of measurement with symmetry provided; MAPE showed the average absolute
percent difference between measured and predicted values, the Bias computed the amount by which
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the predicted values were greater (positive Bias value) or smaller (negative Bias value) than the
measured ones.

3. Results

3.1. Results of Root Mean Squared Error (RMSE) Analysis

Table 3 presents the results for the RMSE analysis of simulated vs. observed biomass yields per
site. In six sites, the highest RMSE was produced by the standard run (sites 2, 4, 6, 7, 12, 13, 14), in five
sites by either of the two CC assimilation approaches (sites 1, 8, 9, 10, 11) and in one site by the EM
SCC approach only (site 5). In five sites, the lowest RMSE was produced by the WM SCC approach
(sites 4, 5, 6, 8, 9) and by the EnKF SCC approach, respectively (sites 2, 10, 11, 12, 14), in two sites by
EM SCC (sites 1, 3) and WM CC approaches respectively (sites 7, 13).

Table 3. RMSE results for total aboveground biomass. SR: Standard Run, EnKF: Ensemble Kalman
Filter, WM: Weighted Mean, EM: Ensemble Mean, CC: Crop Component Set, SCC: Soil and Crop
Component Set. All values in t ha−1. DE: Germany, FR: France, NL: Netherlands.

Country Site SR EM CC EnKF CC WM CC EM SCC EnKF SCC WM SCC

DE 1 4.89 4.48 5.79 3.56 1.76 2.30 2.13
DE 2 7.35 6.61 5.35 5.18 1.96 1.41 2.12
DE 3 2.99 2.61 3.88 4.83 2.52 2.75 2.73
DE 4 6.68 6.29 5.48 3.43 4.19 3.39 3.35
FR 5 4.09 4.10 3.18 3.43 4.11 3.74 2.85
FR 6 7.15 6.36 5.91 5.10 3.14 3.05 2.42
NL 7 5.80 5.43 4.20 2.12 3.33 3.35 3.24
DE 8 5.30 5.15 5.47 2.74 3.74 3.10 2.72
DE 9 2.85 2.65 3.77 2.02 1.30 1.29 0.89
DE 10 4.18 3.83 2.32 4.73 2.13 1.97 2.29
DE 11 3.96 3.26 2.65 4.89 1.43 1.17 1.62
DE 12 7.35 6.85 6.12 4.25 2.21 1.54 3.07
DE 13 6.86 6.67 5.48 2.01 3.65 2.12 3.26
DE 14 5.02 4.36 2.80 2.84 1.65 1.26 1.71

Mean 5.32 4.90 4.46 3.65 2.65 2.32 2.46
SD 1.58 1.50 1.34 1.18 1.01 0.90 0.71

Minimum RMSE values among all sites ranged between 0.89 t ha−1 (WM SSC, Site 9) and
3.35 t ha−1 (WM SSC, Site 4), maximum values between 3.77 t ha−1 (Site 9, EnKF CC) and 7.35 t ha−1

(Site 2, Standard Run).
The lowest average RMSE values of all sites were produced by EnKF SCC (2.32 t ha−1), WM SCC

(2.46 t ha−1) and EM SCC (2.65 t ha−1). These approaches also showed the lowest standard deviation
(0.90 t ha−1, 0.71 t ha−1 and 1.01 t ha−1 respectively) (Figure 2). No particular approach showed the
best performance across all sites.
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Figure 2. Mean and standard deviation of RMSE of total aboveground biomass yields (BMY—solid
line) and grain yields (GY—dashed line) of 14 sites per approach. SR: Standard Run, EnKF: Ensemble
Kalman Filter, WM: Weighted Mean, EM: Ensemble Mean, CC: Crop Component Set, SCC: Soil and
Crop Component Set. All values in t ha−1.

Table 4 lists the per-site RMSE results of simulated vs. measured grain yields at harvest. In 10
sites, the highest RMSE was produced by SR (Sites 1, 2, 4, 6, 7, 8, 9, 12, 13, 14), in two sites by WM CC
(Sites 3 and 11), and in two sites by EnKF SCC and EM SCC, respectively (Sites 10 and 5). The lowest
RMSE was produced in 10 sites by either EnKF SCC or EM SCC. The lowest average RMSE of the 14
sites were produced by EM SCC (1.45 t ha−1), EnKF SCC (1.62 t ha−1) and WM SCC (1.70 t ha−1), with
standard deviations of 0.69 t ha−1, 0.69 t ha−1 and 0.68 t ha−1 respectively (Figure 2).

Table 4. RMSE results for grain yields. SR: Standard Run, EnKF: Ensemble Kalman Filter, WM:
Weighted Mean, EM: Ensemble Mean, CC: Crop Component Set, SCC: Soil and Crop Component Set.
All values in t ha−1. DE: Germany, FR: France, NL: Netherlands.

Country Site SR EM CC EnKF CC WM CC EM SCC EnKF SCC WM SCC

DE 1 2.77 2.56 2.72 2.11 0.88 0.88 1.58
DE 2 5.84 5.58 5.06 4.87 1.18 1.15 1.43
DE 3 2.86 2.63 2.89 3.73 2.45 2.28 2.54
DE 4 3.84 3.68 3.30 2.39 2.15 1.99 2.10
FR 5 1.66 1.73 1.51 1.80 2.18 2.06 1.68
FR 6 5.00 4.61 4.39 3.98 1.99 1.64 1.91
NL 7 3.10 2.82 2.14 1.37 2.26 2.41 2.55
DE 8 2.92 2.79 2.60 1.01 1.36 0.58 1.24
DE 9 2.32 2.15 2.13 1.31 0.80 0.66 0.71
DE 10 1.56 1.44 1.31 2.04 1.81 2.97 1.90
DE 11 2.51 2.28 2.15 3.00 0.51 1.25 0.51
DE 12 3.66 3.48 3.48 2.47 1.52 1.83 2.91
DE 13 3.05 2.94 2.42 0.96 0.52 1.42 1.46
DE 14 3.14 2.98 2.46 1.67 0.68 1.60 1.30

Mean 3.16 2.98 2.75 2.34 1.45 1.62 1.70
SD 1.16 1.09 1.03 1.17 0.69 0.69 0.68

3.2. Results of Mean Absolute Percentage Error (MAPE) Analysis

Table 5 lists the mean absolute percentage error (MAPE) results of simulated vs. measured total
aboveground biomass per site. The standard run produced the highest MAPE in seven out of the
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fourteen sites (2, 4, 6, 7, 8, 13, 14), all of the CC assimilation approaches in five sites (1, 3, 9, 11, 12), and
the EM CC approach in one site (5). The results for site 10 show an equal performance of the standard
run and the WM CC approach. The lowest MAPE was produced by the EnKF SCC approach in five
sites (sites 2, 10, 11, 12, 14) and in two sites by the WM SCC approach (sites 5, 6) and by the WM CC
approach (sites 7, 13) respectively. In all other sites, several approaches performed equally well (sites 1,
3, 4, 8, 9).

Table 5. Mean absolute percentage (MAPE in %) results for total aboveground biomass. SR: Standard
Run, EnKF: Ensemble Kalman Filter, WM: Weighted Mean, EM: Ensemble Mean, CC: Crop Component
Set, SCC: Soil and Crop Component Set. DE: Germany, FR: France, NL: Netherlands.

Country Site SR EM CC EnKF CC WM CC EM SCC EnKF SCC WM SCC

DE 1 29 26 35 18 10 13 10
DE 2 51 46 36 32 12 9 11
DE 3 14 12 19 21 12 13 13
DE 4 39 36 31 17 22 17 17
FR 5 38 39 30 29 33 30 22
FR 6 45 40 36 29 13 14 12
NL 7 36 33 24 11 16 15 17
DE 8 37 36 36 16 25 18 16
DE 9 17 16 21 10 7 7 4
DE 10 21 19 11 21 10 8 10
DE 11 21 17 12 24 6 5 7
DE 12 60 56 49 28 15 10 21
DE 13 48 46 37 10 25 12 21
DE 14 28 24 14 14 8 6 8

Mean 35 32 28 20 15 13 14
SD 14 13 11 8 8 6 6

The lowest average MAPE across all sites was produced by the EnKF SCC (13%), WM SCC (14%)
and EM SCC (15%) approaches with the lowest standard deviations (6%, 6% and 8%), the highest
by the EM CC (32% with a standard deviation of 13%) and the standard run (35% with a standard
deviation of 14%) (Figure 3).

Figure 3. Mean and standard deviation of total aboveground biomass yields (BMY—solid line) and
grain yields (GY—dashed line) mean absolute percentage error (MAPE in %) of 14 sites per approach.
SR: Standard Run, EnKF: Ensemble Kalman Filter, WM: Weighted Mean, EM: Ensemble Mean, CC:
Crop Component Set, SCC: Soil and Crop Component Set.
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The MAPE results for observed vs. simulated grain yield are listed in Table 6. The three SCC
approaches exhibited the lowest MAPE in 11 out of the 14 sites, which also produced the lowest mean
values (EM SCC: 16%, EnKF SCC: 18%, WM SSC: 19%, with standard deviations of 10%, 9% and 12%
respectively). On average, MAPE values for grain yields were higher than for biomass yields (Figure 3).

Table 6. MAPE results for grain yields (in %, per site). EnKF: Ensemble Kalman Filter, WM: Weighted
Mean, EM: Ensemble Mean, CC: Crop Component Set, SCC: Soil and Crop Component Set. DE:
Germany, FR: France, NL: Netherlands.

Country Site SR EM CC EnKF CC WM CC EM SCC EnKF SCC WM SCC

DE 1 30 28 29 21 8 8 13
DE 2 100 95 86 80 18 17 20
DE 3 27 25 27 32 23 21 24
DE 4 42 40 35 24 22 21 21
FR 5 32 35 32 37 42 39 33
FR 6 59 54 51 43 17 13 16
NL 7 34 30 21 10 20 22 25
DE 8 38 36 33 10 17 6 15
DE 9 29 26 26 14 9 7 8
DE 10 14 12 11 17 15 26 15
DE 11 26 24 22 29 4 12 4
DE 12 70 66 67 43 24 30 50
DE 13 38 36 29 9 5 16 15
DE 14 35 33 27 15 5 16 11

Mean 41 39 35 27 16 18 19
SD 22 21 20 19 10 9 12

3.3. Results of Bias Analysis

The calculated bias shows that standard run, EM CC and EnKF CC overestimated the measured
biomass in all sites, all other approaches showed a mix of both under- and overestimated values
(Table 7). No approach exhibited the best performance across all sites. The EnKF SCC and WM SCC
approaches showed the lowest mean bias (0.34 t ha−1 and 0.58 t ha−1) with standard deviations of 1.53
t ha−1 and 1.57 t ha−1, respectively (Figure 4).

Table 7. Bias results for total aboveground biomass per site. SR: Standard Run, EnKF: Ensemble
Kalman Filter, WM: Weighted Mean, EM: Ensemble Mean, CC: Crop Component Set, SCC: Soil and
Crop Component Set. All values in t ha−1. Positive values indicate overestimation of the model,
negative values indicate underestimation. DE: Germany, FR: France, NL: Netherlands.

Country Site SR EM CC EnKF CC WM CC EM SCC EnKF SCC WM SCC

DE 1 4.57 4.12 5.58 1.96 0.75 1.76 −0.40
DE 2 7.26 6.51 5.15 4.44 1.61 0.87 0.96
DE 3 2.56 2.09 3.51 3.40 2.02 2.26 2.16
DE 4 5.90 5.42 4.68 0.87 2.97 2.14 2.46
FR 5 2.11 2.29 1.62 1.38 −2.54 −2.16 −0.95
FR 6 6.05 5.17 4.71 3.98 −0.97 0.24 −0.33
NL 7 4.88 4.40 3.01 −1.02 −1.91 −2.28 −2.71
DE 8 5.05 4.87 4.82 −0.37 3.38 2.13 2.04
DE 9 2.77 2.54 3.36 −0.07 1.10 0.0095 0.25
DE 10 3.83 3.47 1.34 2.24 1.25 −0.86 1.15
DE 11 3.84 3.10 2.19 4.18 1.00 −0.43 1.23
DE 12 7.19 6.69 5.86 3.28 1.44 0.20 −1.19
DE 13 6.81 6.60 5.24 0.63 3.55 1.67 2.76
DE 14 4.95 4.26 2.53 0.35 1.42 −0.67 0.79

Mean 4.84 4.39 3.83 1.80 1.07 0.34 0.58
SD 1.68 1.57 1.51 1.82 1.81 1.53 1.57
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Figure 4. Mean and standard deviation of total aboveground biomass yield (BMY—solid line) and
grain yield (GY—dashed line) bias of 14 sites per approach. SR: Standard Run, EnKF: Ensemble Kalman
Filter, WM: Weighted Mean, EM: Ensemble Mean, CC: Crop Component Set, SCC: Soil and Crop
Component Set. All values in t ha−1. Positive values indicate overestimation of the model, negative
values indicate underestimation.

Table 8 lists the bias results for simulated vs. observed grain yield. Both the EM CC and EnKF CC
approaches overestimated measured grain yield in all 14 sites, whereas the SR and WM CC approaches
overestimated in all sites but one (Sites 5 and 7, respectively). The three SCC approaches all showed
a mixture of under- and overestimation, where results did not align (i.e., not always either over- or
underestimation).

Table 8. Bias results for grain yields per site. SR: Standard Run, EnKF: Ensemble Kalman Filter, WM:
Weighted Mean, EM: Ensemble Mean, CC: Crop Component Set, SCC: Soil and Crop Component Set.
All values in t ha−1. Positive values indicate overestimation of the model, negative values indicate
underestimation. DE: Germany, FR: France, NL: Netherlands.

Country Site SR EM CC EnKF CC WM CC EM SCC EnKF SCC WM SCC

DE 1 2.65 2.41 2.58 1.33 −0.12 0.16 −0.76
DE 2 5.77 5.51 4.97 4.63 0.95 0.91 0.57
DE 3 2.69 2.44 2.67 3.13 2.23 1.99 2.29
DE 4 3.19 2.99 2.62 0.98 0.35 −0.06 0.55
FR 5 −0.09 0.24 0.61 0.19 −1.75 −1.62 −1.25
FR 6 4.49 4.07 3.88 3.35 −1.24 −0.41 −0.96
NL 7 2.57 2.22 1.36 −0.25 −1.78 −2.03 −2.24
DE 8 2.91 2.77 2.52 0.33 1.33 0.16 1.09
DE 9 2.29 2.12 2.10 0.94 0.72 −0.46 0.57
DE 10 1.09 0.94 0.50 0.43 −1.39 −2.74 −1.34
DE 11 2.48 2.24 2.05 2.76 −0.11 −1.19 0.03
DE 12 3.55 3.36 3.39 2.16 −1.10 −1.64 −2.49
DE 13 3.00 2.88 2.26 0.31 −0.02 −1.25 0.23
DE 14 3.08 2.90 2.34 1.12 −0.11 −1.41 −0.19

Mean 2.83 2.65 2.42 1.53 −0.14 −0.68 −0.27
SD 1.36 1.25 1.17 1.45 1.21 1.26 1.31
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On average, the SCC approaches tended to underestimate measured grain yield, contrasting the
other approaches that showed overestimation. Standard deviations were similar among all approaches
(Figure 4).

4. Discussion

4.1. LAI Assimilation

The results demonstrated that, on average across all sites, SR showed the worst performance
with respect to RMSE, MAPE and Bias (Figures 2–4). Looking at single results, however, revealed
that SR did not always deliver the poorest results. This suggests that the calculation of the EM or
the assimilation of LAI observations into the model did not necessarily guarantee a better prediction
performance for both total aboveground biomass and grain yield at the end of the growing season.

We relied on a non-destructive, indirect method to determine LAI in the field. The LAI-2200C
measures the fraction of transmitted radiation that passes through the plant canopy, and infers LAI
by making use of the radiative transfer theory. Indirect methods tend to underestimate LAI when
compared to direct measurements [61]. Furthermore, measurements can be prone to errors if the
sampling strategy is not followed correctly [61]. The in-field LAI measurements that we used for
assimilation were therefore subject to uncertainty. Given this, we rejected, however, to exclude
measurements from assimilation because the pattern of crop canopy heterogeneity remained largely
unknown. An outlier analysis could have therefore removed values that were measured in areas of
extremely dense or extremely thin canopies.

The assimilation of wrongful LAI measurements could be a reason why data assimilation did
not always outperform SR (we included a figure showing measured LAI values vs. EnKF-assimilated
and Weighted Mean LAI values, respectively, in the Appendix A—see Figure A1). Relying on either
EM or data assimilation techniques improved predictions in most cases and averaged over all sites.
The lowest mean RMSE value for biomass was 2.32 t ha−1 with a MAPE of 13% using the EnKF SCC
approach, and 1.45 t ha−1 with a MAPE of 16% for grain yield using the EM SCC approach. The
mean RMSE for SR biomass prediction was 5.32 t ha−1, with a MAPE of 35%, and 3.16 t ha−1 with a
MAPE of 41% for grain yield prediction. The aboveground biomass and grain yield measurements
at harvest comprised one measurement per sampling point only (i.e., no repetitive measurements).
When interpreting the simulated vs. observed results, the uncertainty in the measured values should
be considered.

Differences in phenology were the only cultivar-specific properties we considered in this study.
The model was not calibrated for other variables (e.g., SLA, RUE) that could have influenced
results positively.

Gilardelli et al. [21] found that the assimilation of remotely sensed LAI into rice model parameters
using automatic recalibration increased the accuracy of the simulation results with a mean absolute
error (MAE) of 0.66 t ha−1 and a relative root mean square error (rRMSE) of 13.8% contrary to 0.82 t ha−1

and 15.7% without LAI assimilation. However, they concluded that model performance improved only
to a moderate extent since the pre-calibrated parameter sets accurately described the characteristics
of the cultivars considered. Using the remotely sensed information, spatial variability of yield was
well-reproduced. Silvestro et al. [18] reported the lowest rRMSE value to be 18% at field level for
winter wheat using EnKF in combination with the SAFY model.
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4.2. Biomass Yield vs. Grain Yield Simulation Performance

Our results also showed that the model simulation performance was better for biomass yield
than for grain yield. This was probably because (a) no data was assimilated after flowering, possibly
correcting for environmental influences not considered in the input data or in the model, (b) water
stress was not reproduced well in the model (water stress was present especially in sites 2, 5 and
12 as indicated by low HI values, see Table 1), (c) the amount of biomass produced before anthesis
that was relocated to grains after anthesis was not accurately defined (we set the maximum value to
15%), and d) the timing of flowering was not accurately predicted by the growth stage model, thereby
influencing the timespan of the grain filling period negatively. Differences between observed and
predicted flowering date range from 0 to ±14 days, with an average of 1 day difference (data not
shown).

4.3. Comparison of Ensemble Generation Variables Sets

Looking at the single results revealed that, among all sites, no performance of a distinct approach
stood out (i.e., no approach produced the lowest RMSE and MAPE values and bias around 0 consistently
in all sites, see Tables 3–8). The mean values of the metrics, however, showed that the SCC approaches
outperformed the CC approaches for both total aboveground biomass and grain yield predictions
substantially. Lower values of standard deviation signified more robust approaches that seemed more
representative of the actual processes in the field. For total aboveground biomass, the comparison of the
SCC approaches showed that the differences between the best-performing approaches EnKF and WM
were marginal. Concerning the CC approaches, the WM approach outperformed the EnKF algorithm.

The number of studies that relied on Monte Carlo approaches to assimilate LAI measurements
into crop models at field or sub-field level is limited. Silvestro et al. [18] relied on a set of eight variables
to be updated, all of them part of the model’s crop component (see Table A1 in the Appendix A). We
encourage future research to also focus on those variables that represent soil conditions and processes
in the model.

With respect to grain yield, the EM SCC approach showed the best performance among the SCC
approaches, and the WM CC approach among the CC approaches (with respect to average RMSE,
MAPE and bias, see Figures 2–4). This indicated that, when relying on SCC, the assimilation of LAI
did not improve the model’s performance with regard to grain yield, in contrast to the CC approach.
The reason was probably because no values were assimilated after flowering.

We relied on measured soil texture, weather and LAI data for all sampling points in this study.
Our conclusions were therefore drawn on the best-case scenario of data availability. We suggest future
analysis to focus on data sources with greater level of uncertainty (e.g., soil data from large-scale
databases, LAI derived from satellite imagery) to study differences in the performance of the approaches.
Focus could also be put on the assimilation of green and/or brown LAI (i.e., living and dead leaf
material) to correct for unknown influences after flowering.
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5. Conclusions

The objectives of this study were to investigate if (a) the Weighted Mean (WM) approach
outperforms the Ensemble Kalman Filter (EnKF) approach regarding the estimation of total
aboveground biomass and grain yield at harvest using a dynamic crop simulation model, (b) the
ensemble-based approaches EnKF and WM improve accuracy over standard model runs (SR) and the
ensemble mean (EM) with regard to average total aboveground biomass and grain yield per field with
detailed soil information available, and (c) the performance of the assimilation approaches depend on
the composition of the ensemble generation variables (we tested two sets: crop component-based (CC)
and soil and crop component-based (SCC).

We conclude that the assimilation approaches EnKF and WM improved accuracy over standard
model runs and EM for average total aboveground biomass and grain yield per-field predictions. The
performance, however, differed between sites.

Furthermore, the performance of the WM approach was very similar to the EnKF approach when
soil and crop related variables were used for the ensemble generation. When crop related variables
were considered only, the WM approach outperformed the EnKF approach. Taking into account that
the EnKF approach might violate the integrity of the model runs because only a small part of the
states is updated, the WM approach should be preferred when assimilating observational data into
crop models.

We furthermore conclude that the difference in site-specific performance largely depended on the
choice of the ensemble generation variables set. The combination of soil and crop component-based
variables outperformed the crop component set with regard to both biomass and grain yield. For
total aboveground biomass, the difference between the assimilation approaches EnKF and WM was
marginal when relying on the SCC set, the difference between the assimilation approaches was more
pronounced for the CC set, with WM showing the best performance. For grain yield, the assimilation
of data using the SCC set did not offer any benefits, in contrast to the CC set.

We are confident that our tested approaches offer great benefit for the scientific crop modeling
and precision agriculture community.
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Appendix A

Table A1. List of LAI data assimilation studies with ensemble generation variables employed and
respective scale considered. CM = Crop Model, F = Field, FA = Farm, D = District, R = Region.

Study Crop–CM Variables Used for Ensemble Generation Scale

[18] Wheat–SAFY

1. Ratio of incoming PAR to global radiation
2. Temperature sum threshold to start senescence
3. Optimum temperature for plant development
4. Day of year of emergence
5. Effective light-use efficiency
6. Partition to leaf function parameter
7. Partition coefficient to grain
8. Temperature sum to complete senescence

F, D

[15] Maize–DSSAT-CSM

1. Residual water content
2. Field capacity
3. Saturated water content
4. Thermal time for seedling emergence
5. Thermal time from silking to physiological maturity
6. Maximum number of kernel per plant
7. Phyllochron interval
8. Leaf weight at emergence
9. Plant leaf area at emergence

D

[28] Wheat–CERES
1. Leaf area index
2. Soil moisture at 0-20 cm

Note: Update of plant leaf area and plant leaf weight

R

[57] Wheat–WheatGrow 1. Leaf area index FA

[23] Wheat–WOFOST
1. Initial total crop dry weight
2. Life span of leaves growing at 35 ◦C R

Table A2. Dates of winter wheat growth stages in the study sites as estimated by the xarvioTM growth
stage model. The following growth stages are provided: beginning of tillering (BBCH 21 = DVS 0.2),
beginning of stem elongation (BBCH 30 = DVS 0.5), flowering (BBCH 65 = DVS 1.0), fully ripe (BBCH
89 = DVS 2.0). Dates provided as DD/MM/YYYY.

Site Beginning of Tillering Beginning of Stem Elongation Flowering Fully Ripe

1 23/02/2017 12/04/2017 08/06/2017 24/07/2017
2 03/02/2017 07/04/2017 03/06/2017 22/07/2017
3 05/02/2017 16/04/2017 16/06/2017 07/08/2017
4 14/02/2017 12/04/2017 11/06/2017 29/07/2017
5 29/12/2017 21/03/2017 23/05/2017 08/07/2017
6 28/11/2016 26/03/2017 30/05/2017 20/07/2017
7 02/02/2017 10/04/2017 10/06/2017 02/08/2017
8 09/03/2018 23/04/2018 07/06/2018 25/07/2018
9 26/03/2018 26/04/2018 09/06/2018 26/07/2018

10 30/10/2017 04/04/2018 25/05/2018 09/07/2018
11 25/12/2017 14/04/2018 30/05/2018 16/07/2018
12 03/11/2017 10/04/2018 31/05/2018 19/07/2018
13 16/02/2018 23/04/2018 06/06/2018 26/07/2018
14 31/12/2017 17/04/2018 02/06/2018 23/07/2018
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Figure A1. 1:1 plots showing measured LAI vs. simulated LAI for the EnKF-CC (a), WM-CC (b),
EnKF-SCC (c) and WM-SCC (d) approaches for seven sites in 2016/2017 and seven sites in 2017/2018.
The dashed line shows the 1:1 line. Color shown according to the estimated development stage of the
plants at the time of the LAI measurement. DVS 0.01: Emergence, 0.45: beginning of stem elongation, 1:
full flowering. EnKF: Ensemble Kalman Filter, WM: Weighted Mean, CC: Crop Component Set, SCC:
Soil and Crop Component Set.
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