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Abstract: Carbon dioxide (CO2) concentration is reported to be the most important climate variable
in greenhouse production with its effect on plant photosynthetic assimilation. A greenhouse study
was conducted using a nutrient film technique (NFT) system to quantify the effect of two different
levels of CO2 (supplemented at an average of 800 ppm and ambient at ~410 ppm) on growth and
nutritional quality of basil (Ocimum basilicum L.) ‘Cardinal’, lettuce (Lactuca sativa L.) ‘Auvona’, and
Swiss chard (Beta vulgaris L.) ‘Magenta Sunset’ cultivars. Two identical greenhouses were used: one
with CO2 supplementation and the other serving as the control with an ambient CO2 concentration.
The results indicate that supplemented CO2 could significantly increase the height and width of
hydroponically grown leafy greens. Supplemented CO2 increased the fresh weight of basil ‘Cardinal’,
lettuce ‘Auvona’, and Swiss chard ‘Magenta Sunset’ by 29%, 24.7%, and 39.5%, respectively, and dry
weight by 34.4%, 21.4%, and 40.1%, respectively. These results correspond to a significant reduction
in Soil Plant Analysis Development (SPAD) and atLEAF values, which represent a decrease in leaf
chlorophyll content under supplemented CO2 conditions. Chlorophyll, nitrogen (N), phosphorus
(P), and magnesium (Mg) concentrations were generally lower in plants grown in supplemented
CO2 conditions, but the results were not consistent for each species. Supplemented CO2 reduced
tissue N concentration for basil ‘Cardinal’ and lettuce ‘Auvona’ but not Swiss chard, while Mg
concentration was reduced in supplemented CO2 for Swiss chard ‘Magenta Sunset’ only. In contrast,
Fe concentration was increased under supplemented CO2 for basil ‘Cardinal’ only. These findings
suggest CO2 supplementation could increase yield of leafy greens grown with hydroponics and have
varying impact on different mineral concentrations among species.
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1. Introduction

With an increasing human population, the demand for food is also increasing, while the arable
land per capita is being reduced throughout the world [1]. Protected soilless culture can be a good
approach to help in sustainable production for feeding the increasing population. Soilless culture can
be defined as cultivation of nonaquatic plants without use of mineral soil as a growth substrate, while
all essential plant nutrients are provided through a nutrient solution [2]. In recent years, different
systems of soilless culture (e.g., hydroponics, aeroponics, gravel culture, and rockwool culture) have
been adopted worldwide for food production [3]. Cleaner and longer postharvest life of hydroponic
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produce could be one of the reasons for this increase [4,5]. Soilless culture has also been viewed
favorably for its greater efficiency of water use, due to lack of loss from runoff, infiltration, evaporation
from soil [6], and increased nutrient efficiency from recycling the nutrient solution [7]. The nutrient
film technique (NFT) developed by Allen Cooper and his colleagues in 1960 is among the more popular
hydroponic systems for cultivation of leafy greens [8].

A soilless culture production system can be profitable, particularly if the grower maintains
year-round production [9]. However, year-round production of green leafy vegetables may require
supplemental lighting in the winter and shade in the summer [4]. Carbon dioxide supplementation can
be equally beneficial as light supplementation due to its effect on plant photosynthetic assimilation [10].
However, CO2 supplementation is most beneficial in autumn, spring, and winter when the ventilation
system is closed [11]. Mortensen [10] reported that the advantages of CO2 enrichment in the
greenhouse atmosphere were detected as early as the nineteenth century, but the technique was
not used commercially until the 1960s when both cheap sources of high-purity CO2 and gas-tight
greenhouse constructions became available [10,12].

A study showed that the CO2 concentration inside a sealed greenhouse can be as low as 150 ppm
during the day, and CO2 supplementation was required in winter for optimum production of cucumber
(Cucumis sativus L.) [13]. Similarly, a 30% increase in photosynthesis assimilation and growth of lettuce
(Lactuca sativa L.) was reported as a result of CO2 supplementation in the greenhouse environment [9,10].
Furthermore, Both and colleagues [9] reported that a CO2 level of 400–600 µmol mol−1 is suitable for
hydroponic culture of lettuce. In addition to the benefits of increased production, CO2 supplementation
is reported to reduce transpiration in lettuce [4].

Greenness of leafy vegetables is an indicator of carotene content [14] as well as an influential
trait affecting consumer preference and acceptability [15]. It was reported that CO2 supplementation
can result in increased or decreased leaf chlorophyll content of leaves [16,17]. At the same time,
meta-analysis conducted by Dong et al. [18] reported that CO2 supplementation had no effect on
chlorophyll concentration. Similarly, when basil (Ocimum basilicum L.) was grown under 1500 ppm CO2,
interveinal chlorosis was observed due to the accumulation of large grains of starch [19]. Chlorophyll
meter readings using a Soil Plant Analysis Development (SPAD) meter can serve as an indicator of
greenness for green leafy vegetables [20]. In addition, these chlorophyll meters can serve as good
non-destructive indicators of nutrient content of leafy greens as significant correlations between
chlorophyll meter readings and nutrients like nitrogen (N), potassium (K), and phosphorus (P) have
been reported in the literature [21–23]. Another important characteristic of leafy green vegetables is
their nutritional quality, which is also reported to be affected by supplementation of CO2 in the growth
environment. It is reported that CO2 supplementation results in a decrease in nitrate concentrations of
about 26% and 19% in fruit and leafy vegetables, respectively [16].

Humans have been consuming herbs for thousands of years. In the past as well as today, herbs
are used for cosmetic, medicinal, and culinary purposes [24]. Tyson et al. [25] reported that herbs
cover more than 18% of greenhouse acreage in the United States and were the third most grown
crop in greenhouses. Similarly, year-round productions of leafy greens in greenhouses are gaining in
popularity in the United States [26]. Although many studies have covered herbs and leafy greens in
greenhouse production, very few have explored how greenhouse CO2 supplementation affects the
growth and nutritional quality of these crops. Therefore, the objective of this study is to determine the
effect of greenhouse CO2 supplementation on yield and nutritional quality of lettuce, basil, and Swiss
chard (Beta vulgaris L.) grown hydroponically in an NFT system.

2. Materials and Methods

2.1. Plant Material and Growth Conditions

Seeds of ‘Auvona’ open-heart romaine lettuce, ‘Magenta Sunset’ Swiss chard, and ‘Cardinal’ basil
were obtained from Johnny’s selected seeds (Winslow, ME, USA). Seeds were sown in rockwool starter
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cubes (1.5 cm3) with 98 cubes to a sheet (Grodan, Milton, Ontario, Canada) on 20 January 2016 and were
transplanted into NFT tables (Hydrocycle 4-inch Pro NFT series system; Growers Supply, Dyersville,
IA, USA) on 25 February 2016 (35 days after seeds were sown) at the Oklahoma State University (OSU)
Department of Horticulture and Landscape Architecture Research Greenhouses (Stillwater, OK, USA).
Each table had 10 channels measuring 10 cm wide, 5 cm deep, and 366 cm long. Channel lids had 18
predrilled circular holes 3.5 cm in size spaced 20.3 cm on center. One transplant was placed in each slot
with 15 plants per species per table. The NFT channels had a slope of 2.8% between the irrigation and
drainage end, and the water flowing along this slope was collected in a tank and recirculated by a
pump to the irrigation pipe. The experiment was repeated with an additional planting of seedlings on
28 February 2017.

Hydroponic fertilizer 5N-4.8P-21.6K (Peter’s, J.R. Peters Inc., Allentown, PA, USA) and calcium
nitrate (Haifa North America, Altamonte Spring, FL, USA) were used as fertilizer [24]. Tap water with
an electrical conductivity (EC) of 0.5 dS m−1 and a pH of 7.8 was used to prepare the nutrient solution.
In the tank, 147.41 g of 5N-4.8P-21.6K and 97.5 g of calcium nitrate were added to make 150 ppm
of N. In 2-week intervals, the tanks were flushed and refilled to remove the excess nutrient buildup.
The EC of all the nutrient solutions was maintained at 1.5–2.5 dS m−1, and the pH was maintained at
5.5 to 6.5 as recommended by Singh and Dunn [27]. The pH and EC of each solution was checked and
maintained every third day. The nutrient solution pH was maintained using pH up and pH down
solutions (General Hydroponics, Santa Rosa, CA, USA), whereas EC was maintained by adding water
if the EC was high and adding nutrient solution in the same proportion of both bags if the EC was less
than the recommended limit.

2.2. Experimental Setup

The study was conducted in a split-plot design. Two identical greenhouses were used and one
of the greenhouses was fitted with a natural gas-burning CO2 generator (Johnson Gas Appliances,
Cedar Rapids, IA, USA) in the middle of the greenhouse. The CO2 generator was set to produce a
daily average of 800 ppm of CO2 by burning natural gas (Figure 1) during supplementation period.
The generator was automatic and turned on from 6:00 a.m. to 14:00 p.m. A CO2 monitor (FLIR
Commercial System Inc., Nashua, NH, USA) monitored the CO2 concentration in both greenhouses.
Both greenhouses were set at 21/18 ◦C day/night temperature and exposed to natural photoperiod
resulting in a daily light integral of 12 to 14 mol m−2 d −1 as measured using a data logger (T & D
Corporation, Nagano, Japan). The average relative humidity for the greenhouse was 28%. Each species
with CO2 treatment had 15 replicate plants. Similar methods described above were followed for the
second study.

2.3. Data Collection

Data were collected 46 days after transplanting of plugs in the NFT system. Each plant was
scanned using two different chlorophyll meters (SPAD-502, Spectrum Technologies, Aurora, IL, USA;
and atLEAF, FT Green, Wilmington, DE, USA) at the time of harvest. For each plant, SPAD and atLEAF
readings were taken from three mature leaves representing the base, middle, and top of the plant.
For each plant, the SPAD and atLEAF readings were recorded as the average of single readings at
the tip, base, and blade leaves of a plant. Plant height (from top of the table to plant tip), diameter
(average of diagonal width), specific leaf area (SLA), total leaf area, fresh weight, dry weight, and plant
mineral element concentrations were measured. Total leaf area was measured using a LI-3000C area
meter (LI-COR, Inc., Lincoln, NE, USA). Specific leaf area was calculated as the ratio of one-sided
total leaf area to the total dry weight of a plant. For each species in an experimental unit, three
samples were taken for leaf area measurement and the same samples were used for mineral element
concentrations analysis. After area measurements, leaves were dried in an oven at 57 ◦C for 72 h to
measure dry weight. The samples were then sent to the Soil, Water and Forage Analytical Laboratory
at Oklahoma State University for analysis of leaf mineral element concentrations using a nutrient
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analyzer (TruSpec Carbon and Nitrogen Analyzer; LECO Corp., St. Joseph, MI, USA). For mineral
element concentration, the plant material was digested on a digestion block at 115 ◦C with concentrated
nitric acid. The resulting solution was analyzed for mineral element concentrations on an inductively
coupled plasma spectrometer.
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Figure 1. Average daily value of ambient and supplemental CO2 concentration measured at Oklahoma
State University (OSU) Department of Horticulture and Landscape Architecture Research Greenhouses
(Stillwater, OK, USA) during the study period (average of 2016 and 2017).

2.4. Statistical Analysis

The experiment was analyzed as a split-plot design repeated in time. The whole main plots
were two CO2 concentrations (~400 and an average of 800 ppm) and subplots were assigned from
three species (lettuce, basil, and Swiss chard). Statistical analysis was performed at p > 0.5 using
SAS/STAT software (version 9.4; SAS Institute, Cary, NC, USA). Data were subjected to PROC MIXED
and pdmix800, a macro program used to compute means. To compare differences between treatment
means the Tukey–Kramer test was used.

3. Results

3.1. Basil

Under supplemented CO2 conditions, both the height and width of ‘Cardinal’ were greater as
compared to ambient CO2 conditions (Table 1). Similarly, fresh weight of ‘Cardinal’ was also greater in
supplemented CO2 conditions by 24.7%, over ambient CO2 conditions (Table 1). As a result, the dry
weight of ‘Cardinal’ was also greater under supplemented CO2 conditions. ‘Cardinal’, grown under
supplemented CO2 conditions, was greater in size based on leaf number (data not shown). Carbon
dioxide supplementation resulted in a significant increase of total leaf area of ‘Cardinal’ by 41.9%
(Table 1). The SLA for ‘Cardinal’ was greater in ambient CO2 conditions (260.7 cm2 g−1) as compared to
supplemented CO2 conditions (160 cm2 g−1) (Table 1). Similarly, SPAD and atLEAF values in ambient
CO2 conditions were greater by 5.1% and 6.2% over supplemented CO2 conditions, respectively
(Table 1). The N concentration was lower in ‘Cardinal’ leaves produced under supplemented CO2

conditions, while the Fe concentration was greater (Table 2).
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Table 1. Effect of CO2 treatments (ambient at 400 ppm and supplemented at an average of 800 ppm) on height, width, fresh weight, dry weight, Soil Plant Analysis
Development (SPAD), atLEAF, total leaf area, and specific leaf area values for lettuce ‘Auvona’, Swiss chard ‘Magenta Sunset’, and basil ‘Cardinal’ grown under
nutrient film technique (NFT) in Stillwater, OK, USA in 2016 and 2017.

Carbon Dioxide Height (cm) Width (cm) Fresh Weight (g) Dry Weight (g) SPAD (unitless) atLEAF (Unitless) Total Leaf Area (cm2) Specific Leaf Area z (cm2 g−1)

Basil
Ambient 34.0b y 26.2b y 123.1b y 11.9b y 44.4a y 52.6a y 1644.4b x 260.7a x

Elevated 36.9a 29.8a 158.9a 15.0a 42.2b 49.6b 2333.8a 160.0b
Lettuce

Ambient 26.6a 25.2a 203.8b 19.1b 48.5a 45.8a 4884.5b 271.1b
Elevated 26.5a 25.7a 254.2a 23.8b 45.1b 48.6a 5988.5a 321.6a

Swiss chard
Ambient 48.4b 33.3b 296.8b 26.0b 50.6a 54.8a 2836.4b 105.9a
Elevated 52.8a 35.4a 414.1a 38.4a 47.4b 51.0b 3801.1a 105.8a

z Specific leaf area is the ratio of leaf area of one side of an individual leaf to the dry weight of the same leaf; y Means (n = 30) within a parameter of an individual species followed by the
same letter are not significantly different at p ≤ 0.05; x Means (n = 10) within a parameter of an individual species followed by the same letter are not significantly different at p ≤ 0.05.

Table 2. Effect of CO2 treatments (ambient at 400 ppm and supplemented at an average of 800 ppm) on mineral element concentrations of lettuce ‘Auvona’, Swiss
chard ‘Magenta Sunset’, and basil ‘Cardinal’ grown under nutrient film technique (NFT) in Stillwater, OK, USA in 2016 and 2017.

Carbon dioxide Nitrogen (%) Phosphorus (%) Calcium (%) Potassium (%) Magnesium (%) Sulphur (%) Boron (ppm) Manganese (ppm) Iron (ppm) Zinc (ppm)

Basil
Ambient 5.1a z 0.6a 2.6a 2.97a 0.86a 0.30a 36.70a 57.96a 135.38b 49.90a
Elevated 4.6b 0.5a 2.5a 3.21a 0.84a 0.29a 40.46a 55.93a 239.30a 48.75a

Lettuce
Ambient 4.3a 0.6a 1.8a 5.68a 0.63a 0.28a 49.93a 99.90a 154.40a 38.90a
Elevated 3.7b 0.4b 1.6a 5.12a 0.81a 0.26a 47.51a 95.20a 195.01a 32.45a

Swiss chard
Ambient 4.6a 0.3b 1.7a 4.38a 1.14a 0.37a 61.93a 108.03a 97.01a 35.75a
Elevated 4.4a 0.5a 1.4a 4.55a 0.70b 0.33a 59.68a 71.08a 137.55a 39.96a

z For each species, means (n = 6) within a column with the same letters are not significantly different at p ≤ 0.05.
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3.2. Lettuce

There was no significant difference in height and diameter of ‘Auvona’ between different CO2

treatments (Table 1). Fresh weight of ‘Auvona’ was greater (24.7%) in supplemented CO2 conditions as
compared to ambient CO2 conditions (Table 1). ‘Auvona’ plants were compact and weighed more
but were of equal size in visual appearance (Figure 2). However, a physiological disorder of tipburn
on inner leaves at a later growth stage was observed under supplemented CO2 conditions, while the
plants under ambient conditions were healthy. Total leaf area for ‘Auvona’ was also greater (22.6%)
under supplemented CO2 conditions as compared to ambient CO2 conditions (Table 1). Therefore,
the SLA of ‘Auvona’ was greater in supplemented CO2 and was 271.1 and 321.6 cm2 g−1 in ambient
and supplemented CO2, respectively (Table 1). The SPAD values for ‘Auvona’ were greater in ambient
CO2 conditions as compared to supplemented CO2 conditions (Table 1). However, there was no
significant difference in atLEAF values between different CO2 treatments. For foliar mineral element
concentrations, N and P concentrations were greater in ambient CO2 conditions, while there was no
significant difference among the two CO2 treatments for concentrations of other mineral elements
(Table 2).
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3.3. Swiss Chard

For ‘Magenta Sunset’, CO2 supplementation also resulted in increased height and plant width
(Table 1). A greater (39.5%) fresh weight under supplemented CO2 conditions was observed between
ambient (296.8 g) and supplemented CO2 (414.1 g) conditions (Table 1). Due to the greater number
of leaves and greater plant size, the total leaf area of ‘Magenta Sunset’ also increased by 34% under
supplemented CO2 conditions (Table 1). In contrast to lettuce ‘Auvona’ and basil ‘Cardinal’, there was
no significant difference in the SLA in ‘Magenta Sunset’. The SPAD and atLEAF values for ‘Magenta
Sunset’ were greater under ambient CO2 conditions in comparison to supplemented CO2 conditions
(Table 1). Among the different foliar mineral element concentrations, P and Mg concentrations were
greater under ambient CO2 conditions as compared to supplemented CO2 conditions (Table 2).

4. Discussion

During winters, greenhouses are not ventilated in order to keep them warmer; may result in
depletion of greenhouse CO2 concentrations below ambient CO2 concentrations and suppression of
photosynthesis and growth of vegetables [28,29]. Therefore, if greenhouses are supplemented with CO2

during this period it can result in increased growth rate due to increased photosynthesis [30]. Similar to
the present study, the growth rate of lettuce was reported to increase by 30% under supplemented CO2

conditions, presumably due to an increase in the rate of photosynthetic assimilation [31]. However,
the response of C3 plants in terms of photosynthetic acclimation is specific [32] and shows a positive
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response up to a certain concentration of CO2 only. Above 800–1000 ppm, some species may reach a
saturation point and net photosynthesis does not increase with increasing CO2 [33].

Supplemented CO2 increases carbohydrate sink size, which results in increased photosynthetic
accumulation and vegetative growth of different crops. The biomass and dry matter production was
also expected to increase due to increased photosynthetic assimilation and growth rate in all three
species. As expected, all three species under supplemented CO2 showed a significant increase in
fresh and dry matter production. Similarly, previous studies also reported an increase in dry weight
production under supplemented CO2 conditions in hydroponically grown lettuce [8,34], basil [32], and
greenhouse grown Swiss chard ‘Fordhook Giant’ [35] with CO2 concentrations of 1300 ppm, 1500 ppm,
and 72.5 ± 2.2 Pascal, respectively.

Most prior CO2 related studies reported a decrease in the SLA of a plant. Due to the storage of
starch in leaves, the leaves of peanuts (Arachis hypogaea L.) had greater dry weight at 800 and 1200 ppm
as compared to ambient (400 ppm) and resulted in a higher SLA [33]. However, Harmens et al. [36]
explained that a decrease in SLA simply cannot be explained through increased photosynthesis and
accelerated growth of plants under supplemented CO2. Rather, SLA depends on how assimilates
are distributed in shoots and roots during various growth stages. Thus, considering both root and
shoot parameters in future studies will help in understanding species specific nature of partitioning of
assimilates in the roots and shoots.

Similar to the present study, Gillig et al. [32] also reported a significant decrease in chlorophyll
level in hydroponically grown basil when grown at 400 and 1500 ppm CO2. Similarly, development of
interveinal chlorosis was observed due to the accumulation of large grains of starch in basil grown
under 1500 ppm CO2 concentration [17]. The chlorophyll level under supplemented CO2 can be
explained by movement of N to other sinks or it may be due to degradation of the chlorophyll [37].
Another possible reason explaining a decrease in chlorophyll content is accumulation of non-structural
carbohydrates under supplemented CO2 [38]. These non-structural carbohydrate accumulations are
generally thought to physically distort the chloroplast [39].

Tissue N concentration of above-ground tissue is reported to be lowered by 10–15% as a result
of CO2 supplementation in many species [40,41]. Studies related to leaf nutrient content in cotton
(Gossypium hirsutum L.) [42], chrysanthemum (Chrysanthemum × morifolium Ramat.‘Fiesta’) [43], and
hydroponically grown lettuce (‘Mantilla’) [44] reported a decrease in leaf N and P concentrations,
which corresponds to results in our study, but the response was inconsistent among species.
A robust single mechanism for lower nutrient content under supplemented CO2 has not yet been
developed. The hypothesis has been described in previous studies which include dilution of N due to
increased carbohydrates, decreased N uptake, decreased N demand, and reduced transpiration [45] of
crops [41,46]. It was reported that CO2 supplementation limits the uptake of N and the synthesis of
nitrogenous compounds of vegetables by 9.5% [47]. In the literature, it was reported among different
mineral elements that Fe concentration experienced the greatest decrease (31%) in leafy greens grown
under supplemented CO2 conditions [17]. In the current study, contrasting results were seen for basil
‘Cardinal’ where Fe concentration increased significantly in CO2 supplemented conditions. Similarly,
an increase in leaf Fe concentration in hydroponically grown lettuce (‘Mantilla’) was reported under
supplemented CO2 conditions [44]. The possible explanation for this increase in Fe concentration
in some cases could be an increase in root nitric oxide levels under Fe-limited and elevated CO2

conditions [48]. Nitric oxide was indicated as a signal molecule involved in playing a role in regulating
gene expression during Fe deficiency [49]. It is possible that the Fe concentration in the nutrient
solution may have gone below the basil requirement and increased nitric oxide in roots may have
upregulated Fe acquisition response under supplemented CO2 conditions. However, an increase in
Fe concentration of leafy greens when grown in supplemented CO2 has beneficial effects for human
nutrition [50]. Duval et al. [46] reported that the effect of supplemented CO2 on plant nutrient content
depends on available N, tissue type, species, and nutrient ions. Some nutrients respond well, and
some are not affected by supplemented CO2.
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Tipburn is a physiological disorder in lettuce which is generally associated with distribution
of calcium (Ca) ions within plant leaves [51]. A lower rate of transpiration and high humidity are
environmental factors affecting Ca uptake and cause localized tipburn. The use of horizontal air flow
(HAF) fans in the greenhouse can be a potential solution to decrease tip burn losses by increasing
transpiration and lowering relative humidity. Another reason for the development of necrotic brown
spots in the margin of developing leaves is an inability to meet Ca demand of a quickly growing plant
(due to supplemented CO2, high light intensity, and greater fertilizer rate) causing lower distribution
of Ca to inner leaves [52]. Additionally, Gilliham et al. [53] reported that translocation of Ca in plants
is predominated by an apoplastic pathway and rate of transpiration determines the Ca concentration
in plant tissue. The distribution of Ca in plant tissue is heterogeneous and the concentration of Ca
might differ between inner and outer leaves depending upon the growing environment [54]. Plants
grown with supplemental CO2 show lower rates of transpiration due to reduced stomatal conductance.
A lower rate of transpiration might have resulted in a lower Ca concentration in inner leaves resulting
in tipburn [8]. Although there was no significant difference in Ca concentration of plants grown in
ambient and supplemented CO2 during whole plant mineral elements analysis, there might be a
difference in inner and outer leaf Ca concentrations, which was not considered during the study. Since
environmental factors (lower transpiration and higher humidity) could be the cause of tipburn under
supplemented CO2; vertical air flow within greenhouses could be a feasible solution for the tipburn
problem [52].

5. Conclusions

Results suggest that supplemented CO2 has significant potential to increase growth and
development of leafy greens grown in NFT systems. Increased growth rate could result in early
harvest and more crop cycles each year and thereby help in feeding the increasing world population.
The growth response of different species varied, but this study showed increased growth of all three
species. Supplementing CO2 in greenhouse environments during growth of hydroponically grown
leafy greens may also result in lighter green (due to low chlorophyll content) produce which may
impact the marketability of the produce. Physiological disorders such as tipburn in ‘Auvona’ may also
reduce produce quality when grown under supplemented CO2 conditions. For mineral concentrations,
the study suggests that CO2 supplementation may have both a positive and negative effect as lower
leaf N concentration might affect available protein, while greater Fe concentration in our food when
grown with a nutrient solution containing 2.30 ppm of Fe is a desired quality. Thus, future studies
should examine the nutritional aspect and physiological changes in nutrient and water uptake of crops
grown in supplemented CO2 conditions and what role HAF fans and air movement have on overall
plant quality.
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