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Abstract: Seeding rate for maximum grain yield can differ for diverse hard red spring wheat
(HRSW) (Triticum aestivum L.) cultivars and is derived from a yield response curve to seeding rates.
Six groups of HRSW cultivars with combinations of Rht-B, Rht-D, and Ppd-D genes were planted at
five seeding rates in 21 environments during 2013–2015 throughout Minnesota and eastern North
Dakota, USA. Seeding rates ranged from 1.59 to 5.55 million seeds ha−1 and planting timings were
optimal and delayed dates. An analysis of covariance predictive model with 13 predetermined
training environments was built for yield and tillering, and validated with eight predetermined
environments. Optimal seeding rates from the yield model were not predictive for yield, with latitude
of the environment negatively skewing the predictions from observed values. A second yield model
fit to only the six lowest-yielding environments (<4.8 Mg ha−1) was more predictive (R2 = 0.44),
and revealed yield response to seeding rate was influenced by cultivar traits for photoperiod response
(Ppd-D gene) and plant stature (semi-dwarfing gene Rht-D). The tillering model was also predictive
for the validation environments, with a R2 of 0.71. Using regression predictions for yield and tillering
from training and validation datasets with HRSW genetic and geographic predictors shows promise
to help recommend seeding rates for future environments.
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1. Introduction

Plant density in cereals is important as grain yield is impacted by final plant stand [1–5]. A seeding
rate by cultivar interaction is often found in cereal crop research [1,4–8]. Faris and DePauw [9] concluded
that each new cultivar released from a breeding program should be tested at several seeding rates to
fully understand the optimal seeding rate for maximum yield.

Cultivars of hard red spring wheat (HRSW) (Triticum aestivum L.) have genetic differences affecting
plant height [10–13], tillering [6,14], photoperiod sensitivity [13,15], and yield [12], among many
other genetically controlled traits. Spikes per plant in cereal grains is a quantitative trait affected by
environment conditions, soil fertility, planting date, and other agronomic practices [16]. Li et al. [17]
indicated that many quantitative trait loci (QTL) influence tillering. A region on the short arm of
chromosome 6A has the greatest impact on stems per plant, with a region on the short arm of
chromosome 1D and the region of Ppd-D1 also contributing.

Semi-dwarfing genes have been widely incorporated into HRSW cultivars, though yield
improvements still remain dependent on environment [10,11]. Ciha [18] reinforced that the semi-dwarf
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growth habit has changed agronomic performance characteristics such as lodging and yield in HRSW.
As the prevalence of standard height cultivars has declined, research has been conducted to find proper
agronomic practices for semi-dwarf HRSW cultivars [1,3,5,6,9,18–20]. The genetic determinants of the
semi-dwarf growth habit in HRSW are the Rht-8, Rht-B1, and Rht-D1 genes [21]. Rht-B1 and Rht-D1
occur on homeologous chromosomes 4B and 4D, respectively, while Rht-8 occurs on the short arm of
chromosome 2D [22–24].

Photoperiod sensitivity in HRSW cultivars is imparted by the Ppd-A1, Ppd-B1, and Ppd-D1
genes [15]. Furthermore, these three genes have been ranked for their contribution to photoperiod
sensitivity in the order Ppd-D1 > Ppd-B1 > Ppd-A1. These genes are located on the long arm of 2A for
Ppd-A1, short arm of 2B for Ppd-B1, and long arm of 2D for Ppd-D1 [25]. For locus Ppd-D1, Ppd-D1a is
the wild-type allele, while Ppd-D1b is the sensitive allele. Genes that govern response to changing
daylight cycles are valuable tools with which to tailor varieties to environments [26]. This is especially
of importance when considering flowering timing relative to environmental factors that greatly impact
grain yield [15,27–30].

In cereal crops, a yield response curve is a useful statistical tool for analyzing the effect of seeding
rates for a cultivar [31–34]. Holliday [32] found that with seeding rates, yield typically fits a quadratic
response curve in cereal grains. As seeding rates increase, the yield response curve starts with a sharp
incline to the optimal seeding rate, followed by a slow decline on the high side of the optimal seeding
rate. Wiley and Heath [34] recognized that understanding the yield response curve to seeding rate was
useful for making seeding rate decisions in different cropping systems and production settings.

The first objective of this research was to determine if traits such as plant stature, photoperiod
sensitivity, and capacity to tiller, in addition to geographic indicators such as planting date, day length
at planting, and latitude, can be used to predict the optimal seeding rate for maximum yield of a
newly-released cultivar without the need for conducting classical seeding rate response experiments.
This objective was investigated by building an analysis of covariance (ANCOVA) regression model for
yield and tillering, using covariates as predictors with a training dataset. The second objective was to
validate the regression model for yield and tillering with an out-of-sample validation dataset to gauge
the predictive power of the model. The third objective was to use the entire dataset as a database to
enter the known characteristics of a cultivar, expected planting date, and latitude of seeding location,
to determine the optimal seeding rate for maximum yield of the cultivar.

2. Materials and Methods

2.1. Site Description

Field experiments were conducted from 2013 to 2015 in North Dakota (ND) and Minnesota
(MN). In 2013, experiments were established in four locations: Prosper, ND, and Perley, Crookston,
and Hallock, MN. Six locations were used in 2014 and 2015 at Prosper, ND, and Lamberton, Kimball,
Perley, Crookston, and Hallock, MN. Table 1 lists the soil series, soil taxonomy, and slope at each
location and year.

2.2. Experimental Approach

The locations were set up in pairs, with Kimball, Perley, and Hallock being validation
environments for the model training environments of Lamberton, Prosper, and Crookston, respectively.
The experimental design at Lamberton, Prosper, and Crookston was a randomized complete block
with a split-split plot arrangement and three replicates. The whole plot was planting date, the sub-plot
was cultivar, and the sub-sub plot was seeding rate. In 2013, Prosper had no planting date factor,
so the design was a split-plot. The trials at Kimball, Perley, and Hallock were a randomized complete
block designwith a split-plot arrangement and three replicates. The whole plot was cultivar and the
split-plot was seeding rate.
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Table 1. Soil series, taxonomy, and slope at 2013–2015 experiment locations.

Location 1 Year Soil Series 2 Soil Taxonomy 3 Slope (%)

Lamberton,
MN

2014–15
Webster Fine-loamy, mixed, superactive,

mesic Typic Endoaquolls 0–2

Normania Fine-loamy, mixed, superactive, mesic Aquic Hapludolls 0–2

Kimball, MN
2014 Fairhaven Fine–loamy over sandy or sandy-skeletal, mixed,

superactive, mesic Typic Hapludolls 0–2

2015
Dakota Fine-loamy over sandy or sandy-skeletal, mixed,

superactive, mesic Typic Argiudolls 2–6

Ridgeport Coarse-loamy, mixed, superactive,
mesic Typic Hapludolls 2–6

Prosper, ND 2013–15 Kindred-Bearden Fine-silty, mixed, superactive, frigid Typic Endoaquolls 0–2
Perley, MN 2013–15 Fargo Fine, smectitic, frigid Typic Epiaquerts 0–1

Crookston, MN
2013, 2015 Wheatville Coarse-silty over clayey, mixed over smectitic,

superactive, frigid Aeric Calciaquolls 0–2

Bearden-Colvin Fine-silty, mixed, superactive, frigid Aeric Calciaquolls 0–2

2014
Wheatville Coarse-silty over clayey, mixed over smectitic,

superactive, frigid Aeric Calciaquolls 0–2

Gunclub Fine-silty, mixed, superactive, frigid Aeric Calciaquolls 0–2
Hallock, MN 2013–15 Northcote Very-fine, smectitic, frigid Typic Epiaquerts 0–1

1 Listed from South to North. 2 Soil data obtained from USDA-NRCS [35]. 3 Soil taxonomy listed on individual
lines based on hyphenated soil series name.

Cultivars were selected based on genetic characteristics for photoperiod sensitivity and plant
stature (Table 2). Genotyping of the cultivars was done by the Wheat Genotyping Center at the
USDA-ARS Cereal Crops Research utilizing polymerase chain reaction (PCR) methods [13].

Table 2. Background genetic details of hard red spring wheat (HRSW) cultivars.

Photoperiodism Plant Stature

Group Cultivar Ppd-D1 Rht-B1 Rht-D1

1 Albany b 1 b a
Faller b b a

2 Knudson a b a
Samson a b a

3 Briggs b a a
Vantage b a a

4 Sabin a a a
Oklee a a a

5 Kelby a a b
Kuntz a a b

6 Marshall b a b
Rollag b a b
1 a is insensitive allele, b is sensitive allele.

The germination percentage of each seed lot was determined using the ragdoll method [36].
Seed for planting was weighed out for individual experimental units of each cultivar using kernel
weight, germination percentage, and plot size. The previous crop at all experiment sites was soybean
[Glycine max (L.) Merr.]. Experiments were established and managed according to University of
Minnesota and North Dakota State University Extension recommendations with regard to cultivation,
fertilization, and pesticide application (Table 3) [37].
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Table 3. Site location and year characteristics for hard red spring wheat (HRSW) trials conducted in
Minnesota and North Dakota, 2013–2015.

Location Planting Timing Seeding Date Harvest Date Avg. Yield (Mg ha−1)

———————————————— 2013 ————————————————
Crookston Optimal 10-May 8-Aug 6.14
Crookston Late 29-May 26-Aug 6.38

Hallock Optimal 16-May 3-Sep 7.27
Perley Optimal 8-May 16-Aug 5.80

Prosper Optimal 16-May 22-Aug 4.69

———————————————— 2014 ————————————————
Crookston Optimal 17-May 27-Aug 4.95
Crookston Late 4-Jun 27-Aug 4.55

Hallock Optimal 23-May 6-Sep 5.45
Kimball Optimal 26-Apr 14-Aug 5.54

Lamberton Optimal 21-Apr 20-Aug 5.14
Perley Optimal 22-May 2-Sep 6.00

Prosper Optimal 27-May 3-Sep 4.43

———————————————— 2015 ————————————————
Crookston Optimal 23-Apr 21-Aug 6.35
Crookston Late 22-May 25-Aug 5.38

Hallock Optimal 16-Apr 13-Aug 5.62
Lamberton Optimal 4-Apr 12-Aug 5.62
Lamberton Late 27-Apr 12-Aug 4.55

Kimball Optimal 8-Apr 31-Jul 5.97
Perley Optimal 13-Apr 11-Aug 7.03

Prosper Optimal 9-Apr 21-Aug 4.67
Prosper Late 22-May 25-Aug 3.62

The plot size for the experimental unit at Prosper, ND was 1.24 m by 3.65 m, and had 7 rows of
HRSW with 0.19 m spacing. The plot size at Kimball, Perley, Crookston, and Hallock was 1.52 m by
4.57 m and had 10 rows with 0.15 m row spacing. The plot size at Lamberton was 1.52 m by 2.43 m and
had 8 rows with 0.19 m row spacing. Optimal seeding rates were determined using the first derivative
of the regression equation for the quadratic yield response curves to seeding rate. For linear response
curves, optimal seeding rate was determined by the seeding rate treatment for maximum grain yield.

2.3. Data Collection

Stand counts were recorded at approximately Feekes 1 to determine the established plant
density [38]. Stem counts were evaluated at Feekes 11. These two measurements were used to calculate
the number of stems per plant. Plant density and stem counts were obtained by counting plants and
stems in two rows between two stakes that were placed 0.91 m apart in between two adjacent interior
rows. Plot yield was collected from the entire plot with a small plot combine. Grain yield was adjusted
to 13.5% moisture. Grain characteristics of moisture, test weight, and protein were collected at harvest
or during post-harvest processing and adjusted to 13.5% and 12.5% grain moisture, respectively.

2.4. Statistical Analyses and Modeling

Statistical analyses were performed using SAS 9.4 software (SAS Institute, Cary, NC, USA).
Seeding rate and cultivar were fixed effects, while replicate and environment were assigned as random
effects in the initial analysis. Interactions of fixed effects were considered fixed, while any interaction
with a random term was considered random. Environments were characterized by planting date,
day length at planting, and latitude, to promote a robust model.
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The models for yield (Mg ha−1) and tillers (stems per plant) as the dependent variables were built
using unadjusted data from each plot. An ANCOVA model was built with data from 13 environments
assigned as the a priori training dataset. The model was built with data from two random replicates,
while the third replicate was used for validation. Models were fit in PROC MIXED, with Ppd-D, Rht-B,
Rht-D, stems plant−1, geographic latitude of the field location, day length at planting (DL), and calendar
days from January 1 (CD) as covariates. Method = type1 was the estimation method used to build the
model, and parameter estimate solutions were found with the solutions htype = 1 statement. A model
was built in the order of linear main effects, quadratic main effects, linear interactions, and quadratic
interactions of all covariates. Effects that were non-significant at the 95% confidence level were removed
from the end of the model to the beginning. Iterations of the model were run as effects were removed
to ensure significance remained for effects below an eliminated term that may have partially explained
the higher term.

Following the recommendations of Ngo [39], regression diagnostics from SAS output were used to
assess model adequacy and assumptions as the training model was nearing the final iteration. The error
mean square (EMS) was monitored to ensure it did not increase as the model was altered. Method =

type3 was invoked to measure stability of the parameter estimates for the intercept and covariate terms
as the last term in a model was added or removed. Residual plots were assessed to ensure stability
in the model, and to identify any unusual data points that could potentially skew results. Residuals
were monitored around absolute zero to screen for normality, skewness, and kurtosis. Tests were
done for multicollinearity of the factors in the model using Pearson correlation coefficients from SAS
(PROC CORR) as described by Ngo [39]. An R2 estimate was calculated using SAS (PROC MIXED) for
the training data. Near completion, the model was further assessed for assumptions by running the
validation dataset through the model and assessing the same regression diagnostics and assumptions
as for the training model.

Model validation was performed for the training data ANCOVA model with an outpred =

statement in PROC MIXED by assigning a missing data symbol ‘.’ as the dependent variable of the
validation dataset. Predictions and residuals were calculated for each plot in the validation dataset to
measure how predictive the model was of an out-of-sample dataset which was not used to build the
model. The predictive nature of the model was assessed primarily using R2 of the observed versus
predicted plot values. The residuals found by subtracting the observed minus predicted values were
further assessed by running the validation data through the parameter estimates, as given by the
solutions statement in SAS and plotting using PROC SGPLOT.

PROC REG in SAS was used for linear and quadratic regression analysis on the LSMEANS of
the predicted outcomes of the yield response curve to seeding rate. The entire dataset (training and
validation) was used for the analysis of the original model. The second model, built using only the six
lowest-yielding environments (<4.8 Mg ha−1), was built and validated without a priori designation
of training and validation environments. An alpha level of 0.05 was used for all hypothesis tests.
Single degree of freedom linear and orthogonal contrasts were written to make comparisons for
main effects and interaction terms for categorical covariates. Significance indicators from the contrast
statement were used to declare differences between yield response curves for certain covariates.

3. Results

3.1. Original Yield Model

An ANCOVA regression model was built using the entire training dataset of 13 environments,
and validated for the entire validation dataset of eight environments. The most stable model had
11 variables, including Ppd-D, Rht-B, Rht-D, seeding rate, CD, latitude of the environment, rate*rate,
CD*CD, latitude*latitude, Ppd-D*Rht-B, and Ppd-D*Rht-D (Figure 1).
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Figure 1. Validation dataset yield predictions plotted against residual yields (observed minus predicted
yield) for 2013–2015 locations near Kimball, Perley, and Hallock, Minnesota.

This model was not predictive of grain yield. The original regression model for the training
environments had an R2 of 0.46 for observed versus predicted values. However, when this model
was used to predict the yield of every plot from the eight validation environments, the R2 between
observed and predicted values was only 0.01, and the residual values (difference between observed
plot yield and predicted yield from the model) differed substantially from zero. The residuals were not
centered on zero, and were upwards of 4 Mg ha−1 away from the observed plot yield, indicating an
environmental effect that was reducing model stability (Figure 1).

Model Predictions

The yield model built from 13 environments and validated by eight environments was not
predictive for out-of-sample data. However, some trends for the model covariates were found when
all 21 environments were plotted. The four cultivars with Rht-Bb allele for semi-dwarf stature were
higher-yielding at all seeding rates in comparison to the four semi-dwarf cultivars with Rht-Db allele
or the four wild-type stature cultivars (Figure 2). The cultivars with the Rht-Db allele had a crossover
response interaction with wild-type stature cultivars. These cultivar groups also differed in grain
yield as Rht-Db cultivars peaked at 4.40 Mg ha−1, while the wild-type stature cultivars peaked at
3.41 Mg ha−1.
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Figure 2. Influence of Rht-Bb, Rht-Db, and Rht-a (wild-type stature) alleles on yield response to seeding
rate over 21 environments in Minnesota and North Dakota, 2013–2015. Seeding rate for the peak of the
curve: Wild-type = 3.41, Rht-Bb = 3.21, and Rht-Db = 4.40 million seeds ha−1.

The Ppd-Da allele for photoperiod insensitivity (PI) and Ppd-Db allele for photoperiod sensitivity
(PS) imparted no yield advantage at any seeding rate when averaged over 21 environments for the six
cultivars comprising each allele group (Table 4).

Table 4. Regression summary of Ppd-D allele influence on yield response to seeding rate over
21 environments in Minnesota and North Dakota, 2013–2015.

Gene Allele Regression Equation 1 Seeding Rate at Peak

Ppd-Da Yield = 5.13 + 0.24×Rate – 0.03×RateSq 3.69 million seeds ha−1

Ppd-Db Yield = 5.10 + 0.26×Rate – 0.04×RateSq 3.59 million seeds ha−1

1 Regression equation from SAS (PROC REG) output.

There was an interaction of Ppd-D and Rht-B when combined over all 21 environments (Figure 3).
Of the combinations of cultivars with different alleles for the two genes, the main effect of Rht-B is
evident (Figure 2). The response curves were a converging interaction within the two subgroups of
Rht-Ba and Rht-Bb. The wild-type stature cultivars yielded more at the lowest two seeding rates when
the cultivar also had the PI allele Ppd-Da. The cultivars with semi-dwarfing gene Rht-Bb yielded more
at the lowest seeding rates when the cultivar had the PS allele Ppd-Db. Within this group, the slope of
the yield response curve was almost two times greater with PI, than with PS (Figure 3).
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Figure 3. Yield response to seeding rate for the interaction between Rht-B and Ppd-D alleles over
21 environments in Minnesota and North Dakota, 2013–2015. Seeding rate at peak of curve: Ppd-Da;
Rht-Ba = 3.60, Ppd-Da; Rht-Bb = 3.88, Ppd-Db; Rht-Ba = 3.79, and Ppd-Db; Rht-Bb = 2.94 million seeds ha−1.

The PS cultivars (Ppd-Db) with semi-dwarfing allele Rht-Db did not have the same yield response
to seeding rate as PS cultivars with semi-dwarfing allele Rht-Bb. These differences in response could
be a consequence of a main effect from the Rht-Db allele, as cultivars with Rht-Db yielded lower than
wild-type stature and Rht-Bb cultivars (data not shown). However, this is unlikely, as nearly identical
yield response curves (similar slopes and peaks) were observed for cultivars with the Rht-Db allele in
combination with the PS allele or PI allele.

Latitude had an impact on yield response to seeding rate when fit over all 21 environments
(Figure 4). Although experiment sites differed geospatially from year to year, the difference in distance
between environments at the same location was never more than about 8 km north to south (Hallock,
Perley, and Kimball), and was typically only about 1 km difference (Prosper, Lamberton, and Crookston).
The relative yield potential of the environments breaks out cleanly by location, in order from lowest
to highest as: Prosper < Lamberton < Crookston < Kimball < Hallock < Perley. Environments with
higher yield potential tended to require a lower seeding rate to reach maximum yield across the
12 diverse cultivars.
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Figure 4. Yield response to seeding rate for each location in Minnesota and North Dakota, 2013–2015.
Seeding rate for the peak of the curve: Lamberton = 4.62, Kimball = 3.87, Prosper = 3.51, Perley = 2.68,
Crookston = 3.73, and Hallock = 3.26 million seeds ha−1.

3.2. Tillering Model

With no model proving predictive for yield in the combined dataset, the predictive power
of an ANCOVA model for stems per plant was built and assessed. The entire training dataset of
13 environments was used to build an ANCOVA regression model for tillering. This model was also
validated using the entire dataset of eight validation environments. The most stable model (R2 = 0.63)
for tillering (based on stems per plant) had 9 variables, including Ppd-D, Rht-B, seeding rate, CD, DL,
latitude of environment, rate*rate, latitude*latitude, and rate*latitude (Figure 5).

When the validation dataset was fit by the tillering model, the resulting R2 was 0.71. The predicted
and residual values were representative of expected output for a stable predictive model. However,
the model was slightly biased due to autocorrelation and multicollinearity effects from latitude
(Figure 5). Overall, the trends were indicative of a predictive model.

Model Predictions

The genes Rht-B, Rht-D, and Ppd-D had an influence on stems per plant across all 21 environments
(Figures 6 and 7). Rht-Bb cultivars had more stems per plant at the two lowest seeding rates compared
to Rht-Db or wild-type stature cultivars, although all three categories plateaued towards the three
highest seeding rates (Figure 6).
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Figure 7. Influence of Ppd-D alleles on tillering response to seeding rate over 21 environments in
Minnesota and North Dakota, 2013–2015.

The PI cultivars consistently had fewer tillers than PS cultivars (Figure 7). The tillering response
curves were mirrored between the cultivar groups, as slopes were very similar and differed only
slightly in intercept. Interactions between Ppd-D and either semi-dwarfing gene provided only slight
differences in stems per plant (data not shown). The result of PI cultivars having fewer stems per plant
compared to PS cultivars was the main trend that came out of the interactions between photoperiod
response and semi-dwarfing genes.

Latitude also had an impact on tillering response curves of all cultivars (Figure 8). In all years,
Lamberton had the highest number of stems per plant for all cultivars, while Crookston had the
lowest number of stems per plant. There was no noticeable interaction between the stems per plant
response curves and latitude, revealing that cultivar tillering habit was consistent across locations.
The intercepts and the slopes of each latitude gives an indication of how the locations separated out for
tillering capacity.

3.3. Reworked Yield Model

The original yield model was not predictive, and the tillering model was only moderately
predictive. One problem that plagued the three years of seeding rate research was the lack of a yield
response to seeding rate at many environments due to very productive HRSW growing seasons.
The yield responses were minimal across the five seeding rates compared to what has previously been
reported for this region [5]. The large difference in yield potential between the 21 environments is
represented by mean grain yields in Table 3. The range in average yield of the 21 environments across
all seeding rates and cultivars was from 3.62 Mg ha−1 to 7.27 Mg ha−1. When split into thirds based on
yield, six environments comprised the bottom third (range: 3.62 to 4.83 Mg ha−1), ten environments
comprised the middle third (range: 4.84 to 6.05 Mg ha−1), and five locations were in the top third
(range: 6.06 to 7.27 Mg ha−1).
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Figure 8. Tillering response curves to seeding rate for each location in Minnesota and North
Dakota, 2013–2015.

To account for this variability among environments, an ANCOVA model was built to test the
predictive nature of the covariates for yield using only the six lowest-yielding environments where
yield response curves to seeding rate were more pronounced. Thirteen covariates remained in the final
model for the six lowest-yielding environments, including Ppd-D, Rht-B, Rht-D, seeding rate, DL, CD,
latitude, rate*rate, CD*CD, latitude*latitude, Ppd-D*Rht-B, Rht-B*DL, and Rht-D*DL. The model for
yield of the six lowest-yielding environments had a training R2 of 0.42. The model was validated three
times, with one of the three replicates serving as the validation dataset, while two of the replicates
were the training dataset. With replicate one, two, and three as the validation dataset the respective
R2 values were very consistent at 0.43, 0.44, and 0.44 (Figures 9 and 10). When the 16 lowest-yielding
environments were run through the same scenario with a new model, the resulting R2 averaged 0.20.
Therefore, the six lowest-yielding environments were the focus of this final model.
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Model Predictions

Semi-dwarf plant stature from the Rht-Bb allele was beneficial for yield over the 12 cultivars
(Figure 11). The semi-dwarfing allele of Rht-B was represented by four cultivars in this study that
yielded higher than the semi-dwarfing allele for Rht-D or wild-type stature cultivars. The slopes
between the three classes of cultivars (based on genetic characteristics for semi-dwarfing genes) differed
slightly. Seeding rate for maximum yield of Rht-Db cultivars required almost 1 million seeds ha−1 more
than either Rht-Bb or wild-type stature cultivars.
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Figure 11. Influence of Rht-Bb, Rht-Db, and wild-type stature alleles on yield response to seeding rate
over the six lowest-yielding environments in Minnesota and North Dakota, 2013–2015. Seeding rate for
the peak of the curve: wild-type = 3.68, Rht-Bb = 3.75, and Rht-Db = 4.65 million seeds ha−1.

Cultivar response to photoperiod had an impact on the relative yield and yield response curve
across the six lowest-yielding environments in this study (Figure 12). Photoperiod insensitive cultivars
yielded consistently higher than PS cultivars across all five seeding rates. The seeding rate for maximum
yield was higher for PI cultivars at 4.21 million seeds ha−1, compared to 3.71 million seeds ha−1 for PS
cultivars. These results are a contrast from the original yield model, where PS and PI cultivars had
nearly identical seeding rate response curve fits for yield (Table 4). The middle-third and top-third
yielding environments had no apparent effect from the Ppd-D1 gene on grain yield (data not shown).
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Figure 12. Influence of Ppd-D alleles on yield response to seeding rate over the six lowest-yielding
environments in Minnesota and North Dakota, 2013–2015. Seeding rate for the peak of the curve:
Ppd-Da = 4.21 and Ppd-Db = 3.71 million seeds ha−1.

The yield advantage of Rht-Bb cultivars over Rht-Ba cultivars is evident in the interaction figure
between Rht-B and Ppd-D (Figure 13). For wild-type stature cultivars, a yield advantage was found
with PS cultivars compared to PI and there was no interaction between the two groups. However,
when Rht-Bb cultivars were coupled with PS, the seeding rate for maximum yield was 1.59 million
seeds ha−1 (lowest seeding rate treatment), compared to 4.26 million seeds ha−1 for Rht-Bb and PI
combination cultivars. The crossover interaction occurred just above the second lowest seeding rate.
The cultivars that possess both Rht-Bb and Ppd-Db (Albany and Faller) can both be planted at much
lower seeding rates in the relatively low-yielding environments (<4.8 Mg ha−1) encountered in this
study, though the exact reasons were not readily apparent.

The interaction between Rht-D and Ppd-D breaks out first into main effects, with Rht-Db cultivars
needing much higher seeding rates for maximum yield. Rht-Db cultivars also had lower relative yield
across the six lowest-yielding environments in comparison to cultivars with wild-type stature (Figure 14).
Photoperiod insensitive cultivars also had higher relative yield than PS cultivars, as was explained
previously. Both interactions between the subgroups were diverging as the seeding rates increased.
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Figure 14. Yield response curves to seeding rate for the interaction between Rht-D and Ppd-D alleles
over the six lowest-yielding environments in Minnesota and North Dakota, 2013–2015. Seeding rate for
the peak of the curve: Ppd-Da; Rht-Da = 3.83, Ppd-Da; Rht-Db = 5.16, Ppd-Db; Rht-Da = 3.36, and Ppd-Db;
Rht-Db = 4.15 million seeds ha−1.
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The latitude response for the six lowest-yielding environments was variable, as four environments
comprised the Prosper yield response curve, but only one environment comprised both Lamberton
and Crookston yield response curves (Table 5). Seeding rate for the peak of the curve at Lamberton,
Prosper, and Crookston, was 4.76, 3.53, and 5.91 million seeds ha−1, respectively.

Table 5. Regression summary of yield response to seeding rate over the six lowest-yielding environments
in Minnesota and North Dakota, 2013–2015.

Location Regression Equation 1 Seeding Rate at Peak

Crookston Yield = 5.40 + 0.29×Rate – 0.04×RateSq 5.91 million seeds ha−1

Lamberton Yield = 4.09 + 0.24×Rate – 0.03×RateSq 4.76 million seeds ha−1

Prosper Yield = 4.10 + 0.17×Rate – 0.02×RateSq 3.53 million seeds ha−1

1 Regression equation from SAS (PROC REG) output.

4. Discussion

4.1. Original Yield Model

Latitude greatly skewed predicted values in the original yield model that included all
21 environments. The validation environments at Kimball, MN are approximately 275 km away
(1.77 degrees S) from the environments at Perley, MN, and Perley is approximately 179 km away
(1.65 degrees S) from Hallock, MN. The yield trends from a limited dataset of 13 training environments
did not accurately predict yields at eight out-of-sample validation environments that were relatively
close in proximity to the training environments. One likely reason for the inaccurate predictions was
that there were not enough environments to accurately represent differences in yield potential across
the large geographic reference area in this study. Additionally, there were other potential in-season
crop stressors (e.g., lodging, disease, water availability) that likely had an effect on yield, but were not
included as covariates in the model. Regardless of the problems that latitude presented, the predictive
power and R2 of the training model decreased greatly when latitude was not included as a covariate in
the model and residuals were even more randomly distributed.

Twenty-one environments across three years provided a diversity of environments, where six
early-maturing PI cultivars were balanced by six late-maturing PS cultivars (Table 2). This research
found no yield advantage for either PI or PS cultivars. This is in contrast to Busch et al. [27], who found
a 9% yield advantage from PI near isogenic lines (NILs) compared to PS NILs, and Marshall et al. [29]
who found that yield for PI NILs was always equal to or greater than PS lines in similar geographies to
this study. It is important to note that this contrasting result could be due to the limited sample size in
this study.

Future research using this approach over a wide geographic reference area would likely benefit
from including more environments spaced evenly and/or more closely together, or shrinking the
overall size of the reference area. The conclusion for this first model for yield was that the training
environments were not predictive of the validation environments.

4.2. Tillering Model

Predicting cultivar tillering can be useful as tillering gives HRSW adaptability to diverse
geographies. Rht-Bb cultivars had more tillers than either Rht-Db or wild-type stature cultivars
at the lowest two seeding rates in this study (Figure 6). This result is in-line with Sial et al. [40] who
found the two cultivars with Rht-Bb to have significantly more stems per plant than Rht-Db cultivars.
Contrary to both these results, Pinthus and Levy [41] found no difference in stems per plant between
wild-type stature and semi-dwarf HRSW cultivars.

Latitude was a major factor in tillering when combined over all cultivars, and future analysis on
the latitude by cultivar interaction for stems per plant would be important to explore with this data.
There were no weather covariates taken for the environments, so the overall tillering capacity for each
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latitude cannot be fully explained. The trend of less tillers with increasing latitude in the geographic
area could be useful to producers trying to predict the tillers they will have in their production region.

4.3. Yield Model Reworked

Although PS did not affect HRSW yield over 21 diverse geographies in eastern ND and MN,
PI cultivars in environments with below average yields (<5.49 Mg ha−1) had increased yields compared
to PS cultivars, likely a result of earlier heading and maturity. These results are similar to findings
reported by Marshall et al. [29]. The increase in yield with PI cultivars was 0.05 Mg ha−1 at the lowest
seeding rate, but was between 0.15 and 0.25 Mg ha−1 higher at the highest three seeding rate treatments.
Photoperiod insensitive cultivars yielded 3.2% higher than PS cultivars when averaged over all five
seeding rates. The sample of cultivars used in this research provided a lower increase for PI over PS
cultivars, compared to the 9% increase from PI lines found by Busch et al. [27] in MN. Prior research
on photoperiod response in HRSW in the Northern Plains region had used 10 [27] and 11 [29] pairs
of NILs for Ppd-D1. This current research used six cultivars with each allele for Ppd-D1, instead of
NILs, which is a slightly lower sample size and different methodology. However, the cultivars in this
research were a random sampling of cultivars available to growers. Lower-yielding environments
(<4.8 Mg ha−1) are subject to greater stresses, especially increased temperature that can be detrimental
to a cool-season cereal crop. This current research found that the earlier maturing PI cultivars were
advantageous in stressed environments and should be seeded at a rate that is 0.5 million seeds ha−1

higher than PS cultivars, to maximize yield in these environments.
With regards to the semi-dwarfing genes, it was clear that Rht-Db semi-dwarfs needed higher

seeding rates to reach maximum yield, compared to wild-type stature or Rht-Bb semi-dwarfs
(Figures 12–14). Additionally, the relative yield of Rht-Bb cultivars in this study was higher than either
Rht-Db or wild-type stature cultivars. However, this could have been a function of a small sample size
and particularly high-yielding cultivars, Faller and Albany, making up two of the four Rht-Bb cultivars.

Predictive models have been attempted with varying success in a wide array of agricultural
research, from QTL impacts, to water-use yield response curves and more. As far as we know, this is
the first undertaking to try and use a rigorous experimental design and statistical approach to predict
optimal seeding rates for maximum yield in HRSW using genetic traits. Although the predictive model
was complicated by latitude and relative yield differences between environments, this was somewhat
resolved by looking at the lowest-yielding environments.

5. Conclusions

Predicting the yield of plots in eight validation environments with a model built from 13 training
environments proved difficult. Although the model was moderately predictive of yield for the training
dataset (R2 = 0.46), the validation dataset was poorly fit, with a R2 of only 0.01. Relative yield levels
and yield response curves were difficult to fit validation data due to geographic separation, not enough
environments within a very large geographic reference area, stressors not included as covariates,
and favorable growing conditions occurring in many environments.

A tillering model was developed and found to be predictive. Tillering is an important trait
contributing to yield in wheat and it may be useful for a grower to know about this characteristic
when planting a specific HRSW cultivar. The tillering model had an R2 of 0.63 for the training
dataset, and 0.71 for the validation dataset. Photoperiod sensitive cultivars had more stems per plant
than PI cultivars across all seeding rates. Latitude was predictive of stems per plant, with more
southern environments having more stems per plant. Additionally, it was found that higher-yielding
environments (>6.1 Mg ha−1) had less stems per plant.

The predictive power of a yield model based on the six lowest-yielding environments was tested
and substantiated. An R2 of 0.42 for the training dataset and 0.44 for the validation dataset indicated the
reworked model was more predictive than the original yield model. Another important finding from
the reworked yield model was the influence that photoperiodism gene Ppd-D and semi-dwarfing gene



Agronomy 2020, 10, 332 19 of 21

Rht-D had on cultivar yield response to seeding rates. It was revealed that PI cultivars yielded higher
than PS cultivars, and required a seeding rate of an additional 0.5 million seeds ha−1 to maximize yield.
Additionally, cultivars with Rht-Db semi-dwarf stature required about 1.0 million more seeds ha−1 for
maximum yield, compared to either wild-type stature or Rht-Bb semi-dwarfs.

The objective of this research to mesh genetic knowledge of a HRSW cultivar with agronomic
practices in order to predict an optimal seeding rate for maximum yield. There proved to be predictive
power by having knowledge of the genetic makeup of a cultivar coupled with known geographic
and planting date information; this was more so for tillering than yield, but is beneficial information
either way. The results are an important first step in developing predictive models for seeding rate
decisions in HRSW with regards to genetic and location characteristics as covariates. For future
research, more environments should be evaluated, and selected for geographic proximity. However,
the unpredictable nature of weather and growing seasons can be expected to continue to provide
a challenge.

Author Contributions: Conceptualization, G.H.M., J.J.W. and J.K.R.; methodology, G.H.M., J.J.W. and J.K.R.;
validation, G.H.M.; formal analysis, G.H.M.; investigation, G.H.M.; resources, J.J.W. and J.K.R.; data curation,
G.H.M.; writing—original draft preparation, G.H.M., J.J.W., J.D.S. and J.K.R.; writing—review and editing, G.H.M.,
J.D.S., J.J.W. and J.K.R.; visualization, G.H.M. and J.D.S.; supervision, J.J.W. and J.K.R.; project administration,
G.H.M.; funding acquisition, G.H.M., J.J.W, J.D.S. and J.K.R. All authors have read and agreed to the published
version of the manuscript.

Funding: This research was funded by the Minnesota Wheat Research & Promotion Council.

Conflicts of Interest: The authors declare no conflict of interest. Author G.H.M. was employed by Bayer Crop
Science after completion of the experiments. The funders had no role in the design of the study; in the collection,
analyses, or interpretation of data; in the writing of the manuscript, or in the decision to publish the results.

References

1. Baker, R.J. Effect of seeding rate on grain yield, straw yield, and harvest index of eight spring wheat cultivars.
Can. J. Plant Sci. 1982, 62, 285–291. [CrossRef]

2. Guitard, A.A.; Newman, J.A.; Hoyt, P.B. The influence of seeding rate on the yield and the yield components
of wheat, oats, and barley. Can. J. Plant Sci. 1961, 41, 750–758. [CrossRef]

3. Hanson, B.K.; Lukach, J.R. Barley response to planting rate in northeastern North Dakota. North Dakota Farm
Res. North Dakota Agri. Exper. Station 1992, 14–19.

4. Pendleton, J.W.; Dungan, G.H. The effect of seeding rate of nitrogen application on winter wheat cultivars
with different characteristics. Agron. J. 1960, 52, 310–312. [CrossRef]

5. Wiersma, J.J. Determining an optimum seeding rate for spring wheat in Northwest Minnesota. Crop. Manage.
2002, 18, 1–7. [CrossRef]

6. Anderson, W.K.; Barclay, J. Evidence for differences between three wheat cultivars in yield response to plant
population. Aust. J. Agric. 1991, 42, 701–713. [CrossRef]

7. Briggs, K.G.; Aytenfisu, A. The effects of seeding rate, seeding date and location on grain yield, maturity,
protein percentage and protein yield of some spring wheats in central Alberta. Can. J. Plant Sci. 1979,
59, 1139–1145. [CrossRef]

8. Faris, D.G.; De Pauw, R.M. Effect of seeding rate on growth and yield of three spring wheat cultivars.
Field Crops Res. 1981, 3, 289–301. [CrossRef]

9. Kirby, E.J.M. The effect of plant density upon growth and yield of barley. Cambridge J. of Agr. Sci. 1967,
68, 317–324. [CrossRef]

10. Butler, J.D.; Byrne, P.F.; Mohammadi, V.; Chapman, P.L.; Haley, S.D. Agronomic performance of Rht alleles in
a spring wheat population across a range of moisture levels. Crop. Sci. 2005, 45, 939–947. [CrossRef]

11. Lanning, S.P.; Martin, J.M.; Stougaard, R.N.; Guillen-Portal, F.R.; Blake, N.K.; Sherman, J.D. Evaluation of
near-isogenic lines for three height-reducing genes in hard red spring wheat. Crop. Sci. 2012, 52, 1145–1152.
[CrossRef]

12. North Dakota State University Extension. North Dakota Hard Red Spring Wheat Variety Trial Results and
Selection Guide; North Dakota State University Extension: Fargo, ND, USA, 2015; A574-15.

http://dx.doi.org/10.4141/cjps82-045
http://dx.doi.org/10.4141/cjps61-112
http://dx.doi.org/10.2134/agronj1960.00021962005200060002x
http://dx.doi.org/10.1094/CM-2002-0510-01-RS
http://dx.doi.org/10.1071/AR9910701
http://dx.doi.org/10.4141/cjps79-176
http://dx.doi.org/10.1016/0378-4290(80)90036-2
http://dx.doi.org/10.1017/S0021859600012806
http://dx.doi.org/10.2135/cropsci2004.0323
http://dx.doi.org/10.2135/cropsci2011.11.0625


Agronomy 2020, 10, 332 20 of 21

13. Wiersma, J.J. A pilot project for determining the optimum seeding rates for individual HRSW cultivars.
Minn. Wheat Res. Promot. Council Res. 2012.

14. Hucl, P.; Baker, R.J. An evaluation of common spring wheat germplasm for tillering. Can. J. Plant Sci. 1988,
68, 1119–1123. [CrossRef]

15. Worland, A.J. The influence of flowering time genes on environmental adaptability in European wheats.
Euphytica 1996, 89, 49–57. [CrossRef]

16. Friend, D.J.C. Tillering and leaf production in wheat as affected by temperature and light intensity. Can. J.
Bot. 1965, 43, 1063–1076. [CrossRef]

17. Li, W.L.; Nelson, J.C.; Chu, C.Y.; Shi, L.H.; Huang, S.H.; Liu, D.J. Chromosomal locations and genetic
relationships of tiller and spike characters in wheat. Euphytica 2002, 125, 357–366. [CrossRef]

18. Ciha, A.J. Seeding rate and seeding date effects on spring seeded small grain cultivars. Agron. J. 1983,
75, 795–799. [CrossRef]

19. Baker, R.J. Agronomic performance of semi-dwarf and normal height spring wheats seeded at different dates.
Can. J. Plant Sci. 1990, 70, 295–298. [CrossRef]

20. Miralles, D.J.; Slafer, G.A. Yield, biomass and yield components in dwarf, semi-dwarf, and tall isogenic lines
of spring wheat under recommended and late sowing dates. Plant Breed. 1995, 114, 392–396. [CrossRef]

21. Borojevic, K. The transfer and history of ‘reduced height genes’ (Rht) in wheat from Japan to Europe.
J. Heredity. 2005, 96, 455–459. [CrossRef]

22. Gale, M.D.; Law, C.N.; Worland, A.J. Chromosomal location of a major dwarfing gene from Norin 10 in new
British semi-dwarf wheats. Heredity 1975, 35, 417–421. [CrossRef]

23. Gale, M.D.; Marshall, G.A. Chromosomal location of Gai-1 and Rht-1, genes for gibberellin insensitivity and
semi-dwarfism, in a derivative of Norin-10 wheat. Heredity 1976, 37, 283–289. [CrossRef]

24. Gale, M.D.; Law, C.N.; Marshall, G.A.; Snape, J.W.; Worland, A.J. Analysis and evaluation of semi-dwarfing
genes in wheat including a major height reducing gene in variety “Sava”. IAEA-Tecdoc: Semi-dwarf Cereal
Mutants Use Cross Breed. 1982, 268, 7–23.

25. Scarth, R.; Law, C.N. The control of the day-length response in wheat by the group 2 chromosomes.
Z Pflanzenzuchtg 1984, 92, 140–150.

26. Davidson, J.L.; Christian, K.R. Flowering in wheat. In Control of Crop Productivity; Pearson, C.J., Ed.; Academic
Press: Sydney, Australia, 1984; pp. 112–126.

27. Busch, R.H.; Elsayed, F.A.; Heiner, R.E. Effect of daylength insensitivity on agronomic traits and grain protein
in hard red spring wheat. Crop. Sci. 1984, 24, 1106–1109. [CrossRef]

28. Dyck, J.A.; Matus-Cádiz, M.A.; Hucl, P.; Talbert, L.; Hunt, T.; Dubec, J.P. Agronomic performance of hard red
spring wheat isolines sensitive and insensitive to photoperiod. Crop. Sci. 2004, 44, 1979–1981. [CrossRef]

29. Marshall, L.; Nusch, R.; Cholick, F.; Edwards, I.; Frohberg, R. Agronomic performance of spring wheat
isolines differing for daylength response. Crop. Sci. 1989, 29, 752–757. [CrossRef]

30. Worland, A.J.; Appendino, M.L.; Sayers, E.J. The distribution in European winter wheats, of genes that
influence ecoclimatic adaptability whilst determining photoperiodic insensitivity and plant height. Euphytica
1994, 80, 219–228. [CrossRef]

31. Donald, C.M. Competition among crop and pasture plants. Adv. Agron. 1963, 15, 1–118.
32. Holliday, R. Plant population and crop yield: Part I. Field Crop. Abstr. 1960, 13, 159–167.
33. Hudson, H.G. Population studies with wheat: III. Seed rates in nursery and field plots. J. Agric. Sci. 1941,

31, 138–144. [CrossRef]
34. Willey, R.W.; Heath, S.B. The quantitative relationships between plant population and crop yield. Adv. Agron.

1969, 21, 281–321.
35. United States Department of Agriculture, Natural Resources Conservation Service. Web Soil Survey.

Available online: http://websoilsurvey.nrcs.usda.gov/app/WebSoilSurvey.aspx (accessed on 13 January 2020).
36. Fabrizius, E. Home Germination Testing of Wheat Seed; Kansas State Univ.: Manhattan, KS, USA; Kansas State

Univ. Ext.: Manhattan, KS, USA, 2007; e-Update 98.
37. Wiersma, J.J.; Ransom, J.K. The Small Grains Field Guide; North Dakota State Univ.: Fargo, ND, USA;

North Dakota State Univ. Ext.: Manhattan, KS, USA, 2012; p. A-290.
38. Large, E.C. Growth Stages in Cereals, Illustration of the Feekes Scale. Plant Pathol. 1954, 3, 128–129. [CrossRef]
39. Ngo, T.H.D. The steps to follow in a multiple regression analysis. In Proceedings of the SAS Global Forum

2012 Conference, Orlando, FL, USA, 22–25 April 2012; SAS Institute Inc.: Cary, NC, USA, 2012. Paper 333.

http://dx.doi.org/10.4141/cjps88-133
http://dx.doi.org/10.1007/BF00015718
http://dx.doi.org/10.1139/b65-123
http://dx.doi.org/10.1023/A:1016069809977
http://dx.doi.org/10.2134/agronj1983.00021962007500050016x
http://dx.doi.org/10.4141/cjps90-033
http://dx.doi.org/10.1111/j.1439-0523.1995.tb00818.x
http://dx.doi.org/10.1093/jhered/esi060
http://dx.doi.org/10.1038/hdy.1975.112
http://dx.doi.org/10.1038/hdy.1976.88
http://dx.doi.org/10.2135/cropsci1984.0011183X002400060023x
http://dx.doi.org/10.2135/cropsci2004.1976
http://dx.doi.org/10.2135/cropsci1989.0011183X002900030043x
http://dx.doi.org/10.1007/BF00039653
http://dx.doi.org/10.1017/S0021859600048474
http://websoilsurvey.nrcs.usda.gov/app/WebSoilSurvey.aspx
http://dx.doi.org/10.1111/j.1365-3059.1954.tb00716.x


Agronomy 2020, 10, 332 21 of 21

40. Sial, M.A.; Arain, M.A.; Javed, M.A.; Jamali, K.D. Genetic impact of dwarfing genes (Rht1 and Rht2) for
improving grain yield in wheat. Asian J. Plant Sci. 2002, 1, 254–256.

41. Pinthus, M.J.; Levy, A.A. The relationship between the Rht1 and Rht2 dwarfing genes and grain weight in
Triticum aestivum L. spring wheat. Theor. Appl. Genet. 1983, 66, 153–157. [CrossRef] [PubMed]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1007/BF00265191
http://www.ncbi.nlm.nih.gov/pubmed/24263770
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Site Description 
	Experimental Approach 
	Data Collection 
	Statistical Analyses and Modeling 

	Results 
	Original Yield Model 
	Tillering Model 
	Reworked Yield Model 

	Discussion 
	Original Yield Model 
	Tillering Model 
	Yield Model Reworked 

	Conclusions 
	References

