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Abstract: Climate change may result in increasingly frequent extreme events, such as the unusually
dry conditions that occurred in Germany during the apple growing season of 2018. To assess the
effects of this phenomenon on dormancy release and flowering in apples, we compared irrigated and
non-irrigated orchard blocks at Campus Klein-Altendorf. We evaluated bud development, dormancy
release and flowering in the following season under orchard and controlled forcing conditions. Results
showed that irrigated trees presented longer (39.2%) and thinner shoots compared to non-irrigated
trees. In both treatments, apical buds developed a similar number of flower primordia per cyme (4–5),
presenting comparable development and starch dynamics during dormancy. Interestingly, buds on
non-irrigated shoots exposed to low chill levels responded earlier to forcing conditions than those
on irrigated shoots. However, chill requirements (~50 Chill Portions) and bud phenology under
field conditions did not differ between treatments. In spring, buds on non-irrigated trees presented
a higher bloom probability (0.42) than buds on irrigated trees (0.30). Our findings show that mild
water stress during summer influenced vegetative growth during the same season, as well as the
response of buds to forcing temperatures and flowering of the following season. The differences
between irrigation levels in the phenological responses of shoots under low-chill conditions point to
a so-far understudied impact of water supply on chilling requirements, as well as subsequent bud
behavior. Accounting for the effects of both the water status during summer and the temperature
during the dormant season may be required for accurately predicting future tree phenology in
a changing climate.
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1. Introduction

Apple production, and the cultivation of other temperate fruit trees, is affected by short and
long-term weather variation, which is increasingly being modulated by anthropogenic climate change.
In Germany, annual mean temperature has risen by approximately 1.9 ◦C since 1881 (based on a linear
regression until 2018 [1]). Relative to the period 1971–2000, mean winter temperature is expected to
keep increasing throughout the 21st century, with a total increment between 1.2 and 3.2 ◦C projected for
the representative concentration pathway (RCP) scenario RCP4.5 (characterized by the expectation of
4.5 W m−2 of additional radiative forcing by 2100 compared to pre-industrial conditions) [2]. Compared
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to 1986–2005 and using the scenario RCP4.5, total precipitation during April–September is predicted to
change between about −20% (25th percentile of multi-model distribution) and +10% (75th percentile)
in central Europe by 2046–2065 [3]. These changes may result in more frequent extreme events,
similar to the extraordinary heat and dry weather observed during the apple growing season in
June–September of 2018. Such seasons do not only have immediate impacts, but they may also affect
orchard performance in the following growth period. In fact, tree development in a given season
depends on processes that occurred during the previous year, including the accumulation of reserves
and dormancy induction, as well as flower initiation and differentiation [4,5].

Apple trees are cultivated in a wide range of climates, including temperate and tropical regions [4].
Accordingly, growing techniques have been adapted to a range of temperature and water regimes.
Under drought conditions, where water scarcity limits apple production, regulated deficit irrigation
(RDI) allows maintenance of productive orchards [5,6], although this practice may have undesirable
implications for fruit maturity, quality, and shelf life [7]. On the other hand, RDI has been proposed
as a useful approach to control excessive vegetative growth [8]. In general, water scarcity during
the growing season may affect fruit production by reducing fruit yield and quality [9], as well as by
modifying morphological and physiological traits of trees [10]. According to Naor et al. [11], the yield
of apple trees decreased by 65% in response to reducing irrigation from 7 to 1 mm day−1 under
a medium crop load of ~300 apples per tree. This observation may be explained by water stress directly
affecting fruit growth by influencing the cell division process [12], reducing cell turgor [13] and/or
by limiting energetic resources due to a decrease in photosynthetic rate [14]. Along the same lines,
Bolat et al. [10], working on one-year-old M9 apple rootstocks, demonstrated that cutting irrigation by
50% between mid-July and the onset of dormancy decreased relative shoot length by 67%, probably
caused by a reduction in auxin concentrations. A decrease in soil water content has been associated
with physiological modifications, such as hormone signaling and the activity of reactive oxygen species
(ROS) in plants [15]. Chen et al. [16] concluded that water stress promoted growth cessation during
summer and affected the ontogeny of apple shoots by increasing the production of abscisic acid (ABA)
in roots [17].

The end of the growing season in deciduous forest and fruit trees is characterized by leaf fall and
dormancy induction. During dormancy, all meristems in buds or other plant structures are unable to
perform cell division and cell expansion [18,19]. To resume growth, buds require exposure to low and
subsequent warm temperatures [20]. These thermal needs, denoted by the concepts of chill and heat
requirements (CR and HR, respectively, Faust et al. [21], Luedeling [22]), have been widely studied in
the past [23–25] and used in orchard planning and management [22]. Most studies on CR and HR
estimation assume a sequential relationship between chilling and heating phases, defining a specific
need for each of them [26]. However, some evidence suggests that chill and heat may compensate for
each other under particular circumstances [27,28]. The effect of temperature on dormancy completion
is commonly evaluated by experiments with shoots exposed to forcing conditions [29] or through
statistical approaches applied to long-term datasets [24,30]. An accurate temperature response model
would allow estimation of thermal requirements, as well as the relationship between chill and heat
accumulation during dormancy. This may then facilitate the adaptation of species and/or varieties to
different regions and future climate conditions [22].

In deciduous fruit trees, flower initiation and flowering occur in different growing seasons [31],
since dormancy interrupts flower development during the winter months. Flowers in apple trees
normally differentiate during summer in apical buds on spurs (short shoots) and current-season shoots
(long shoots). However, apical buds can also remain vegetative under particular circumstances (e.g., in
shoots with less than 16 vegetative buds in cv. ‘Golden Delicious’) [4]. The transition from vegetative to
flower buds is modulated by both environmental and physiological factors. Wilkie et al. [4] highlighted
that floral initiation in apples is affected by light conditions, crop load of the previous season, and leaf
area. These factors may lead to physiological changes, such as increasing concentrations of gibberellins
(GAs) due to high crop load, preventing flower induction. Similarly, smaller leaf area due to high
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crop load has been proposed to decrease the concentration of starch in almond spurs, with negative
effects on flower initiation and flowering rate in the following season [32]. After dormancy has been
established, buds only resume growth after fulfilling their temperature requirements (CR and HR) [18]
during a period when trees do not have mature leaves. This implies that bud burst and flowering rely
on stored reserves [33]. Starch has been proposed to play a key role in flower development [34] and
dormancy progression [35]. Starch content in the pistil and anther has been suggested to sustain growth
and cellular differentiation in both Arabidopsis thaliana [36], the annual model plant, and temperate
fruit trees [37,38]. The starch detected in flowers before bloom has been associated with dormancy
and flower quality [34,39], as well as with key reproductive processes, such as pollination [40,41] and
fruit set [39,42,43]. Flower differentiation and the storage of reserves, which occur during the previous
growing season, may be affected by unfavorable environmental conditions during summer and early
fall [44].

Apple is the most important fruit crop in Germany, representing about 50% of the country’s
total fruit production [45]. To evaluate the impacts of the unusual conditions in summer of 2018 in
Germany on apple trees, we compared two orchard blocks under different irrigation regimes (irrigated
vs. non-irrigated). While fruit development during the season allowed maintaining adequate yield
in both blocks, we focused the attention on how natural drought affected bud performance in the
following season. This general aim has been achieved by the following approaches: i) morphological
observations of vegetative growth and reproductive buds; ii) evaluation of dormancy response and
temperature requirements under greenhouse and field conditions; iii) estimation of the level of reserves
(starch) accumulated in the flower meristems prior to flowering; and iv) estimation of the probability
of buds to flower in the subsequent spring.

2. Materials and Methods

2.1. Site and Plant Material

This study was conducted in an experimental orchard of the University of Bonn at Campus
Klein-Altendorf (CKA) in Germany (6◦ 59’ 32” E, 50◦ 37’ 51” N, and 160 m.a.s.l.). CKA is located in the
temperate oceanic climate zone, according to the Köppen-Geiger classification [46]. Specific climatic
conditions of this zone are mild winters and mild summers without dry periods. The records of the
years 1956–2014 show an annual mean temperature of 9.4 ◦C, total annual precipitation of 603 mm,
and a growing season length between 165 and 170 days. The orchard soil is a loess loam (silty loam),
with relatively high water retention capacity.

To evaluate summer drought effects on flowering during the following season, we investigated
six-year-old apple trees cv. ‘Elstar’ grafted onto M9 rootstock, cultivated with a spacing of 1.5 m within
rows, and 3.5 m between rows. The experiment was carried out from June 2018 to May 2019, with the
beginning of this period (June–September 2018) constituting an extraordinarily warm (Figure 1A) and
dry (Figure 1B) growth period. Two independent blocks with similar soil conditions and crop load were
exposed to different irrigation regimes (treatments). One of the blocks (of 0.27 ha and approximately
505 trees) was not irrigated, only receiving water through rainfall: 49 mm in June, 29 mm in July, 19
mm in August, and 37 mm in September. The other block (of 0.39 ha and approximately 743 trees) was
irrigated according to standard orchard procedures, receiving an additional 63 mm in July and 70 mm
in August (Figure 1B), split over a total of nine dates. According to a weather station located in the
orchard, reference evapotranspiration (ET0) was 102 mm in June, 172 mm in July, 136 mm in August,
and 95 mm in September (Figure 1B). Since recommended crop coefficients (kc) for computing the
water needs of apple during the growing season range between 0.9 and 1.2 [47], these figures closely
approximate the trees’ water needs, indicating that trees in this orchard experienced water shortage
during all summer months. Neither of the blocks was fertilized during the growing season to preclude
nutrition-related effects on tree development. Similarly, selected trees for this experiment were not
pruned during winter to preserve the total number of buds formed during the previous season. In this
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study, we made use of what may be considered a natural experiment, exploiting the conditions that
presented themselves in the aftermath of the 2018 drought.

Figure 1. Weather conditions at Campus Klein-Altendorf from 2011 to 2018 for June, July, August,
and September. (A): Mean monthly temperature (◦C) for each year. (B): Precipitation, irrigation,
and reference evapotranspiration (ET0, in mm, indicated by green crosses). In B, boxplots correspond to
the distribution of monthly precipitation for the period 2011–2018. Grey bars represent the precipitation
for the year 2018, whereas red sections correspond to the additional water supplied by irrigation in July
and August.

2.2. Morphological and Developmental Observations on Shoots and Apical Buds in the Field

Once dormancy had been established in December, a total of 240 one-year-old shoots were
randomly selected and labelled in a set of 12 trees per treatment (120 one-year-old shoots per block).
These shoots were characterized by measuring their length, their diameter, at 2 cm from the branch
insertion, and the number of buds. Shoot length and number of buds were used to compute the
average internode length.

Another set of seven trees in each treatment was used for weekly bud sampling from January to
April, when natural bud burst occurred. In these seven trees, a total of four apical buds were randomly
collected on each date from one-year-old shoots and spurs (short shoots <5 cm in length and older than
one year) and subsequently dissected and observed under a stereoscopic microscope (Zeiss Discovery,
V12 Stereo Microscope, Germany) to determine the developmental stage of the flower primordia.
Micrographs were taken with a digital camera (The Imaging Source Camera DFK41BU02.H, Germany),
linked to image processing software (IC Capture 2.4, Germany). Similarly, a total of 60 apical buds were
used to determine, through microscopic observations, the number of flower primordia that composed
the cyme.

2.3. Phenology Observations under Greenhouse and Field Conditions

The phenology of the vegetative and reproductive buds was recorded according to the BBCH
scale [48], which has recently been adapted for apple trees [49]. The phenology of the vegetative buds
was covered by the scale for “principal growth stage 0: bud development” (sub-stages from 00 to 09)
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and “principal growth stage 1: leaf development” (sub-stages from 10 to 19). The phenology of the
reproductive buds was described by the scale for “principal growth stage 5: inflorescence emergence”
(sub-stages from 50 to 59), and bloom time was classified by the scale for “principal growth stage 6:
flowering” (sub-stages from 60 to 69) [48].

To estimate the chill requirement of apple buds and to study its relationship with the heat
accumulation phase of dormancy, we observed bud phenology under greenhouse conditions after
buds had been exposed to different chill levels under field conditions. To this end, we applied the
procedure described in Fernandez et al. [35] with some modifications. In brief, 24 (12 from each block)
out of the previously selected shoots (Section 2.2 of Materials and Methods) were sampled weekly
from 7th December 2018 to 8th February 2019. After sampling, shoots were transferred into a heated
greenhouse (environmental conditions: 13.8 ± 5.1 ◦C; 72.9 ± 12.5% relative humidity) and placed
vertically in 1 L containers with 250 mL of a 5% (w:v) sucrose solution after a cut under water to avoid
cavitation and disinfection treatment (3% CaCl2 w:v). Shoots were maintained inside the greenhouse
for 10 weeks or until an advanced developmental stage (BBCH 60) was recorded in most of the shoots.
The cut was refreshed and disinfected, and the sucrose solution changed every week.

In addition, flower bud phenology was tracked directly on the trees under field conditions. Twenty
individual apical buds were selected and labelled in two trees (10 buds each) per irrigation treatment.
Half of the buds were located on one-year-old shoots and the other half on spurs, where fruits are
usually produced. Observations were carried out weekly from early March to late April.

2.4. Proportion of the Buds that Generated a Cyme

The proportion of apical flower buds that developed a cyme was evaluated in the field on three
trees per treatment, for which five main branches per tree at different heights were selected and labeled.
On 19th February 2019, while trees were still dormant, we determined the total number of apical flower
buds on shoots and spurs. In total, 602 buds were recorded. Out of these, about 65% were located
on one-year-old shoots and about 35% on spurs. At full bloom, on 22nd April 2019, we recorded the
number of buds with fully developed (BBCH 65) cymes.

2.5. Chill and Heat Quantification and Chill Requirement Estimation

Hourly temperatures were obtained from a weather station placed in the orchard and recorded
with a data logger (Tinytag TGP-4500) inside the greenhouse to estimate chill and heat accumulation.
We used the R package chillR [50] to compute chill in Chill Portions (CP) according to the Dynamic
Model [51–53], since this model appears to be the most accurate available model of chill accumulation
during tree dormancy [54,55]. Winter chill was quantified from the 1st of November, the approximate
onset of the dormant season, until the day before shoot sampling (Table 1). Once shoots had been
transferred into the greenhouse, heat accumulation was quantified according to the Growing Degree
Hour model [56]. Following common practice [35], we used the default parameters proposed in the
original publications for both the Dynamic Model and the Growing Degree Hour model.

Table 1. Chill accumulation (in Chill Portions (CP)) in the orchard according to the Dynamic Model.

Date of Sampling Chill Received in the Field (in CP)

7th December 2018 24.9
14th December 2018 29.7
21st December 2018 34.4
28th December 2018 39.4

4th January 2019 44.9
11th January 2019 49.6
18th January 2019 55.5
25th January 2019 56.3
2nd February 2019 63.7
8th February 2019 68.6
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The date of dormancy breaking, or the date the chill requirement was fulfilled, was defined as
the moment (sampling date) for which most of the buds showed a steady response to heat in the
greenhouse and presented at least stage BBCH 51 at the end of the experiment. This was determined
by visual assessment of the heat response plots (shown in Section 3.2). We concluded that the chilling
requirement was fulfilled when additional chill accumulation did not lead to further changes in the
buds’ responsiveness to heat (as indicated by the shape of the heat response curves).

2.6. Starch Evaluation on King Flower Primordia

A total of 48 apical buds were sampled on four dates (24th January, 1st and 13th February, and 7th
March) from shoots and spurs of both the irrigated and non-irrigated treatments (six buds per treatment
per date; three from spurs plus three from one-year-old shoots). These buds were fixed in Carnoy
fixative (ethanol: acetic acid, 3:1 v:v) for 24 h and then moved to 75% ethanol and stored at 4 ◦C.

King flower primordia were separated from the fixed buds and directly stained using
a whole-mount clearing and starch staining solution. Herr’s 4 1

2 clearing solution makes plant
samples transparent [57], allowing detection of starch stained with lugol [58]. This solution is
composed of lactic acid, chloral hydrate, phenol, clove oil, xylene, iodine, and potassium iodide (mixed
at a weight-by-weight ratio of 2:2:2:2:1:0.1:0.5). The solution was applied for 30–45 min, after which
the excess liquid was absorbed with a blotting paper. The stained primordia were photographed
under identical light conditions and camera settings under a stereoscopic microscope (Zeiss Discovery,
V12 Stereo Microscope, Germany) with a digital camera (The Imaging Source Camera DFK41BU02.H,
Germany) linked to image processing software (IC Capture 2.4, Germany). Starch was qualitatively
evaluated by comparing the photographs and classifying them according to a three-level color scale:
low (Figure 2A), medium (Figure 2B), and high (Figure 2C) starch content.

Figure 2. Qualitative starch evaluation according to a three-level color scale. (A): Low starch content
(light brown). (B): Medium starch content (brown). (C): High starch content (dark grey-black). Samples
were taken from flower primordia of apical buds of apple trees.

2.7. Statistical Analysis

All analyses and figures were developed in the R programming environment (version 3.5.3) [59].
Morphological variables, such as the length of internodes and the diameter, were modeled via one-way
analysis of variance (ANOVA). The number of flower primordia observed within the apical buds
was analyzed through generalized linear models (GLMs), assuming a Poisson distribution and using
treatment, bud type, and the interaction of both factors as predictors.

Variation in starch concentrations was analyzed using the Wilcoxon–Mann–Whitney test [60].
We performed separate analyses for each sampling date to test for the effect of irrigation treatment
on the starch concentration. Additionally, we treated the date as a factor to test for differences in the
concentration of starch during winter, independent of the irrigation treatment. We compared starch
concentrations in the flower primordia between all subsequent pairs of sampling dates. Since this
implied testing for multiple null hypotheses (i.e. no differences between observations on subsequent
dates), we applied Bonferroni’s method [61] to adjust the criteria for identifying statistical significance
(p-value correction).
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Phenological observations under both greenhouse and field conditions were analyzed using
ordinal linear regression models (also known as proportional odds models). This approach assumes
that the phenological stages (which are ordered from 0 to 69) and the transitions between them depend
on either continuous or discrete variables, in this case on chill, heat, and irrigation treatment. A small
variation of this approach is the use of nominal effects, which allows the thresholds between stages to
vary in response to some predictors. In brief, we modeled the BBCH stages as a function of chill and
heat accumulation (and their interaction) and used the irrigation treatment as a nominal effect factor.
This enabled us to evaluate whether the irrigation treatment shifted the thresholds between BBCH
stages of apple buds. With the original phenology classification (the BBCH scale), the fitting procedure
of the cumulative link model (maximum likelihood method) did not converge on a well-defined set of
parameters for data collected under greenhouse conditions. Following common procedures to address
this computational problem [62], we reclassified the phenology data. We defined six new classes
according to BBCH stages: 1 for buds at BBCH stage 0; 2 for buds at BBCH stages 51 and 52; 3 for buds
at BBCH stages 53 and 54; 4 for buds at BBCH stages 55 and 56; 5 for buds at BBCH stages 57 and 59;
and 6 for buds at BBCH stage 60. Data collected under field conditions did not need reclassification,
since the analysis worked with the original classes. We then compared the thresholds between BBCH
states in irrigated and non-irrigated treatments under greenhouse and field conditions.

Finally, the probability of success in buds to generate a cyme in the following spring was modelled
using GLMs, assuming a binomial distribution of the data and including shoot type and treatment
as factors. In the case of the total number of buds (independent of shoot type), we only considered
treatment as a factor. To identify differences between groups (i.e., irrigated versus non-irrigated), we
contrasted means using Tukey’s test [63].

3. Results

3.1. Morphological Observations on Shoots and Microscopic Monitoring of Apical Buds

Shoot growth during the summer period was clearly affected by the irrigation treatment. Although
shoots presented similar numbers of buds in both treatments (median of 11 buds per shoot), shoots from
the irrigated treatment had longer internodes (median of 2.27 cm) than those from the non-irrigated
treatment (median of 1.37 cm) (p < 0.001) (Figure 3A). In contrast, the shoot diameter was shorter (but
no significant effect was detected using this data set; p = 0.11) in the irrigated treatment (median of
4.37 mm) than in the non-irrigated treatment (median of 4.76 mm) (Figure 3B).

Apical buds placed on shoots and spurs presented cymes composed of 3–6 flower primordia,
surrounded by leaf primordia and numerous bud scales. No clear effect of irrigation or bud type
on the number of flower primordia that composed the cymes was determined in this experiment.
The majority of cymes (78–100%) presented 4–5 flower primordia (Figure 3C). It is worth noting that in
irrigated trees, buds with six-flower cymes only differentiated at a low rate (6%) (Figure 3C).



Agronomy 2020, 10, 274 8 of 19

Figure 3. Morphological traits of one-year-old apple shoots cv. ‘Elstar’ sampled during the winter
season of 2018/2019 (Table 1). Shoots were sampled from trees grown in Campus Klein-Altendorf,
exposed to two water regimes during the growing season of 2018. (A): Internode length. (B): Shoot
diameter. In (A) and (B), boxplots represent the distribution of the data, while black dots represent
actual observations. In boxplots, the colored box represents 50% of the data (percentile 25%, 50%,
and 75%), whereas vertical black lines mean the distance between the percentile (25% or 75%) and
the smallest or largest value, respectively. Notches represent an approximation of the 95% confidence
interval for comparing medians. In total, 240 shoots were sampled for internode length and shoot
diameter measurements. (C): Percentage of buds with a given number of flower primordia per cyme
(colors) in one-year-old shoots and spurs considering 60 apical buds in total.

Morphological observations of the king flower primordia before bud burst revealed that flower
primordia developed within the dormant buds (phenological stage BBCH 00) showed no major
differences between irrigated and non-irrigated trees. The general development of the flower primordia
of both treatments can thus be illustrated with only one set of photographs (Figure 4). During
winter, the king flower (kf) primordia were centrally placed and significantly larger than primordia of
lateral flowers (lf) (Figure 4A). The sepals (se) that enclosed the flower primordia presented abundant
trichomes (tr). Pistils and stamens were not differentiated and appeared as rounded domes (rd) in the
king flower primordium (Figure 4B). By the end of February and early March, flower primordia had
grown significantly and differentiated despite the absence of external phenological changes. Stamens
presented short filaments and the anther acquired its characteristic shape with two thecae and four
locules. The five styles (st) were also distinguished at this moment (Figure 4C). Once buds showed the
first signs of burst, by the end of March or early April (BBCH 51), the anthers (an) acquired a yellowish
appearance and the stigmas (ss), composed of numerous papillae, were distinguishable (Figure 4D).
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Figure 4. Flower development and growth during dormancy until bud burst. (A): Apple cyme during
winter (4th of January 2019); (B): King flower primordia presenting sepals with numerous trichomes
and undifferentiated flower verticiles during winter (4th of January 2019); (C): Distinguishable stamens
and pistils at the end of winter (7th of March 2019); and (D): Anthers with yellowish appearance and
stigmas at the end of the styles (4th of April 2019). Abbreviations: lateral flower (lf), king flower (kf),
sepals (se), trichomes (tr), rounded dome (rd), petals (pe), anthers (an), style (st), stigma (ss), and ovary
(ov). Scale bars: A, C, and D = 500 µm; B = 100 µm.

Starch concentrations in the king flower primordia changed over the course of the observation
period (Figure 5). These dynamics were comparable across irrigation treatments, with similar starch
concentrations in irrigated and non-irrigated trees on all sampling dates (Figure 5). We observed
that flower primordia tissue stained lightly for starch at the end of January. Just a week later in early
February, strong differences were observed among the flower primordia (p < 0.05). In mid-February,
an intense dark reaction revealed that the flower primordia had significantly (p < 0.05) more starch
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compared to the previous sampling date (Figure 5). Subsequently, flower primordia presented first
signs of growth in March and the starch content was significantly reduced (p < 0.001) in comparison
with the concentration observed on 13th February.

Figure 5. Frequency of buds in a given starch content class (low, medium, or high) according to
qualitative observations on flower primordia tissue (see Section 2.6. in Materials and Methods). Samples
were taken from shoots and spurs of apple trees cv. ‘Elstar’ grown in Campus Klein-Altendorf exposed
to two irrigation regimes (‘irrigated’ and ‘non-irrigated’ panels) during the summer of 2018. For the
figure, we used all analyzed buds (48) collected on four dates during the winter of 2019.

3.2. Bud Development on One-Year-Old Shoots under Greenhouse Conditions

Only a small number of lateral buds on sampled shoots were able to reach bud burst or another
more advanced phenological stage under greenhouse conditions.

Apical bud development during this experiment was affected by both the irrigation treatment and
the chill received in the field (Figure 6). Using the first sampling date (after 24.9 CP had accumulated),
the percentage of buds that had reached at least BBCH stage 51 at the end of the experiment was about
25% in shoots from irrigated trees, while about 50% in shoots from non-irrigated trees reached such
stages. From 39.4 CP accumulated under field conditions, most of the buds reached at least BBCH
stage 51 by the end of the experiment in both irrigated and non-irrigated treatments.

The amount of heat necessary to force bud burst decreased with higher levels of chill accumulated
in the field. For samples taken at 24.9 CP, buds required 11,000–15,000 Growing Degree Hours (GDHs)
to reach BBCH stages 51 and 52. After accumulating 29.7 CP by the subsequent sampling date, heat
requirements for reaching the same BBCH stages had decreased from 6000 to 9400 GDH (Figure 6). For
samples taken in Week 9 (63.7 CP), the first bud burst (BBCH stages 51 and 52) was recorded after about
3000 GDH for both irrigated and non-irrigated shoots. Along the same lines, the transition between
BBCH states was faster when more chill had been accumulated by the buds under field conditions. For
samples taken at 24.9 CP, about 12.5% of the buds remained at BBCH stages 51 and 52 at the end of the
experiment (up to 16,000 GDH), while for samples taken at 55.5 CP all the buds had overcome this
stage after about 7500 GDH.
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Figure 6. Apical bud development in one-year-old apple shoots (cv. ‘Elstar’) sampled during the winter
season of 2018/2019 (Table 1). Shoots sampled from trees grown in Campus Klein-Altendorf were
exposed to two water regimes (‘irrigated’ and ‘non-irrigated’ panels) during the growing season of 2018.
Each row of panels corresponds to a particular sampling date represented by the chill accumulated in
the field (in Chill Portions (CP)). The x-axis represents heat accumulation (in Growing Degree Hours
(GDHs)) under greenhouse conditions after the shoots had been sampled. The colors represent the
sub-stages for the principal growth stages 5 (inflorescence emergence) and 6 (flowering) of reproductive
buds, according to the BBCH scale. We monitored a total of 213 apical reproductive buds (27 apical
vegetative buds were excluded).
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The cumulative link model indicated both chill and heat, as well as the interaction between them,
as highly significant predictors of the BBCH stages of buds under both irrigated and non-irrigated
conditions (p < 0.001). Regarding the effects of the irrigation treatment on the transition points between
BBCH stages, we determined that the estimates for the parameters significantly differed for the two first
thresholds. From BBCH 0 to BBCH 51 and 52, the estimate was 0.69 in irrigated buds, whereas in
the non-irrigated buds this value decreased to 0.07 (p < 0.001). Similarly, the difference between the
estimates of the thresholds from BBCH 51 and 52 to BBCH 53 and 54 in irrigated versus non-irrigated
buds was 0.59 (p < 0.001) (Table 2). From the third transition point (e.g., BBCH 53 and 54) onwards,
the estimates tended to show similar values among treatments, with only the fourth transition point
indicated as significantly different between treatments.

Table 2. Differences between estimated thresholds for transition points between non-irrigated and
irrigated buds through cumulative link modelling. Data in the confidence interval column reflects
results on significance from Wald’s test (z-value). ‘***’ indicates p < 0.05, while ‘n.s.’ means that
treatments were not significantly different at this confidence level.

Transition Point
(from Stage x to Stage y)

Difference in Threshold Estimates
(Non-Irrigated – Irrigated)

Confidence Interval for the Difference
(95%)

BBCH 0 to BBCH 51-52 −0.62 −0.90 to −0.34 ***
BBCH 51-52 to BBCH 53-54 −0.59 −0.88 to −0.30 ***
BBCH 53-54 to BBCH 55-56 −0.27 −0.57 to −0.05 n.s.
BBCH 55-56 to BBCH 57-59 −0.52 −0.91 to −0.13 ***

BBCH 57-59 to BBCH 60 −0.09 −0.61 to −0.42 n.s.

3.3. Phenology Progression and Flowering Rates under Field Conditions

Based on the previous results, we concluded that endo-dormancy was overcome around the
11th of January in both treatments, after 50 CP had accumulated (Figure 6). Under field conditions,
buds from both the irrigated and non-irrigated treatments showed similar phenological patterns at
bloom time (Figure 7). The first changes in flower bud phenology were observed on the 7th of March,
after 1876 GDHs had accumulated in both treatments. Only minor differences were observed on
subsequent dates. On the 11th of April, after 4500 GDHs had accumulated, about 85% of the buds in
the non-irrigated and 70% in the irrigated treatment presented some open flowers (BBCH 60 or higher).
Full bloom (BBCH 65) occurred in a small proportion of the buds simultaneously in both orchards on
the 18th of April, after at least 5000 GDHs had accumulated.

According to the ordinal linear regression analysis, only heat and the interaction between chill and
heat significantly (p < 0.05) affected the phenology of both irrigated and non-irrigated buds. After chill
requirements had been met (which appeared to be the case for chill accumulation greater than 50 CP),
additional chill (without heat) was not found to produce significant differences (p = 0.25). Regarding
the effect of irrigation on the transition points, we detected that under field conditions, most of the
transition thresholds did not significantly differ between treatments. The difference between only 2
out of 12 transition points were found statistically significant under field conditions at a p level of 0.05.
These were from BBCH 52 to BBCH 53 (p = 0.014) and from BBCH 53 to BBCH 54 (p = 0.039), for which
non-irrigated buds showed lower thresholds for the transition points compared to irrigated buds.

The probability of a bud generating a cyme was higher on buds that developed on shoots compared
to buds from spurs in both irrigated (p < 0.001) and non-irrigated (p = 0.07) treatments. Furthermore,
buds from non-irrigated trees presented a higher probability of bloom than those from irrigated
trees (Figure 8). This impression was maintained when the type of bud was also considered, with buds
from non-irrigated shoots presenting a higher chance of flowering than buds from irrigated shoots
(p = 0.02). The latter was also observed on buds located on spurs (p < 0.001).
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Figure 7. Phenology progression of the apical buds in apple trees cv. ‘Elstar’ grown in Campus
Klein-Altendorf exposed to two irrigation regimes (‘irrigated’ and ‘non-irrigated’ panels) during
the growing season of 2018. The x-axis represents the accumulation of heat (in Growing Degree
Hours (GDHs)) under field conditions after a minimum chill requirement of 50 CP had been fulfilled.
The colors represent the sub-stages for the principal growth stages 5 (inflorescence emergence) and 6
(flowering) of reproductive buds, according to the BBCH scale. We monitored 208 apical buds in total.

Figure 8. Share of apical flower buds generating cymes for apple trees cv. ‘Elstar’ exposed to
two irrigation regimes. Measurements were taken on the 22nd of April 2019 in Campus Klein-Altendorf.
Bar colors indicate the structure on which the bud developed (one-year-old shoots versus spurs), with
red bars illustrating results for all sampled buds. Error bars in each category show the standard error
of the mean. In total, 602 buds were counted, out of which 212 (35%) were from spurs and 390 (65%)
were from one-year-old shoots. *** represents p < 0.001 and ** means p < 0.05.
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4. Discussion

We evaluated the impacts of two irrigation regimes on apple trees grown under the unusual
moisture conditions in the summer of 2018 at the experimental station at Campus Klein-Altendorf.
Although we made use of what may be considered a natural experiment, we were able to document
that the additional water supplied during summer increased vegetative growth (i.e. shoot length)
during the growing season. Shoots on irrigated trees were significantly longer (by 39%) and thinner
compared with trees grown without irrigation. However, this did not affect the apical buds at the top
of the shoots, which developed a similar number (4–5) of flower primordia per cyme. Observations
during the winter season showed that the flower primordia and the starch dynamics in bud tissue
followed a similar pattern in both treatments. Our CR estimations resulted in about 50 CP for both
non-irrigated and irrigated trees. The use of one-year-old shoots exposed to forcing conditions revealed
that, after low exposure to chill (i.e., 24.9–34.4 CP), buds from non-irrigated trees developed significantly
faster and at higher rates compared to buds from irrigated trees. However, these differences became
less pronounced after longer exposure to chilling conditions. Under field conditions, differences in
phenological development between treatments disappeared, but buds on non-irrigated trees presented
a significantly higher probability of flowering (0.42) than buds on irrigated trees (0.30) during the
following spring.

The difference we observed in total shoot length was explained by the length of the internodes
rather than a different number of lateral buds. On average, additional irrigation of 133 mm during July
and August of 2018 effected an increase of 39.6% in the internode length of one-year-old shoots. Similar
results on shoot length have previously been observed on one-year-old M9 apple rootstocks exposed
to a water deficit of 50% of tree water needs [10]. Chen et al. [16] reported that water stress during the
summer promoted the cessation of vegetative growth, probably due to an increase in the production of
ABA in the roots [17]. Moreover, the drought stress responses of other hormones regulating growth,
development, and senescence (i.e. auxins and ethylene) have also been studied (reviewed in [64]).
Changes in the concentration of these hormones during the growing season may explain why shoots
on irrigated trees were longer than shoots on non-irrigated trees.

Meristems inside the apical buds differentiated into cymes composed of a similar number of
flower primordia (4–5), with the king flower presenting a similar state of development during winter
in both treatments. This suggests that these traits were not greatly affected by this level of water
stress. In agreement with previous studies on apple flower differentiation [65], the king flower
did not present differentiated flower verticiles, but remained in an earlier development stage (i.e.
round domes). This early flower developmental stage remained during endo- and beginning of early
eco-dormancy. This observation indicates a less mature stage of development during dormancy in
apples compared to Prunus spp., where flower verticiles are already distinguishable (sepals, petals,
anthers, and pistil) during winter [66,67]. The king flower started to accumulate starch at this early
developmental stage in late January, showing peak starch reserves in mid-February. Later, the starch
content was reduced and the king flower presented the first signs of growth. Starch dynamics have been
reported in the flower primordia of sweet cherry during winter as a source of energy for subsequent
flower development [68,69]. In apple primordia, maximum starch content occurred when about
63.7 CP–68.6 CP had accumulated, which was after fulfillment of the estimated chill requirement
(50 CP), but corresponded with a rapid growth response under forcing conditions. In sweet cherry,
maximum starch accumulation has been shown to occur earlier in winter and to be closely associated
with fulfillment of the chill requirement [68].

Compared to irrigated trees, apical buds from non-irrigated shoots showed a tendency towards
lower thresholds for transition points between BBCH stages, indicating that they developed faster than
buds from irrigated trees. This tendency was clearly observed under forcing conditions for low-chill
sampling dates (i.e. 24.9–34.4 CP). Nonetheless, this difference was not observed for shoots that had
been exposed to greater chill levels in the field, with shoots from both treatments showing the same bud
burst pattern and similar thresholds between BBCH stages. This may suggest that water stress during
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summer may affect the CR, especially in trees grown in warm-winter locations. Under field conditions,
buds from the non-irrigated treatment showed a significantly higher probability of flowering (0.42) in
spring than buds from the irrigated block (0.30). An increase in flowering rates during the following
season, after experiencing water deficit, has also been observed in other temperate fruit trees, such
as pear and peach [6]. In young pomelo trees (Citrus grandis), the number of inflorescences, flower
buds, and flowers that opened increased as the duration of water stress was extended [70]. Our
initial hypothesis to explain these differences hinged on disparities in the starch content of the flower
primordia. In fact, one could expect less starch to accumulate in the irrigated treatment, as more
energy might have been spent on shoot growth rather than storage during the previous growing
season. Alternatively, less starch may have accumulated in the non-irrigated treatment because of
a reduction in the photosynthetic rate due to water stress [14]. However, in light of our results, this
expectation was not confirmed, with both treatments showing a similar pattern regarding starch levels
in the flower primordia during winter. Thus, differences in phenological development, as well as in
flowering probability, may rely on changes in hormonal regulation [71], different levels of reactive
oxygen species (ROS) produced during the growing season [72], or other biochemical changes inside
the buds during bud initiation in summer or bud dormancy in winter. Further experimentation is still
needed to clarify these findings.

Based on the results obtained from shoots exposed to forcing conditions (Figure 6), we estimated
that this variety overcame dormancy after 50 CP had accumulated in the field. Similar estimates have
been reported for apples cv. ‘Golden Delicious’ (50 CP [73]) and cv. ‘Starkrimson Delicious’ (about 65
CP [74], using conversion factors for Chilling Hours to CP in North Carolina according to Luedeling
and Brown [75]). However, the heat units accumulated until the first signs of bud burst differed
between sampled shoots and buds on trees grown under field conditions. Buds from cuttings required
about 5000 GDHs, whereas buds from trees in the field required 2000 GDHs. This difference can be
explained by trees in the field accumulating more chill than 50 CP, which may have compensated for
the lower heat accumulation outside the greenhouse. This dynamic relationship between chilling
and heating phases during dormancy has been previously proposed by Harrington et al. [27]. Indeed,
shoots sampled at 63.7 CP only required about 3500 GDHs to reach bud burst. This may also suggest
that our CR estimation corresponds to the minimum amount of chill needed to reach a homogeneous
bud burst pattern after a given amount of heat and might not be valid for comparison with observations
under field conditions, where trees can receive additional chill. Along the same lines, while winter chill
is expected to decrease in many growing regions of the world due to rising winter temperatures [76],
heat accumulation during late winter and early spring is expected to increase. In this regard, an
overlapping relationship between chill and heat phases may suggest that different chill and heat
accumulation patterns may result in similar bloom dates. However, further experimentation on this
relationship across a wide range of climates, as well as on the impact of water stress on CR at low chill
levels, could greatly improve our knowledge on the dormancy of temperate fruit trees.

5. Conclusions

Mild water stress during the growing season impacts on the morphology of shoots in the same
growth period and may possibly affect the phenology and bloom probability of apical buds in the
following spring. Irrigated trees presented more vegetative growth compared to those that did not
receive additional water. The implications of this phenomenon for orchard management are currently
unclear. Based on morphological observations, we suggest that this level of water stress did not affect
bud initiation, bud differentiation, or storage processes. Regarding phenological development, we
observed that, after low chill exposure, apical buds from non-irrigated shoots developed faster and
at higher rates than those from irrigated shoots. This suggests that summer drought may affect the
chill requirement of apple buds. However, further validation and experimentation on the mechanisms
behind this finding are needed. Similarly, further experimentation is required to validate our findings
on flowering probability, as well as to test the effect of summer drought on subsequent phases, such as
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fruit set and fruit development. Climate change is widely expected to affect the cultivation of temperate
deciduous fruit trees by increasing winter temperatures as well as modifying total precipitation and
rainfall distribution. We hope that our findings will contribute to understanding the medium-term
(i.e., subsequent seasons) effects of summer drought on apple cultivation, as well as provide useful
guidance for future research on this topic.
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