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Abstract: Mixed crop–livestock long-term experiments (LTE) are critical to increase the understanding
of sustainability in complex agroecosystems. One example is the ‘Palo a Pique’ LTE which has been
running for 25 years in Uruguay (from 1995 to present), evaluating four pasture–crop rotations under
livestock grazing with no-till technology in soils with severe limitations. The results demonstrate that
cropping systems reduced soil organic carbon (SOC) compared with permanent pastures, and that
perennial pastures rotating with crops were critical to mitigate SOC losses. Data from the ‘Palo a
Pique’ LTE has contributed to the establishment of new national policies to secure the sustainability of
agricultural-based systems. Although the original purpose of the LTE was oriented to crops and soils,
a demand for sustainable livestock intensification has gathered momentum over recent years. As a
result, the current approach of the ‘Palo a Pique’ LTE matches each pasture–crop rotation with the
most suitable livestock strategy with the common goal of producing 400 kg liveweight/ha per year.
General approaches to the pursuit of sustainable livestock intensification include shortening the cycle
of production, diversifying animal categories, increasing liveweight gain and final animal liveweight,
and strategic livestock supplementation. Prediction of trade-offs between environmental, economic,
and production indicators can be addressed through monitoring and modeling, enabling the timely
anticipation of adverse sustainability issues on commercial farms. The ‘Palo a Pique’ LTE serves as
a framework to address contemporary and future questions dealing with the role of ruminants on
climate change, competition for land, nutrient dynamics, and food security.

Keywords: crop–livestock; pasture–crop rotations; sustainability; sustainable intensification;
long-term experiments

1. Introduction

Long-term experiments are critical to increase our understanding of the sustainability of
agroecosystems [1], where sustainability must be tackled across its three core dimensions, i.e., economic,
environmental and societal [2]. The larger spatial and longer temporal scales of a long-term experiment
(LTE) capture complex processes that might confound or be overridden in small-scale experiments
with reductionist frameworks [3]. For instance, LTEs are essential in determining soil-related factors
affecting the sustainability of production systems and in estimating key performance indicators (KPIs)
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for the characterization and prediction of outcomes [4,5]. This is critical for agriculture and livestock
systems gripped in a debate around their environmental impact and the competition between livestock
feed and human food for arable land use (feed vs. food) [6].

Despite acknowledging the value of long-term research to answer questions related to
sustainability [7], integrated crop–livestock LTE research presents several challenges. In a review article,
Tanaka et al. [8] discuss the requirement of many hectares and labor resources for the experiments,
the need for expensive budgets secured over time, the requirement of a multidisciplinary team and
the short-term requirement of producing scientific publications. Further, some have lacked sufficient
replication, entailing questionable statistical analyses. On the other hand, LTEs create a realistic
comparison with commercial systems, at credible (spatial and temporal) scales, and, ideally, with active
participation from farmers [9].

Crop–livestock systems in Uruguay include 4905 farms corresponding to 2,519,000 ha [10].
Approximately, this represents 10% of the total livestock producers in Uruguay (excluding dairy
operations) and 17% of the total land used by livestock [10]. The expansion of mixed crop–livestock
systems has occurred despite land tenure limitations, where crop and livestock farmers engage with
each other via a short-term leasing contract in a ‘symbiotic’ relationship [11]. Low productivity of
natural grasslands, increased crop yield after a period of seeded pastures and reduction of soil erosion
were the main reasons for the adoption of pasture–crop rotation under no-till technology in Uruguay
in the second half of the 20th century [12]. Derpsch et al. [13] stated that Uruguay is one of the few
countries that have engaged in permanent no-tillage practices. Thus, Terra and García Préchac [14]
posed the following research question: “Can no-till technology and pasture–crop rotations allow
sustainable agricultural intensification in marginal soils in eastern Uruguay”? These researchers
pointed out the need for a LTE, as the cumulative effects of no-till pasture–crop rotations in grain yield
and soil fertility need to be observed over extended periods and are affected by climatic variability.
To answer this question, they set up the ‘Palo a Pique’ LTE, which continues today as one of the longest
running pasture–crop LTEs in the world.

The LTE evaluating four different pasture–crop rotations in Treinta y Tres (Uruguay) at the National
Institute of Agricultural Research (INIA) Palo a Pique Research Unit (33◦15’54.4” S 54◦29’28.1” W,
Figure 1), is among the longest running field experiments in the region. Examples of long-term
agricultural platforms in the region are the pasture-crop rotation experiments established in 1976 at
Balcarce in Argentina [15] and in 1985 in Rio Grande do Sul in Brazil [16]. In Uruguay, there are three
LTEs comparing soil use and management alternatives in temperate regions: INIA ‘La Estanzuela’
(1963–present), INIA ‘Palo a Pique’ (1995–present), and Faculty of Agronomy Estación Experimental
‘Dr. Mario A. Cassinoni’ (EEMAC), Universidad de la República (1993–present) [17]. The LTE at
INIA La Estanzuela evaluates seven cropping systems differing in the amount of time spent under
pasture, ranging from continuous cropping (with and without fertilization) to a rotation of two years
of crops and four years of pastures [18,19]. The LTE established at Faculty of Agronomy compares four
treatments in a factorial combination of two cropping systems (continuous cropping and crop–pasture
rotation) and two tillage systems (conventional tillage and no-till) [20,21]. Some of the treatments
among LTE in Uruguay are comparable, but the ‘Palo a Pique’ LTE is the only one including livestock
grazing of the experimental units, mirroring commercial conditions. The ‘Palo a Pique’ LTE is part
of the ‘Global Farm Platform’ (www.globalfarmplatform.org), a global initiative that brings together
diverse farm platforms working ‘towards sustainable ruminant production‘ under a wide range of
environmental and productive circumstances across five continents of the globe [22].

www.globalfarmplatform.org
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2. Origins and Evolution of the ‘Palo a Pique’ Long-Term Experiment 

The evolution of the ‘Palo a Pique’ LTE can be explained in three phases which are described 
below and summarized in Figure 2. 

 
Figure 2. Field plot layout showing experimental design and chronological changes of the ‘Palo a 
Pique’ long-term experiment. Treatments: long rotation in blue (LR, two years of crops followed by 
four years of pastures); short rotation in green (two years of crops followed by two years of pastures); 
permanent improved pasture in yellow (PP); and continuous cropping in red (CC). All the phases of 

Figure 1. Location of the ‘Palo a Pique’ long-term experiment of the National Institute of Agricultural
Research (INIA) in Uruguay (a), and annual accumulated rainfall (grey bars), mean maximum air
temperature (orange line) and mean minimum air temperature (blue line) from 1995 to 2019 (b).

Despite the scientific and demonstrative value of the ‘Palo a Pique’ LTE, it is not well known
worldwide. Thus, the objectives of this article are to: (i) describe the origin and evolution of the LTE;
(ii) show some key findings and the impact on agricultural policies, and (iii) describe current goals and
challenges of the ‘Palo a Pique’ LTE.

2. Origins and Evolution of the ‘Palo a Pique’ Long-Term Experiment

The evolution of the ‘Palo a Pique’ LTE can be explained in three phases which are described
below and summarized in Figure 2.
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Figure 2. Field plot layout showing experimental design and chronological changes of the ‘Palo a Pique’
long-term experiment. Treatments: long rotation in blue (LR, two years of crops followed by four years
of pastures); short rotation in green (two years of crops followed by two years of pastures); permanent
improved pasture in yellow (PP); and continuous cropping in red (CC). All the phases of the rotations
are present each year (the plot layout shown in Phase I represents an example of one particular year).
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2.1. Phase I—The Beginning (1995–2005)

In 1995, four pasture–crop rotations (Figures 2a and 3) were established over 72 ha on slightly
degraded soils under renewed natural grasslands at the ‘Palo a Pique’ Research Unit (INIA, Uruguay),
after a few years of annual cropping with tillage. The rotations compared under no-till were: long
rotation (LR, two years crops and four years pastures); short rotation (SR, two years crops and two
years pastures), continuous cropping (CC, without pastures), permanent pasture (PP, without crops).
The annual mean (± SEM) accumulated rainfall for the last 25 years (1995–2019) was 1379 ± 58 mm per
year with no seasonality within the year, whilst the mean maximum and minimum air temperatures
for the same period were 23.0 ± 0.1 ◦C and 11.3 ± 0.6 ◦C, respectively (January is the warmest month,
averaging 23.0 ± 0.5 ◦C, whilst July is the coldest month, averaging 10.9 ± 0.9 ◦C) (Figure 1). The
dominant soils are Typic Argiudols with low to moderate soil fertility (1.5 to 2.0% soil organic carbon
content (SOC), mass base, in 20 cm depth). They occupy a landscape of gently sloping hills of modest
altitude, where the erosion risk is moderate to high [23]. Moreover, because of a strongly developed
argillic B horizon, these soils are somewhat poorly drained. Given such natural limitations, they
are classified between land capabilities III and IV in the United States Department of Agriculture
(USDA) Land Capability Classification [23]. As each rotation treatment needed to have the same initial
potential, each paddock had similar drainage and topographic features.

Rotation characteristics and grazing management have been extensively described by
Terra et al. [24] and are provided in the Supplementary Materials (Supplementary Material S1).
Each phase of the rotations was represented by a paddock of 6 ha, which was the experimental unit
(EU), totaling 12 EUs. Paddock size is one of the strengths of ‘Palo a Pique’ LTE, because it is large
enough to use commercial machineries during the crop phase (seeding, harvesting, etc.) and to produce
the amount of feed required to sustain a certain number of animals to collect representative data, but
small enough to minimize crop production within paddock variability [8]. Although all phases of
the rotations were present at the same time, there were no synchronic replications of each phase [24].
Soil samples were annually collected from three different topographical areas within each paddock:
top of the hill, moderate slope and lowland at the end of the slope. For the main variable, SOC, the
experiment was analyzed as a complete block design with three replicates where the topographic
zones acted as pseudo-blocks [23]. For pasture and animal variables, the year (cycle of production)
was considered as a replicate.

Agronomy 2019, 9, x FOR PEER REVIEW 4 of 14 

 

the rotations are present each year (the plot layout shown in Phase I represents an example of one 
particular year). 

2.1. Phase I—The Beginning (1995–2005) 

In 1995, four pasture–crop rotations (Figure 2a and Figure 3) were established over 72 ha on 
slightly degraded soils under renewed natural grasslands at the ‘Palo a Pique’ Research Unit (INIA, 
Uruguay), after a few years of annual cropping with tillage. The rotations compared under no-till 
were: long rotation (LR, two years crops and four years pastures); short rotation (SR, two years crops 
and two years pastures), continuous cropping (CC, without pastures), permanent pasture (PP, 
without crops). The annual mean (± SEM) accumulated rainfall for the last 25 years (1995–2019) was 
1379 ± 58 mm per year with no seasonality within the year, whilst the mean maximum and minimum 
air temperatures for the same period were 23.0 ± 0.1 °C and 11.3 ± 0.6 °C, respectively (January is the 
warmest month, averaging 23.0 ± 0.5 °C, whilst July is the coldest month, averaging 10.9 ± 0.9 °C) 
(Figure 1). The dominant soils are Typic Argiudols with low to moderate soil fertility (1.5 to 2.0% soil 
organic carbon content (SOC), mass base, in 20 cm depth). They occupy a landscape of gently sloping 
hills of modest altitude, where the erosion risk is moderate to high [23]. Moreover, because of a 
strongly developed argillic B horizon, these soils are somewhat poorly drained. Given such natural 
limitations, they are classified between land capabilities III and IV in the United States Department 
of Agriculture (USDA) Land Capability Classification [23]. As each rotation treatment needed to have 
the same initial potential, each paddock had similar drainage and topographic features. 

Rotation characteristics and grazing management have been extensively described by Terra et 
al. [24] and are provided in the Supplementary Materials (Supplementary Material S1). Each phase 
of the rotations was represented by a paddock of 6 ha, which was the experimental unit (EU), totaling 
12 EUs. Paddock size is one of the strengths of ‘Palo a Pique’ LTE, because it is large enough to use 
commercial machineries during the crop phase (seeding, harvesting, etc.) and to produce the amount 
of feed required to sustain a certain number of animals to collect representative data, but small 
enough to minimize crop production within paddock variability [8]. Although all phases of the 
rotations were present at the same time, there were no synchronic replications of each phase [24]. Soil 
samples were annually collected from three different topographical areas within each paddock: top 
of the hill, moderate slope and lowland at the end of the slope. For the main variable, SOC, the 
experiment was analyzed as a complete block design with three replicates where the topographic 
zones acted as pseudo-blocks [23]. For pasture and animal variables, the year (cycle of production) 
was considered as a replicate. 

 
Figure 3. Original design of the pasture–crop rotations under no-till technology in the ‘Palo a Pique’ 
long-term experiment (1995). F: fall; W: winter; Sp: spring; S: summer; WC: winter crop (Lolium 
multiflorum L., Avena strigosa L.); SC: summer crop (Sorghum bicolor L., Setaria italica L.); PP: permanent 
improved pasture re-seeded every 5 years. Numeric subscripts (1,2,3,4) means the sequential order of 
the crops or pasture age. Orange and green boxes represent the crop and pasture phase, respectively. 
Each rectangle covering one year corresponds to a 6 ha paddock. 

 Year 1 Year 2 Year 3 Year 4 Year 5 Year 6 
F-W Sp-S F-W Sp-S F-W Sp-S F-W Sp-S F-W Sp-S F-W Sp-S 
WC1 SC2 WC3 SC4 PP1 PP1 PP2 PP2 PP3 PP3 PP4 PP4 

Long Rotation (LR) 

WC1 SC2 WC3 SC4 PP1 PP1 PP2 PP2 
Short Rotation (SR) 

WC1 SC2 
Continuous Crop (CC) 

PP 
Permanent Pasture (PP) 

Figure 3. Original design of the pasture–crop rotations under no-till technology in the ‘Palo a Pique’
long-term experiment (1995). F: fall; W: winter; Sp: spring; S: summer; WC: winter crop (Lolium
multiflorum L., Avena strigosa L.); SC: summer crop (Sorghum bicolor L., Setaria italica L.); PP: permanent
improved pasture re-seeded every 5 years. Numeric subscripts (1,2,3,4) means the sequential order of
the crops or pasture age. Orange and green boxes represent the crop and pasture phase, respectively.
Each rectangle covering one year corresponds to a 6 ha paddock.
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2.2. Phase II—Crop Intensification (2005–2019)

In the early 21st century, a new cropping intensification model started in Uruguay based on
soybean (Glycine max L.). The rapid increase in food processing [25], the widespread use of transgenic
cultivars and the massive adoption of no-till technology as a farming practice led Uruguayan agriculture
to change from traditional pasture–crop rotations to continuous cropping dominated by soybean or
soybean–wheat (Triticum aestivum L.) rotations [26]. This resulted in a reduction in the duration of the
pasture phase in the rotation or even its removal, raising questions about the sustainability of such a
productive model due to soil erosion risk and associated SOC losses [27]. It has been demonstrated
that declining crop diversity and concentrating rotations on a few selected crops is neither profitable
for producers nor good for the environment in the long-term [8].

To address this need, 11 out of the 12 EU of the original LTE (those rotating with crops) were
split in half in 2005 (3 ha each) and grain crops were included in one half during the cropping phase
(‘grain rotation’, GR) (Figure 2b). Animals were excluded from the 3 ha paddock during the cropping
phase, and the crops were oriented for grain production by including soybean and wheat in the
rotation, which were commercialized after harvesting. On the other hand, sorghum and hay remained
in the systems for livestock supplementation. Therefore, by adopting this crop combination, grains
with lower nutrient concentration for human nutrition (sorghum) and feed that humans cannot eat
(hay) were converted into nutrient-dense food such as beef meat. The other half of the paddocks were
maintained with the same pasture–crop rotation described in Phase I intended for livestock grazing.

Later, in 2012, a second 6 ha paddock was incorporated to the CC rotation (Figure 2b). Hence, the
three rotations having crops (CC, SR, and LR) could have a cycle represented by a sequence of four
crops in two paddocks. Previously, that was true only for SR and LR, but CC had only a cycle of two
crops in one paddock.

2.3. Phase III—Land Expansion and Livestock Intensification (2019 to Present)

All adjustments made in Phase III are highlighted in Figure 2c. At the same time as the LTE
was being redesigned, a six-year-old grazing experiment was coming to an end in the ‘Palo a Pique’
Research Unit. This trial aimed to compare animal performance, pasture persistence and productivity
of two cultivars of tall fescue (cv. INIA Aurora and INIA Fortuna) with or without the addition of
a domesticated endophyte (AR584) with high inputs of urea [28]. It was proposed that there were
significant benefits in combining the two experiments by incorporating the tall fescue area (24 ha)
into the LTE. The five 4.8 ha paddocks of tall fescue pasture replaced the paddock of PP (6 ha) in the
original design of the LTE. This decision increased the scale, breadth and depth of the LTE as more
paddocks were available for grazing in the PP system.

In a second modification, the original 6 ha paddock of PP was combined with the CC rotation
(with PP added to the support area, as explained below). Thus, both treatments maintained their
independence in terms of land use, keeping the original design under no-till technology, but, from
then on, would be managed as a single animal production system. This is more realistic compared
with commercial farms, where cropping is usually performed in areas with higher soil fertility and
livestock activities are carried out on pastures in soils with less potential outside the crop rotation.
This also allowed the quantification of the environmental impacts of cropping and livestock separately.
Moreover, the original 6 ha paddock of PP now included in the CC system (as the supporting area) is
still managed with grazing livestock and the soil organic carbon has been monitored since 1995. It is
still the “control” for continuous permanent pasture areas. Therefore, we think this change does not
affect the main contrast (soil organic carbon in pasture vs. continuous crop vs. pasture–crop rotations)
that started in 1995, as the original pasture-based paddock remains as such.

The third adjustment was the addition of a support area of natural grasslands for each rotation. This
area was not part of the pasture–crop rotation but allowed greater flexibility in livestock management
in each rotation, maintaining animals within the experimental domain. Previously, animals were
managed in the rotations under a ‘put and take’ protocol depending on forage availability and
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soil conditions. When forage was scarce, or soil conditions were too wet for grazing, animals were
taken to a common area outside the rotation, and then re-entered when the conditions improved.
With this change, each rotation had an independent external support area to handle the animals
when necessary, avoiding co-grazing the animals coming from the different rotations (and associated
statistical confounders). For that reason, it is now appropriate to change the reference of the treatments
from ‘rotations’ to ‘systems’, as each of the four systems was totally closed and independent from
the land and livestock management standpoint, and the rotations did not occupy 100% of the area.
This allows for a better environmental comparison as the nutrients excreted in the feces and urine of
the animals are recycled within the boundaries of each system and mirror commercial farms where
support areas composed by natural grasslands play an important role in grazing management, even
in intensive pasture–crop rotations. As noted by Scott et al. [9], the system boundaries of farmlet
experiments need to be established in such a way that transfers between systems are minimized.

In addition, the best livestock strategy was defined for each pasture–crop rotation. Previously, all
rotations had the same orientation: the backgrounding of calves and finishing of steers for 18–20 months.
This strategy favored the rotation with a greater proportion of pastures and number of paddocks to
handle the two categories of animals but impaired the shorter rotations with lower carrying capacity
in fall and spring due to pasture and annual forage sowing. Moreover, animals were used to control
pasture growth rather than to collect performance data. In the new design, the original pasture–crop
rotations were maintained, but the focus and efforts for data collection moved from concentrating
solely on soil and crops to incorporating pasture and livestock performance.

The new livestock strategies had to meet three criteria to: (i) be able to produce 400 kg liveweight
(LW)/ha per year (± 10%), (ii) be commercially available and adopted by producers (to end up with an
animal category that is easy to sell), and (iii) be different from each other (preferably).

Each new livestock strategy designed for CC (backgrounding calves), SR (backgrounding heifers
and finishing cows), and PP (finishing steers), compares the performance of alternative production
systems with the performance of the predominant conventional production system, i.e., backgrounding
and finishing steers in LR. More detailed information of the livestock strategies is provided in
Supplementary Material S2.

3. Outcomes of the ‘Palo a Pique’ Long-Term Experiment

3.1. Some Key Results

After 8 years of running the experiment (1995–2003), Terra et al. [24] reported a significant SOC
reduction of 17% in the 0–15 cm depth under the continuous crop (CC) relative to the other rotations
containing a high proportion of perennial pastures in their cycles (LR and PP) (Figure 4). The authors
suggested that despite using no-till CC, SOC decreased relative to its original conditions, while pastures
had the ability to recover SOC that had been lost during the cropping phase [18]. Soil organic carbon
reduction in CC was due to a negative carbon (C) balance generated by biomass extraction by grazing
cattle, while the higher content of SOC in pasture-based rotations was related to the greater biomass
partitioned to the root systems compared to CC [24]. Recently, evaluating and modeling the four
rotations using sophisticated algorithms suggested that perennial pastures underpin soil C and nitrogen
(N) cycling in crop rotations by maintaining soil C closer to saturation [29].
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Figure 4. Crop–livestock rotation impact on soil organic carbon (SOC, 0–15 cm depth) from the ‘Palo a
Pique’ long-term experiment (1995–2003). Content of SOC in continuous cropping was significantly
lower than SOC in the other rotations. Adapted from Terra et al. [18].

From the livestock production standpoint, average liveweight gains (± standard deviation) for
the first four years of the experiment ranged from 338 ± 103 to 527 ± 61 kg/ha per year, whilst average
forage production ranged between 7.9 and 10.2 t DM/ha per year, allowing an animal carrying capacity
between 480 and 951 kg LW/ha per year (Figure 5) ([14]. These KPI values are between two and four
times greater than those recorded in traditional livestock production systems in Uruguay in terms of
liveweight gain production, pasture production, and stocking rate (105 kg LW/ha, 4.4 t DM/ha, and
300 kg LW/ha per year, respectively) [30]. Production intensification is one way to reduce carbon
footprint per animal and per hectare [31]. In Uruguay, Picasso et al. [32] found that for every 10 kg
increase in productivity (kg LW/ha per year), the carbon footprint decreases by 1.2 kg CO2e/kg LW and
36 kg CO2e/ha.
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In 2015, after 10 years of running Phase II of the LTE, Terra and Macedo [33] reported significant
SOC differences between grain-and forage-based rotations (GR and FR, respectively) (Figure 6). In CC,
FR had 12% less SOC (0–15 cm depth) than GR. When crops were harvested only for grain, i.e.,
leaving undisturbed residues in situ, SOC levels indicated that GR with no-till technology would be
more sustainable than FR, which removes a higher proportion of aerial biomass by direct livestock
grazing [12,34]. However, regardless of the lower amount of residue left under grazing conditions,
Moraes et al. [35] reported that grazing stimulates the production of tillers and roots by shoot renewal.
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Therefore, considering the sum of the herbage mass and herbage growth during the grazing period,
there is a greater extent of dry matter accumulation in moderately grazed areas. Additionally, there
are several positive effects of integrated crop–livestock systems compared with continuous cropping,
including greater soil density and aggregation, and increased soil microbial mass and diversity [35,36].
Overall, no SOC differences were found between SR and LR, but they had 8.4% lower SOC than PP,
both in GR and FR. Results suggested that even under no-till and pasture rotations, cropping systems
reduced SOC compared with PP, and that a pasture cycle is critical to mitigate SOC losses during
cropping [33]. Information about crop productivity has been partially published [37,38]. No differences
were found in crop yield between the different crop–livestock rotations in the period 2005–2016,
averaging (± standard deviation) 2499 ± 888, 4871 ± 1758, 2771 ± 1158, and 1569 ± 479 kg/ha for
soybean, sorghum, wheat, and oat, respectively, across rotations.
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3.2. Policy Implications

There are broader practical outcomes and impacts of the LTE when they influence the design of
policy strategies [39]. While the ‘Palo a Pique’ experiment was designed to address agricultural system
sustainability in the long term, various short-term trials nested within the context of the LTE were
conducted to explain some of the results obtained or to answer relevant short-term questions as the
LTE progressed. These studies contributed greatly to a detailed understanding of soil erosion and
acidity, nutrient dynamics, soil compaction, pasture renewal, weed control, and livestock impacts on
the subsequent crop. A comprehensive description of these studies for the early years is provided by
Terra and García-Préchac [14]. A full list of extension publications and articles in technical bulletins
is provided in Supplementary material S3. As an interesting example, it is useful to highlight an
experiment, mirroring the different rotations tested in the ‘Palo a Pique’ LTE, that was implemented
in small runoff plots to measure the soil erosion associated with precipitation. This allowed a more
precise estimate of soil erosion coefficients considering the variation in the amount of water held in the
soil after natural rainfall events [40,41].

Taken together, short and long-term results from the ‘Palo a Pique’ experiment have provided vital
information to estimate soil erosion under the climatic and soil conditions in eastern Uruguay. This local
data, along with information from other national and international sources, was considered by official
authorities from the Ministry of Livestock, Agriculture and Fishery to develop the mandatory Soil Use
and Management Plan. According to Uruguayan official regulations, each crop farmer must present a
land use and management plan to the official authorities showing that the rotation under consideration
would generate an average annual erosion below the level officially established. The soil loss estimation
is made with the Revised Universal Soil Loss Equation (or RUSLE) [41,42] which was validated in
Uruguay with data that included the ones obtained in the Palo a Pique runoff plots, mentioned before.
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Data from the ‘Palo a Pique’ LTE (33◦15’54.4” S 54◦29’28.1” W) was combined with scientific data from
other geographic regions of Uruguay to account for inherent agro-climatic variability, e.g., with the
oldest LTE in Uruguay initiated in 1963 at INIA La Estanzuela (34º20’ S, 57º41’ W) to evaluate seven
pasture–crop systems [17]. As a result, authorities suggested the correction of the original RUSLE
equation because it overestimated the value of soil erosion by 35% in Uruguayan agricultural soils,
influenced by climate, species composition, edaphic conditions, and tillage practices [40]. This is a clear
example of how results derived from the ‘Palo a Pique’ LTE contributed to influence policy makers.

The new orientation of the ‘Palo a Pique’ LTE towards livestock intensification will create a
scenario of trade-offs between increasing animal production and environmental impact. Some of
the concerns are the potential impact on water-related ecosystem services [43], greenhouse gas
emissions [30], environmental footprint, nutrient imbalances and biodiversity [32]. The generation of
system–science-based data from LTE mirroring commercial enterprises will allow the identification of
key areas that need to be addressed in policy development to ensure that biological and economic
productivity is maintained in agroecosystems without compromising ecological indicators. To achieve
this objective, it is imperative to improve precision in measuring KPIs in a more location-specific
context to provide policy makers with evidence-based data concerning the environmental impact of
crop–livestock production systems. This requires a significant investment into applied and large scale
research, something that is not always compatible with scientific rigor [44]. However, LTE research
platforms provide opportunities not only for new research topics, but also for more detailed, controlled,
and randomized studies to uncover the cause–effect mechanisms behind long-term trends [39].

4. New Challenges of the ‘Palo a Pique’ Long-Term Experiment

4.1. New Hypothesis and Approach

The original research question of the ‘Palo a Pique’ LTE in 1994 was: “Can no-till technology
and pasture–crop rotations allow sustainable agricultural intensification in marginal soils in eastern
Uruguay?” Twenty-five years later, the new research question is: “Can different pasture–crop rotations
match different livestock strategies to allow sustainable ruminant livestock intensification?”. Several
key changes have occurred in commercial production systems that lies behind the transition in the
research question, from agriculture to livestock. These include: (i) the conversion of marginal crop
areas to pasture production [45], (ii) increased use of crops for livestock grazing (i.e., cover crops) [46],
(iii) increased use of crops in animal feed (i.e., high moisture sorghum grain) [43], (iv) stricter regulations
and controls for intensive crop rotations [42], and (v) greater variability in market niches for livestock
production (i.e., European Union high-quality beef quota) [47]. Moreover, from the research standpoint,
there was a need for new challenges to revitalize and keep the LTE attractive, but not at the expense of
its long-term viability. Flexibility is a desired component of any LTE, allowing the sporadic introduction
of changes or allowing hypothesis re-orientation to address any global and local demands that may
arise over time.

With animal protein set to remain a significant part of food demand, it is necessary to pursue
sustainable livestock intensification and devise strategies to keep animals in ways that work best
for farmers, communities and the planet [22,48]. General approaches to pursue sustainable livestock
intensification in the new design of the ‘Palo a Pique’ LTE include: (i) shortening the production
cycle, (ii) diversifying animal categories, (iii) adapting system management to match rotation and
livestock potential, (iv) adding the ’concept of strategic use’ of natural grasslands as a support area
for improved pastures, (v) increasing LW gain and final LW, and (vi) managing trade-offs to reduce
negative externalities. This last point is directly aimed at minimizing adverse impacts of livestock or
agriculture on climate change. For example, CC has the lowest proportion of pastures in the rotation
and, therefore, less potential for atmospheric C sequestration, but it is compensated with a shorter
livestock strategy (12 months) and a more efficient animal category (calves), with lower greenhouse
gas (GHG) emissions. Conversely, LR has the longest livestock strategy (emitting more GHGs), but is
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compensated with a higher proportion of pastures in the rotation, capturing more C. Therefore, the
interactions of integrated crop/livestock systems might be more relevant than rotations or livestock
strategy options alone. This falls under the concept of ‘carbon neutral beef’ derived from integrated
systems with biological components able to capture significant amounts of C from the atmosphere as
pastures or forestry [49,50].

The current core objective of the ‘Palo a Pique’ LTE is to evaluate four ways of producing
400 kg LW/ha per year based on pasture–crop rotations under no-till technology, that is economically,
environmentally and operationally viable. The LTE is now more complex, as it includes a second factor
(livestock strategy) in addition to the pasture–crop rotation, but the original comparison of the different
rotations under no-till technology is still present. While careful design and planning is critical to all
systems, unforeseen issues that require quick decision making can arise. Short-term decisions related
to livestock and pasture management (stocking rate, supplementation level, etc.) are recognized as
intrinsic properties of each system, dependent on the different animal categories, variation in the
grazing area and pasture productivity. It was decided that each system must be managed to express its
potential and reach the desired level of production (400 kg LW/ha per year). From a methodological
standpoint, a system that acts as a ‘negative control’ is not desirable, conversely, the aim is for four
systems running at their maximum performance. Hence, the different systems are permitted to evolve
along their own trajectories, as long as the main contrast remains the same, i.e., the four pasture–crop
rotations with no-till technology.

4.2. Sustainability Metrics

Key performance indicators provide a practical assessment of the sustainability of an animal
production system, and for those KPI levels to be maintained or increased over time there must be a
match between the livestock strategy, pastures, climate and system management. Assuming the first
three conditions are met, management becomes important [51]. We expect that the four systems will
tend to be stabilized in terms of the short-term decisions after two production cycles.

Supplementary Material S4 shows the evolution of the basic set of metrics through the different
phases of the ‘Palo a Pique’ LTE. The present phase resumes the measurement of some indicators
that had been discontinued and add new indicators, especially at the pasture, animal, and system
levels. This is in accordance with the new twist of the LTE: revitalize the livestock, economic and
environmental dimension, while keeping stable the robust metrics in soil and crops. To address such
complexities, combining high-resolution primary field data with modeling to provide whole-farm
simulations is an appropriate approach for evaluating the environmental impact of different production
systems [52,53]. In this way, the original pasture–crop rotations at the ‘Palo a Pique’ LTE have become
a platform for new studies that model system effects on the environment using life cycle assessment
(LCA) methodology [54]. Studies employing LCA approaches estimate pollution–production ratios as
their primary outputs (i.e., kg CO2e per unit of food produced), where farming systems that have low
scores are determined to be more desirable, although nutrient quality and the entire supply chain must
also be considered [53,55,56]. Table 1 shows a simplified prediction of environmental KPIs in the four
systems of the ‘Palo a Pique’ LTE recommended by Kanter et al. [31] for developing transformation
pathways in Uruguay’s beef sector. Assuming all systems reach the target of production (400 kg
LW/ha/year), rotations with higher proportion of pastures (greater C sequestration), more legumes
(less N run-off and leaching) and greater diversity of plant species would be more suitable to achieve
sustainable development goals.

The biological diversity found in mixed crop–livestock systems results in more efficient nutrient
cycling than in specialized crop or livestock production systems since nutrients in forage crops
and perennial pastures consumed by livestock are returned to the land through manure deposition,
enhancing soil fertility and C sequestration [57,58]. This fits well within the circular bioeconomy concept
as a strategic approach towards system sustainability [59]. In the ‘Palo a Pique’ LTE, the pasture-based
rotational grazing applied on each system implies homogeneous and natural ‘circularization’ of animal
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manure within the boundaries of each system. Moreover, the sorghum grain and hay produced during
the crop phase of each rotation is destined to feed the animals belonging to each rotation, promoting
not only the circularization of nutrients, but also food self-sufficiency (i.e., reducing the amount of
external inputs).

Table 1. Predicted environmental impact of the four systems in the ‘Palo a Pique’ long-term experiment,
focused on carbon sequestration, nitrogen pollution and biodiversity (adapted from Kanter et al., 2016).

Pasture–Crop Rotation

Issue Metrics LR SR CC PP

Animal production Kg LW/ha/year ++++ ++++ ++++ ++++
Carbon footprint % pastures +++ ++ + ++++

Nitrogen % legume-based pastures +++ ++ + +
Biodiversity N◦ of species (richness) ++++ +++ ++ +

LR: Long Rotation; SR: Short Rotation; CC: Continuous Crop; PP: Permanent Improved Pasture; ++++: most
favorable environmental impact; +: less favorable environmental impact.

5. Conclusions

Based on the results obtained from Phases I and II of the ‘Palo a Pique’ LTE, pasture–crop rotations
with no-till are sustainable systems under the Uruguayan productive conditions, even when most of
the aerial biomass is harvested and exported by direct grazing. Data have shown the importance of
no-till technology, crop diversification, biomass residuals returned to the soil, and the inclusion of
perennial grasses and legumes, as key factors to assure the sustainability of pasture–crop rotations in
soils with high risk of erosion.

Cropping and livestock integration are expected to continue with increased global demand for
protein sources, much of which will originate in the developing world. Thus, increased productivity in
livestock and crop production will become critically important not only to produce food, but also to
keep farmers in agricultural regions. In a world where there is an increasing demand for meat, the
solution cannot be to limit production (i.e., through meat taxes or policies based on perceptions), but to
find a way to guarantee an adequate food supply, seeking convergence between the environmental,
economic, and social dimensions. The current design of the ‘Palo a Pique’ LTE has rationalized the role
of ruminants converting grass and by-products of little or no value for human food into high-quality
protein, balancing food production for humans and the production of feed for animals in marginal
soils for agriculture, where continuous cropping is unsustainable due to SOC loss.

In the context of the continuing debate concerning the role of ruminants in land use, climate
change, and food security, the ‘Palo a Pique’ LTE along with other LTEs of the Global Farm Platform
(www.globalfarmplatform.org) initiative offers new opportunities for international collaborative
research to develop common sustainability metrics that provide a detailed understanding of how
ruminant-based systems work, and how they can be managed for sustainable intensification at the
global scale.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4395/10/3/441/s1,
Table S1: General characteristics of the ‘Palo a Pique’ long-term experiment, Table S2: Detailed description of
the new livestock strategies for each pasture-crop rotation (2019–present), Table S3: List of publications from the
‘Palo a Pique’ long-term experiment (1995–present) (Sorted by year of publication), Table S4: Evolution of the
basic set of metrics collected in the ‘Palo a Pique’ long term experiment (1995–2019). Superscript numbers mean
measurement frequency: 1 Once per year; 2 Once per season, 3 Once per month or less, 4 Once per month, except
carcass data (every time animals are sent to slaughter).
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