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Abstract: Exploring the maximum grain yields (GYs) and GY gaps in maize (Zea mays L.) can be
beneficial for farmer to identify the GY-limiting factors and take adaptive management practices
for a higher GY. The objective of this work was to identify the optimum maize plant density
range and the ways to narrow maize GY gaps based on the variation of the GYs, dry matter (DM)
accumulation and remobilization with changes in plant density. Field experiments were performed
at the 71 Group and Qitai Farm in Xinjiang, China. Two modern cultivars, ZhengDan958 and
ZhongDan909, were planted at 12 densities, ranging from 1.5 to 18 plants m−2. With increased
plant density, single plant DM decreased exponentially, whereas population-level DM at the pre-
(DMBS) and post- (DMAS) silking stages increased, and the amount of DM remobilization (ARDM)
increased exponentially. Further analysis showed that plants were divided four density ranges:
range I (<6.97 plants m−2), in which no DM remobilization occurred, DMBS and DMAS correlated
significantly with GY; range II (6.97–9.54 plants m−2), in which the correlations of DMBS, DMAS,
and ARDM with GY were significant; range III (9.54–10.67 plants m−2), in which GY and DMAS were
not affected by density, DMBS increased significantly, and only the correlation of DMAS with GY
was significant; and range IV (>10.67 plants m−2), in which the correlations of DMBS and ARDM
with GY decreased significantly, while that of DMAS increased significantly. Therefore, ranges I and
II were considered to be DM-dependent ranges, and a higher GY could be obtained by increasing
the population-level DMAS, DMAS, and ARDM. Range III was considered the GY-stable range,
increasing population-level DMBS, as well as preventing the loss of harvest index were the best way
to enhance maize production. Range IV was interpreted as the GY-loss range, and a higher GY could
be obtained by preventing the loss of HI and population-level DMAS.

Keywords: optimum plant density; grain yield gaps; GY-limiting factors; dry-matter-dependent
range; grain-yield-stable range

1. Introduction

A significant grain yield (GY) gap between the potential and actual farm GY was reported by
many researchers in maize (Zea mays L.) [1,2]. Narrowing the GY gap was one ways of increasing maize
GY, and it can be narrowed by taking adaptive cultivation practices, such as fertilizer application,
maize varieties, irrigation, sowing time, sowing density, and row and plant spacing [3,4]. The improved
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actual farm GYs by those cultivation practices were mainly attributed to an increasing maize dry matter
(DM) accumulation or remobilization to the ear during maize growth stage [5,6].

In maize cultivation, plant density has the most significant influence on DM accumulation
and partitioning, as well as on GY gaps [5–8]. A higher plant density increases the interception
of photosynthetically active radiation by the canopy [9], thereby promoting population-level DM
accumulation, especially for early varieties [10,11]. The relationship between population-level DM
accumulation and maize plant density is linear within a certain range [12,13]. In addition, the higher
accumulation rate of DM at the pre-silking stage results in greater allocation of assimilates in
reproductive sinks, benefiting differentiated spikelets [10,14,15]. However, once the plant density of
maize varieties exceeds a certain level, the interception of photosynthetically active radiation by the
canopy increases, while the efficiency of the conversion of the intercepted photosynthetically active
radiation to DM (or GY) decreases [16,17]. Consequently, the supply of photosynthetic products
will be insufficient, resulting in kernel abortion [18,19]. Although higher plant density promotes the
allocation of photosynthetic products to the kernels, the GY will be low (<20%), attributable to the
low levels of assimilates available before the silking stage [5,6]. These analyses suggested that the
amount of DM (from the pre-silking stage) transferred to GY does not compensate for yield reduction,
nor does increasing plant density compensate for reductions in single-plant DM accumulation or
single-plant GY. The response of the population-level GY is usually parabolic with increasing plant
population density, while the highest population-level GY is obtained only within a narrow range
of plant population density, as well as the GY gaps still exist among different plant densities [8,20].
DM accumulation and partitioning are the basis of maize grain productivity [6,7]; thus, studying
variations in GY, DM accumulation, and partitioning with changes in plant density can help identify
the optimum maize plant density and ways to take adaptive management practices for narrowing
maize GY gaps.

Many methods for determining suitable maize plant densities have been studied. Some of
these showed that the optimum plant population density can be evaluated using the relationship
between population-level GY and plant population density because the population-level GY responds
to the plant population density in a parabolic fashion; the suitable plant population density was
obtained at the highest population-level GY [21,22]. Other studies confirmed that the optimum plant
density can be evaluated based on Beer’s law equation and the optimum light interception (95% of
light interception) [12,23]. Moreover, there are still some studies showed that the optimum plant
density can be evaluated using maize growth models, such as the Crop-Environment Resource
Synthesis (CERES) Maize model [24–26]. Unfortunately, although there are many reported methods
for calculating the optimum plant density, it is difficult to obtain the ideal value for field maize
production. One reason is that the optimum plant density varies with environmental factors and cultural
practices, such as agro-ecological conditions, management systems, labor, and cash availability [27,28],
and the most important factor is having the optimum plant density within an appropriate range [29].
Although previous studies have examined the variation in maize GY, DM accumulation, and partitioning
with changes in plant density and described the relationship among them [6–10], it is still necessary to
obtain detailed information on their relationships at different plant density ranges, and to identify
ways to narrow maize yield gaps. Therefore, to find out the optimum plant density range of modern
maize hybrid, and identify ways to narrow maize yield gaps, two field density experiments were
conducted. The aims of this study were to: (I) investigate the variability in maize GY, DM accumulation,
and DM remobilization at different plant densities; (II) analyze the relationships among maize GY,
DM accumulation, DM remobilization, and plant density; (III) identify maize DM-dependent, GY-stable,
and GY lose ranges by analyzing the relationships in (II); and (IV) identify the GY-limiting factors
and ways to narrow maize yield gaps. The methods from this study could help the farmer to find the
optimum plant density for a new hybrid maize, and take an effective way to management the maize
for a higher GY.
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2. Materials and Methods

Field experiments were conducted as described in [27]. Two field-density experiments were
conducted at two typical high-yield sites in 2010, 2011, and 2012: one at 71 Group (43◦30′ N, 83◦13′ E),
Xinjiang, Northwest China, and the other at Qitai Farm (43◦50′ N, 89◦46′ E), Xinjiang, Northwest China.
The soil at the two sites was calcareous soil; the soil chemical properties at the start of the experiment
are described in Table 1. The field experiments were conducted using a split-plot design with three
replicates, with the plant density treatments in the main plots and the maize hybrids in the subplots.
Based on our team’s results in previous studies of the changes in maize hybrids, plant density, and GY
at Ningxia University Farm, Bole, 71 Group, and Qitai Farm in northwestern China, 12 stand densities
(range 1.5 to 18.0 plants m−2, density gradient 1.5 plants m−2) and two maize hybrids (ZhengDan958
and ZhongDan909) were chosen. Information on the hybrids was given in Table 2; both were the
dominant hybrids grown in China at the time of their release [22].

Table 1. Soil chemical properties in experimental fields.

Experiment
Sites

Alkali–Hydrolyzed
Nitrogen
(mg kg−1)

Available Phosphorus
(mg kg−1)

Available Potassium
(mg kg−1)

Organic Matter
(mg kg−1)

pH

Qitai Farm 82.1 63.2 139.9 16.1 8.1
71 Group 78.3 60.1 89.7 10.4 7.8

Table 2. Details of maize hybrids used.

Hybrids Parent Combination Breeding Institution Maturity Type Release
Year

ZhengDan958 Zheng58 × C7–2 Institute of Crop Sciences, Henan Academy
of Agricultural Sciences, Henan province Late maturity 2000

ZhongDan909 Zheng58 × HD568 Institute of Crop Sciences, Chinese
Academy of Agricultural Sciences, Beijing Late maturity 2011

Note: Official date of variety release.

The plots were 10 m long and 6 m wide and contained 10 maize rows. Based on the chemical
profile of the soil and a maximum expected yield of 18 Mg ha−1 [30], the plots were treated with
75 kg ha−1 potassium sulfate, 75 kg ha−1 urea, and 150 kg ha−1 super phosphate before maize sowing;
on an additional 800–850 kg ha−1, urea was applied four or five times (150–200 kg ha−1 urea each time).
The maize irrigation intervals and duration were in accordance with local field management practices.
Irrigation was applied 8–10 times using drip irrigation during the growing stage (600–650 m3 ha−1 each
time). To prevent late lodging and harden the seedlings, no irrigation or urea was provided 150 days
after sowing. At each experimental site, the crops were kept free from pests, weeds, and diseases using
standard approved pesticides. Further information can be found in [23,27].

At the silking and mature stages, five plants in the center row of each subplot were continuously
selected. The different plant pa rts were separated (i.e., stem, leaves, husks, and grain). The DM
samples were dried to a constant weight at 75 ◦C and weighed.

The amount of DM accumulation pre-silking (DMBS) was measured at 2 days after the silking stage.
The amount of DM accumulation post-silking (DMAS) and DM remobilization (ARDM) were

calculated as described in Equations (1) and (2):

DMAS = DM accumulation at the mature stage (DMM) −DMBS (1)

ARDM = DMBS− (DMM−GY) (2)

At the physiological maturity stage, a 10 m2 area (the four center rows) in each plot was harvested
manually and the grain mass was measured, the total numbers of plants and ears were counted,
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and the harvest plant density was determined. Twenty representative ears were chosen from the ears
harvested in each plot and the grain mass per ear was counted for each ear, grain moisture content
measured with a portable moisture meter (PM8188; Kett Electric Laboratory, Tokyo, Japan), and grain
weight was determined at a 14% moisture content.

The differences according to the date were compared using one-way analysis of variance (ANOVA)
at a 0.05 level of probability, followed by Duncan’s test and the t-test. Correlations between the GY,
DM accumulation, DM remobilization, and plant density were simulated using linear, logarithmic,
and quadratic models, and the power model with the highest significant Pearson’s correlation coefficient
was chosen as having a better fit. All statistical analyses were performed using statistics analysis
system (SAS) statistical software (ver. 9.0; SAS Institute, Cary, NC, USA).

3. Results

3.1. Single-Plant DM Accumulation

Plant density significantly affected single-plant DM. At the pre-silking stage, the single-plant
DMBS decreased as the plant density increased, and the relationship between them fit a linear equation
(Figure 1A). The same trend was found at the post-silking stage (Figure 1B); the single-plant DMBS
also decreased as the plant density increased, and the relationship between the two variables could be
described with a logarithmic equation. The above results show that a higher plant density had a poor
effect on the single-plant DMBS. The DMBS/DMAS increased significantly with plant density, and the
relationship between the two variables could be described by an exponential equation (Figure 1C).
Analysis of the variation of single-plant DMBS and DMAS in different maize growing conditions
showed that only hybrids and plant density influenced single-plant DMBS and DMAS significantly
(Table 3).
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Table 3. Analysis of variance of DM at per (DMBS) and post-silking (DMAS) stage, DM remobilization
(ARDM) and the grain yield (GY) for ZhengDan958 and ZhongDan909.

Indexes Hybrid (H) Year (Y) Density (D) H × Y H ×D Y × D H × Y × D

DMBS

Single plant F 0.08 4 180.65 4.57 0.33 0.42 0.4
P 0.78 0.02 <0.001 0. 1 0.98 0.99 0.99

Population
level

F 5.26 0.45 225.42 1.07 0.98 0.95 0.68
P 0.03 0.64 <0.001 0.35 0.47 0.54 0.84

DMAS

Single plant F 7.36 1.13 1470.38 3.77 0.88 0.63 0.44
P 0.01 0.33 <0.001 0.03 0.56 0.88 0.98

Population
level

F 4.81 0.85 287.53 0.57 0.94 0.92 0.67
P 0.03 0.43 <0.001 0.57 0.51 0.57 0.85

ARDM

Single plant F 0.42 0.11 1812.54 9.14 0.44 0.98 0.99
P 0.52 0.9 <0.001 <0.001 0.93 0.5 0.49

Population
level

F 6.53 2.31 698.08 1.54 1.31 1.2 1.08
P 0.1 0.11 <0.001 0.22 0.24 0.28 0.39

GY

Single plant F 7.37 1.34 1209.4 2.86 0.94 0.63 0.41
P 0.01 0.27 <0.001 0.06 0.51 0.89 0.99

Population
level

F 4.14 0.62 280.23 0.48 0.86 0.83 0.68
P 0.05 0.54 <0.001 0.62 0.58 0.68 0.84

Note: F indicates F value; P indicates P value.

3.2. Population-Level DM Accumulation

Plant density significantly affected population-level DM. The variation of population-level DM
with increasing of plant density was opposite to that of single-level DM accumulation per plant. At the
pre-silking stage, the population-level increased as the plant density increased, and the relationship
between the two variables fit a linear equation (Figure 2A). At the post-silking stage, the population-level
DMBS increased quadratically as the plant density increased, and the highest population-level DMAS
(16.84 t ha−1) was obtained at a plant density of 9.54 plants m−2, a point referred to as point “O”
(Figure 2B). Analysis of the variation of population-level DMBS and DMAS in different maize growing
conditions showed that only hybrids and plant density influenced population-level DMBS and DMAS
significantly (p < 0.01) (Table 3).
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3.3. The Remobilization of DM

Plant density significantly affected the remobilization of DM. At the single-plant level, ARDM
increased as the plant density increased, and the relationship between the two variables fit a logarithmic
equation (Figure 3A). The same trend was found at the population-level (Figure 1B), ARDM also
increased as the plant density increased, and the relationship between the two variables could be
described with a quadratic equation (Figure 3B). Further analysis showed that DM remobilization
occurred at a plant density >6.97 plants m−2, but at a plant density <6.97 plants m−2 ARDM was
<0, which means that there was no DM remobilization. Analysis of the variation of population-level
DMBS and DMAS in different maize growing conditions showed that only plant density influenced
population-level ARDM and single plant ARDM significantly (Table 3).
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3.4. The Grain Yield and Its Composition

Plant density significantly affected the GY and its composition (Table 4). At the single plant
level, GY decreased as the plant density increased, and the relationship between the two variables
fit a logarithmic equation [27]. At the population-level, GY increased quadratically as the plant
density increased. Further analysis showed that highest population-level GY occurred at a plant
density of 10.57 plants m−2 [27]. Harvest index (HI) decreased as the plant density increased, and the
relationship between the two variables fit a cubic-curve equation [27]. Grain number and 1000-grain
weight decreased linearly as the plant density increased. Analysis of the variation of single and
population-level GY in different maize growing conditions showed that only plant density and hybrids
influenced single and population-level GY significantly (p < 0.01) (Table 3).

3.5. Division of Plant Density Ranges

Further analysis of the relationships between population-level DMBS (Figure 2A), population-level
DMAS (Figure 2B) and plant density showed that the respective regression equations converged
at a point designated as O’ (Figure 4). At this point, population-level DMBS was equal to
population-level DMAS, occurred at a plant density of 10.67 plants m−2, and the population-level
DM was 18.36 T ha−1. Accordingly, at a plant density <10.67 plants m−2, population-level DMBS was
lower than population-level DMAS. At a plant density >10.67 plants m−2, population-level DMBS
was higher than population-level DMAS. The relationship between population-level DMAS and plant
density in this study was best described by a quadratic equation, with the highest DMAS per area
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occurred at 9.54 plants m−2 (Figure 2B), such that the plant density at O was lower than that at O’
(Figure 4). Therefore, at a population-level DMAS of 18.36 t ha−1, the corresponding densities occurred
at 8.4 (point O”) and 10.67 plants m−2 (point O’). This result implies that a plant density between
8.4 and 10.67 plants m−2 is an important range for population-level DM. Taking the single plant
ARDM into account (DM remobilization occurred at a plant density >6.97 plants m−2) (Figure 3A),
we then divided the plant density into four ranges: <6.97, 6.97–8.4, 8.4–10.67, and >10.67 plants m−2.
Because population-level GY increased quadratically as the plant density increased, and highest
population-level GY occurred at a plant density of 10.57 plants m−2 (Table 4), four plant density ranges
can be also considered as four different population-level GY ranges.

Table 4. Variation of the grain yield (GY) and its composition with changes in plant density of hybrids
ZhengDan958 and ZhongDan909.

Density
(Plants m−2)

Grain Number
(Kernels Ear−1)

1000-Grain
Weight (g)

Singe Plant
GY (g Plant−1)

Popoulation-Level
GY (t ha−1)

HI

1.5 578.13 ± 6.81a 368.63 ± 8.73 a 539.16 ± 14.25 l 8.5 ± 0.41 i 0.64 ± 0.01 k
3.0 574.15 ± 7.83 a 363.09 ± 9.65 ab 454.61 ± 15.7 k 13.4 ± 0.34 h 0.61 ± 0.01 j
4.5 567.36 ± 10.21 ab 355.43 ± 10.32 bc 359.76 ± 20.41 j 15.26 ± 0.31 g 0.58 ± 0.01 i
6.0 557.98 ± 11.61 bc 348.92 ± 8.92 cd 287.01 ± 15.88 i 16.51 ± 0.78 f 0.56 ± 0.01 h
7.5 546.77 ± 12.16 cd 341.56 ± 7.21 de 248.51 ± 15.79 h 17.52 ± 0.58 e 0.55 ± 0.01 gh
9.0 533.19 ± 15.02 d 334.08 ± 8.55 e 222.85 ± 11.49 g 18.32 ± 0.7 e 0.54 ± 0.01 fg

10.5 499.4 ± 23.92 e 325.05 ± 8.19 f 193.71 ± 7.92 f 18.79 ± 0.71 d 0.53 ± 0.01 ef
12.0 468.97 ± 23.73 f 318.05 ± 9.22 fg 179.01 ± 6.99 e 19.49 ± 0.66 c 0.53 ± 0.01 e
13.5 433.33 ± 22.69 g 310.4 ± 12.53 gh 163.18 ± 5.35 d 19.52 ± 0.38 bc 0.52 ± 0.01 d
15.0 373.58 ± 26.06 h 302.69 ± 12.17 h 138.13 ± 8.71 c 18.26 ± 0.62 b 0.48 ± 0.02 c
16.5 320.65 ± 20.42 i 293.34 ± 15.11 i 114.32 ± 6.09 b 16.95 ± 0.47 a 0.44 ± 0.01 b
18.0 292.01 ± 16.73 j 285.66 ± 13.88 i 100.68 ± 4.72 a 15.97 ± 0.59 a 0.42 ± 0.01 a

Note: Data are indicated as mean (mean of three-year) value ± standard error; different letters indicates p < 0.05.
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Figure 4. Four plant density ranges were divided based on the variance of population-level DM at per
(DMBS) and post-silking (DMAS) stage with changes in plant density. O indicates the highest DMAS
per area and the corresponding plant density; O’ the point where DMBS per area is equal to DMAS per
area; and O” the point where the DMAS per area is equal to that at point O’.

3.6. The Response of Popolation-Level DMBS, DMAS, ARDM, GY, and HI at Four Different GY Ranges

According to the variation of the population level DMBS, population level DMAS and single plant
ARDM with changes in plant density, four different GY level ranges were divided (Tables 5 and 6):
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Table 5. Relationships between plant density and DM accumulation and remobilization at four different ranges.

Density Range (Plants m−2) n GY (t ha−1) DMBS (t ha−1) DMAS (t ha−1) ARDM (t ha−1) DMM (t ha−1) Harvest Index (HI)

I <6.97 54 y = 1.65x + 7.26
(R2 = 0.862 **)

y = 1.9x + 1.85
(R2 = 0.972 **)

y = 1.59x + 7.95
(R2 = 0.83 **) - y = 3.49x + 9.8

(R2 = 0.93 **)
y = −0.02x + 0.67

(R2 = 0.883 **)

II 6.97–8.4 14 y = 1.1x + 9.37
(R2 = 0.386 *)

y = 1.82x + 1.13
(R2 = 0.542 **)

y = 0.74x + 11.89
(R2 = 0.38 *)

y = 4.08x − 28.81
(R2 = 0.664 **)

y = 2.26x + 15.46
(R2 = 0.5 **)

y = −0.01x + 0.65
(R2 = 0.18)

III 8.4–10.67 18 y = 0.23x + 16.47
(R2 = 0.043)

y = 1.48x + 2.92
(R2 = 0.61 **)

y = −0.09x + 18.91
(R2 = 0.006)

y = 0.31x − 2.36

(R2 = 0.76 **)
y = 1.39x + 21.78

(R2 = 0.364 *)
y = −0.01x + 0.67

(R2 = 0.389 **)

IV >10.67 58 y = −0.76x + 28.33
(R2 = 0.839 **)

y = 1.18x + 5.91
(R2 = 0.913 **)

y = −1.02x + 29.83
(R2 = 0.892 **)

y = 0.25x − 1.54
(R2 = 0.951 **)

y = 0.16x + 35.75
(R2 = 0.15)

y = −0.02x + 0.78
(R2 = 0.91 **)

Note: n, sample size; * p < 0.05; ** p < 0.01.

Table 6. Relationships between GY and DM accumulation and remobilization at four different ranges.

Density Range (Plants m−2) n DMBS (t ha−1) DMAS (t ha−1) ARDM (t ha−1) DMM (t ha−1) HI

I <6.97 54 y = 1.65x + 7.26
(R2 = 0.861 **)

y = 1.02x −0.73
(R2 = 0.997 **) - y = 0.49x + 2.3

(R2 = 0.98 **)
y = −78.26x + 60.28

(R2 = 0.722 **)

II 6.97–8.4 14 y = 0.44x + 11.18
(R2 = 0.378 *)

y = 1.09x + 1.41
(R2 = 0.702 **)

y = 0.02x + 0.81
(R2 = 0.381 *)

y = 0.35x + 6.62
(R2 = 0.591 **)

y = 6.06x + 14.71
(R2 = 0.02)

III 8.4–10.67 18 y = 0.19x + 15.39
(R2 = 0.1.07)

y = 0.84x + 3.45
(R2 = 0.779 **)

y = −0.01x + 18.67
(R2 = 0.001)

y = 0.36x + 5.97
(R2 = 0.564 **)

y = 9.98x + 13.34
(R2 = 0.04)

IV >10.67 58 y = −0.62x + 31.5
(R2 = 0.837 **)

y = 0.77x + 5.56
(R2 = 0.99 **)

y = −2.95x + 23.61
(R2 = 0.831 **)

y = −0.29x + 28.98
(R2 = 0.02)

y = 34.74x + 1.51
(R2 = 0.951 **)

Note: n, sample size; * p < 0.05; ** p < 0.01.
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In range I (<6.97 plants m−2), population-level GY, DMBS, DMAS, and DMM correlated
significantly with changing in plant density, but there was no population level ARDM in this density
range, and HI decreased as the plant density increased significantly. Analysis of the relationships
between these indexes and the population-level GY showed that population-level DMBS, DMAS,
and DMM correlated significantly with population-level GY, except for HI. Therefore, this range can be
considered as population level DM independent range.

In range II (6.97–8.4 plants m−2), population-level GY, DMBS, DMAS, ARDM, and DMM correlated
significantly with changing in plant density, but the HI was stable in this density range. Analysis of the
relationships between these indexes and the population-level GY showed that population-level DMBS,
DMAS, ARDM and DMM correlated significantly with population-level GY, except for HI. Therefore,
this range can also be considered as population level DM independent range.

In range III (8.4–10.67 plants m−2), with increasing plant density, population level GY and DMAS
were stable, but population level DMBS, ARDM, and DMM increased significantly. An analysis of the
relationships between these indices and the population-level GY showed that only population-level
DMAS and DMM correlated significantly with population-level GY. Therefore, this range can be
considered as population level GY stable range.

In range IV (>10.67 plants m−2), with increasing plant density, population level DMM was
stable, population-level GY, DMAS and HI decreased significantly, but population-level ARDM
increased significantly. An analysis of the relationships between these indexes and the population-level
GY showed that population-level DMAS and HI correlated significantly with population-level GY,
but DMBS and ARDM decreased significantly. Therefore, this range can be considered as population
level GY-loss range.

4. Discussion

4.1. The Variation of the GY, DM Accumulation, and Partitioning with Changes in Plant Density

Due to improved tolerance to high plant populations and low yield potential per plant, modern
maize hybrids are generally regarded as strongly population-dependent [16,31], and the maximum
population-level GYs are achieved primarily in high plant density populations [19,22], especially in the
super-high maize yield areas [8,29]. Echarte et al. [5] showed that a higher plant density reduces the
time to canopy closure. Tollenaar et al. [7] showed that a higher plant density increases the interception
of seasonal incident radiation and net photosynthesis, and improves the availability of assimilates
for DM accumulation. Similar findings were obtained by Westgate et al. [10] and Toler et al. [11].
Results from Tollenaar et al. [31] and Echarte et al. [32] showed that the HI of maize varieties has
remained at around 50% over the past 70 years, with differences in HI seen only for hybrids grown
under relatively stress conditions [33,34]. Result of this study showed that population-level DMAS,
DMBS, ARDM, and GY increased with increasing planting density, while HI decreased. Those results
were consistent with previously published studies [5–8], but the response of the variation characteristics
to plant densities can be described by a logarithmic equation or a quadratic equation, which were not
coincide with that of previous studies [10,13]. Those differences may be associated with the larger
plant density range and the smaller density gradients, which added new more accurate regression
equation effect in this paper.

4.2. Methods for Determining Suitable Maize Plant Densities

Although maximum GYs are achieved primarily in high-density populations, high density is not
always beneficial for GY, DM accumulation, and remobilization. Result from Borrás et al. [6] showed
that higher plant density accelerates the rate of leaf senescence, reducing post-silking net photosynthesis
and the availability of assimilates for kernel growth, especially at supra-optimal densities. Li et al. [22]
and Sangoi et al. [8] showed that the response of the population-level GY was parabolic with increasing
plant population density, while the highest population-level GY was obtained only within a narrow
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range of plant population density. Therefore, identifying the optimum maize plant density is the best
way for maize hybrids reaching maximum GY.

DM accumulation and remobilization are the basis of maize grain production [35]. Previous studies
showed that population-level DMAS is crucial for the formation of GY [16,36], and that a higher
population-level DMAS improves both assimilate availability for kernel growth and population-level
GY [19]. Thus, the point at which population-level DMBS = population-level DMAS was used for
identifying the optimum maize plant density in current study. According to the current findings,
an equilibrium was obtained at a planting density of 10.67 plants m−2. Considering the relationship
between population-level DMAS and plant density follows a quadratic equation, plant density range
from 8.4 to 10.67 plants m−2 can be seen as an optimum population-level DMBS range. Further analysis
of the variation of the GY, DM accumulation, and partitioning with changes in plant density within
this range (range III), and the result showed that population-level DMBS, ARDM, and DMM increased
significantly with changing in plant density, but population level GY and DMAS were stable, which may
be related to decreasing of HI significantly. Therefore, this plant density range can be also seen as an
optimum maize plant density range, and it was similar with our former research based on the variation
of the population-level GY, DMM, and HI with changes in plant densities (an optimum maize plant
density range from 8.3 to 10.75 plants m−2 was calculated [27]). From the above analysis, it can be
inferred that the current study was a further study based on our previous research, and the optimum
maize plant densities can be also identified by analysis of the variation of the GY, DM accumulation,
and partitioning with changes in plant density.

4.3. Ways of Narrowing Maize Yield Gaps at Different GY Ranges

The studies about high-yield formation and cultivation for improving maize yield have been
carried out by many countries and organizations in the world [15–22], and the focus of those discussions
were mainly on two aspects: one was how to improve potential maize GY [28–30], another was how to
narrow the gap between potential maize GY and farmers’ actual GY [1–9]. Among which, in terms ways
of improving maize GY potential and narrowing the GY gaps were reported. For example, new maize
hybrids with high stress tolerance (density tolerance, disease, and insect resistance) were bred [6,17,28].
High-yield cultivation techniques (advanced chemical control, scientific water management) were
adopted [37–40], and a number of high-yield records were created one after another [41,42]. However,
the GY of potential in the world was generally four times higher than that of farmers [43], and the
difference GYs were founded in different regions, as well as the same region [22,41]. Thus, narrowing the
GY gaps was still one of the important ways to improve the maize GY and maize production efficiency.

Increasing plant density is one of ways to increase the grain yield of modern maize hybrids [11,22,35],
but too high plant density is badly for GY, DM accumulation, and remobilization [20,29,44]. Different
population-level GY can be created by planting different densities. In order to identify ways to enhance
maize production at different GY ranges, the variation of the DM accumulation and partitioning with
changes in plant density and GY at different GY ranges were analyzed.

Within the range I, there was no increase in the population-level ARDM. A significant increase in
population-level DMM was related to increases in population-level DMBS and DMAS. The decrease
in HI can be compensated by increasing population-level DMM, and which were consistent with
our previous study [27]. The significant increase in population-level GY was related to increasing
in population-level DMM, especially in population-level DMAS and DMAS. Therefore, increasing
population-level DMBS and DMAS were the best way for improving population-level GY in this range.

Within range II, HI was stable with increasing plant density. A significant increase in
population-level DMM was related to increases in population-level DMBS, DMAS, and ARDM.
The significant increase in population-level GY was related to increasing in population-level DMM
(population-level DMAS and DMAS) and ARDM. Therefore, increasing population-level DMAS,
DMAS, and ARDM were the best way for improving population-level GY in this range.
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Within range III, there was no increase in the population-level GY and DMAS, A significant
increase in population-level DMM was related to increases in population-level DMBS. Population
level GY was stable with increasing plant density may be related to decreasing of HI significantly.
A significant increase in population-level GY was related to increases in population-level DMAS and
DMM. Therefore, increasing population-level DMBS and preventing the loss of HI were the best way
for improving population-level GY in this range.

Within range IV, population-level DMM was stable with increasing plant density, and it may be
related to increases in population-level DMBS and decreases in DMAS. The decrease in HI was not
compensated by increasing population-level ARDM, and that may be the reason why population-level
GY was decreasing significantly with increasing plant density. A significant increase in population-level
GY was related to increases in population-level DMAS and HI. Therefore, keeping population-level
DMBS and ARDM at a certain level and preventing the loss of HI and population-level DMAS were
the best way for improving population-level GY in this range.

It can be seen from the above analysis that the GY gap between two diffident ranges was obtained,
and which was mainly caused by different maize GY-limiting factors. Therefore, narrowing different
GY gaps should be taken different management practices.

In the current paper, all data were obtained under conditions optimal for the growth and
development of the maize hybrids ZhengDan958 and Zhongdan909, both of which are widely grown in
China, and the results from this study could benefit a better understanding of the relationships among
GY, DM accumulation, DM remobilization, and plant density, and those relationships are essential
for determining optimal plant density and identifying the ways of maximizing the northwest spring
maize yield in China.

5. Conclusions

Plant density significantly affected DM accumulation and remobilization. With changing in plant
densities, the single plant DM accumulation decreased, except for ARDM, while at the population-level,
DMBS increased linearly, DMBS, and ARDM increased quadratically. Further analysis the relationships
between DM accumulation and remobilization and plant density showed that plant density could be
divided into four ranges: range I (<6.97 plants m−2) and range II (6.97–8.4 plants m−2) were considered
to be DM-dependent ranges, and a higher GY could be obtained by increasing the population-level
DMAS, DMAS, and ARDM. Range III (8.4–10.67 plants m−2) was considered the GY-stable range,
and increasing population-level DMBS and preventing the loss of HI were the best way to enhance
maize production. Range IV (>10.67 plants m−2) was interpreted as the GY-loss range, and a higher
GY could be obtained by preventing the loss of HI and population-level DMAS. The methods from this
study could help the farmer to find the optimum plant density for a new hybrid maize, and take an
effective way to management the maize for a higher GY.
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