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Abstract: Increasing planting density is an important practice associated with increases in maize yield,
but densely planted maize can suffer from poor light conditions. In our two-year field experiments,
two morphologically different cultivars, ZD958 (less compact) and DH618 (more compact), were
planted at 120,000 plants ha−1 and 135,000 plants ha−1, respectively. We established different leaf
area index (LAI) treatments by removing leaves three days after silking: (1) control, no leaves
removed (D0); (2) the two uppermost leaves removed (D1); (3) the four uppermost leaves removed
(D2); (4) the leaves below the third leaf below the ear removed (D3); (5) the leaves of D1 and D3
removed (D4); (6) the leaves of D2 and D3 removed (D5). Optimal leaf removal improved light
distribution, increased photosynthetic capacity and the post-silking source-sink ratio, and thus the
grain yield, with an average LAI of 5.9 (5.6 and 6.2 for ZD958 and DH618, respectively) for the
highest yields in each year. Therefore, less-compact cultivars should have smaller or fewer topmost
leaves or leaves below the ear that quickly senesce post-silking, so as to decrease leaf area and thus
improve light distribution and photosynthetic capacity in the canopy under dense planting conditions.
However, for more compact cultivars, leaves below the ear should senesce quickly after silking to
reduce leaf respiration and improve the photosynthetic capacity of the remaining top residual leaves.
In future maize cultivation, compact cultivars with optimal post-silking LAI should be adopted when
planting densely.

Keywords: maize; high density; plant type; leaf removal; optimum LAI

1. Introduction

Maize is an important cereal crop that contributes to global food security [1,2]. By increasing
planting density, an important measure that can increase maize yield per unit area [3,4], maize may
more efficiently intercept and use solar radiation [5,6]. Some studies have shown that leaf area
index (LAI) increases as plant density increases [7,8], causing decreased light transmission to the
lower canopy leaves which, in turn accelerates their senescence [9–12] and causes yield loss [13–16].
However, a synthesis analysis in a previous study found that the LAI did not always increase with
increasing yields [6]. A maize breeder claimed that the maximum LAI of erectophile maize should be
5.0–5.5 [17], while other studies have reported that 6.0 is the optimal LAI for maize [18,19]. More recent
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studies have observed maximum LAIs of more than 6.0 and even more than 8.0 in super high-yield
cultivation [7,20–22]. So, are higher LAIs better as density increases and what is the optimal LAI?
The answers to those questions are yet unclear.

Crop canopy structure may be modified by partially removing vegetative organs to increase
energy-use efficiency, especially that of solar radiation, and thus maximize yield [23–25]. Decreasing
the LAI of densely planted maize can change the canopy structure, increase both the light intensity in
the canopy and the photosynthetic capacity of the leaves, and thus increase the grain yield [15,16,26,27].
Changes in production capacity of source during grain filling are frequently accompanied by a
marked change in stem weight as the supply of assimilates temporarily stored in the stem buffers
the plant’s demand for assimilates from the sink, which changes the source–sink ratio and the grain
yield [15,26,28,29]. The source–sink ratio was defined as the aboveground biomass increase per kernel
during a given period, and optimal reduction of leaf area can increase post-silking source–sink ratio
and yield [15]. For example, Hao et al. [30] demonstrated that excising either 1/4 or 1/2 of all leaves on
maize plants allowed more light into the field’s canopy, thus allowing increased net photosynthesis
and stomatal conductance in the remaining leaves at ear level. Some studies also reported that
removal of the two uppermost leaves of maize plants increased grain yield [15,27]. Also, maize
planted at a density of 10.0 plants m−2, showed significantly increased grain yield when the LAI was
reduced from 8.2 to 5.5 following leaf removal [31]. Therefore, optimal reduction of the source could
increase grain yield, which may be due to the fact that when the LAI exceeded 5.0, the maximum
fraction of intercepted photosynthetically active radiation was 95% and canopy photosynthesis did not
continuously increase [32,33]. However, most leaf removal studies have been conducted using lower
planting densities (less than 105,000 plants ha−1) and with a maximum LAI of less than 7.0 [15,27,34,35].
Also, few of them have considered the effects of plant type.

To understand the effects of leaf removal on maize grain yield and clearly show the optimal LAI,
we selected two morphologically different maize hybrids for a leaf removal experiment using a higher
planting density at Xinjiang, China, where both the maize grain yield and the planting density are the
highest in China. Our work, which examined the influences of leaf removal on two morphologically
different types of maize plants, aids optimal LAI maize breeding, thus improving future higher density,
maize cultivation.

2. Materials and Methods

2.1. Site and Experiment Design

We conducted field experiments at Qitai Farm (89◦48′22” E, 43◦49′27” N) in Xinjiang, China
in 2017 and 2018 in an alternating narrow-wide-row planting pattern, where the narrow row was
0.4 m and the wide row was 0.7 m [6,36]. We selected a less compact maize cultivar ZD958 and a
more compact cultivar DH618, the former having been widely planted in China and the latter having
held the highest yield record, also in China [6]. Since DH618 is more compact than ZD958, it is more
density-resistant than ZD958, so ZD958 and DH618 were sown at 120,000 and 135,000 plants ha−1,
respectively. To create populations with different LAIs, different numbers and patterns of leaves were
removed three days after silking (Figure 1), as follows: (1) control, no leaves removed (D0); (2) the two
uppermost leaves removed (D1); (3) the four uppermost leaves removed (D2); (4) the leaves below
the third leaf below the ear removed (D3); (5) the two uppermost leaves and the leaves below the
third leaf below the ear removed (D4); and (6) the four uppermost leaves and the leaves below the
third leaf below the ear removed (D5). We used a split-plot design with cultivars as the main plots
and leaf-removal treatment groups as sub-plots. Individual sub-plot was 10 m long by 2.75 m width
with five rows and an average row space of 0.55 m ((0.7 + 0.4)/2), and all plots were arranged in a
completely randomized design with three replications.



Agronomy 2020, 10, 269 3 of 12

Figure 1. Schematic diagram of different leaf removal treatments. D0 was the control with no leaves
removed, D1 with the two uppermost leaves removed, D2 with the four uppermost leaves removed,
D3 with the leaves below the third leaf below the ear removed, D4 with the two uppermost leaves
and the leaves below the third leaf below the ear removed, D5 with the four uppermost leaves and the
leaves below the third leaf below the ear removed.

We sowed seeds in mid-April and harvested plants in mid-October. Soil (0 to 60 cm depth)
physicochemical properties and field management protocols were mentioned in our previous study [36].

2.2. Sampling and Measurement

At four days after silking and at physiological maturity, we collected three uniform and
representative plants from the central rows of each plot and measured leaf length (L) and maximum
leaf width (W) of each green leaf to calculate leaf area (LA): LA = 0.75 × L ×W. The leaf area index
(LAI) was calculated as follows: LAI = Total LA per plant × N/S, where N is the number of plants
within a unit area of land and S is the unit area of land. The plants were then separated into stalk
(tassels were included with the stalk), leaf, sheath, cob, husk, and grain and all separated components
were oven-dried at 85 ◦C to a constant weight and then those weights were recorded.

Dry matter post-silking = Dry matter at maturity − Dry matter at silking (1)

Harvest index (HI) = Grain yield/Dry matter at maturity (2)

The post-silking source–sink ratio was defined as the aboveground biomass increase per kernel
during a given period [15]. We defined the biomass increase as the difference in plant biomass between
physiological maturity and four days after silking. We counted kernel number per plant at maturity of
ten selected ears.

Intercepted photosynthetically active radiation (IPAR) was measured above the canopy and
transmitted PAR (TPAR) was measured with a diagonal orientation across the wide row and narrow
row widths at the bottom (below the lowest green leaves) and at the ear above the ground with six
replications, respectively. Photosynthetically active radiation measured in the wide and narrow row
widths were averaged in each layer. In 2017 and 2018, fractions of intercepted solar radiation were
measured using a line quantum sensor (SunScan, Delta-T, Cambridge, UK) at 1100–1300 on clear days
after the leaves had been removed.

Light transmission =
TPAR
IPAR

× 100% (3)

Photosynthesis and the related physiological variables were measured 40 days after leaf removal
and an ear leaf from each of four uniform and representative plants per plot was chosen for
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photosynthesis rate (Pn) and stomatal conductance (Cn) measurement in 2018. We performed
the measurements using a portable photosynthesis system (Li-Cor 6400, Li-Cor Inc., Lincoln, NE, USA)
with a controlled light density of 2000 µmol m−2 s−1. The CO2 concentration in the leaf chamber was
controlled at 400 µmol CO2 (mol air)−1 [37], the ambient temperature was 24–26 ◦C.

When the maize plants were physiologically mature, we harvested grain from 5 m of two successive
rows in the centers of each plot to calculate the final yield, with three replications. Using 10 selected
ears from each replication according to the average ear weight, we counted numbers of kernel rows per
ear and number of kernels per row (according to the average weight per ear) to calculate kernel number
per ear (KNP) as follows: KNP = kernel rows per ear × kernel number per row. Then the 10 ears
were threshed and grain moisture contents were tested with a portable moisture meter (PM8188, Kett,
Japan). Finally, the grain yield and thousand kernel weights (TKW) were calculated at 14.0% moisture.

2.3. Statistical Analysis

After leaf removal, the differences of LAI and other indices (grain yield, yield component,
dry matter accumulation, Pn, Cn, HI, post-silking source–sink ratio) between different treatments were
tested by using one-way analysis of variance (ANOVA) with the Duncan test at a 5% significance level.
We conducted univariate analyses to examine interactions with grain yield and yield components
as dependent variables and the year, cultivar, and leaf removal as independent variables. All data
analysis was conducted by using SPSS v. 21.0 (IBM Inc., Armonk, NY, USA).

3. Results

3.1. Grain Yield and Yield Components

Table 1 shows the yield and yield components of ZD958 and DH618 after leaf removal in 2017
and 2018. In treatment D0, DH618’s grain yield was higher than that of ZD958 in both years. In 2017,
ZD958 obtained its highest grain yield in D4 and it was significantly greater than that in D0, but its
KNP and TKW in D4 that year did not significantly increase after leaf removal and its ear number per
ha in D4 was 7.1% higher than in D0. In 2017, cultivar DH618’s highest grain yield was in D3 and it
was significantly greater than its yield in D0; its KNP in D3 decreased by 7.1%; and ear number and
TKW in D3 increased by 3.9% and 6.2%, respectively, compared to D0.

In 2018, cultivars ZD958 and DH618 obtained their highest yields in D3 and D4, respectively;
however, they were not significantly different than yields in D0. Also, ear number, KNP, and TKW of
ZD958 in D3 and of DH618 in D4 were not significantly different than those measures in D0.

The interactions among year, cultivar, and leaf removal treatment are shown in Table 1; however,
there was no significant interaction on grain yield, but there were partial interactions on yield
components. In addition, there was significant influence on grain yield and yield components between
years, cultivars, and leaf removals, respectively. Therefore, we analyzed the effects of leaf removal on
the two cultivars independently.

Table 1. Yield and yield components of ZD958 and DH618 under different treatments in 2017 and 2018.

Year Cultivar Treatment Yield
(Mg ha−1)

Ear Number
(104 ears ha−1)

KNP TKW (g)

2017 ZD958 D0 19.4 ± 0.7b 11.3 ± 0.0a 469 ± 15ab 382.5 ± 16.9a
D1 20.0 ± 1.4ab 11.7 ± 1.2a 530 ± 80a 358.6 ± 13.4a
D2 18.3 ± 0.4b 12.1 ± 0.5a 450 ± 5b 369.3 ± 6.0a
D3 19.0 ± 1.7b 11.6 ± 0.6a 475 ± 20ab 364.4 ± 13.6a
D4 21.5 ± 0.7a 12.1 ± 0.6a 445 ± 18b 371.8 ± 10.6a
D5 19.0 ± 1.2b 12.4 ± 0.3a 409 ± 18b 375.2 ± 11.7a

DH618 D0 19.8 ± 0.6b 12.8 ± 0.2a 424 ± 7a 401.3 ± 6.9c
D1 20.5 ± 0.6ab 13.2 ± 0.5a 356 ± 30bc 457.3 ± 14.4a
D2 19.7 ± 2.4b 13.1 ± 1.5a 355 ± 17bc 453.9 ± 15.9ab
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Table 1. Cont.

Year Cultivar Treatment Yield
(Mg ha−1)

Ear Number
(104 ears ha−1)

KNP TKW (g)

D3 22.1 ± 0.1a 13.3 ± 0.9a 394 ± 18ab 426.3 ± 16.5bc
D4 20.9 ± 0.7ab 13.4 ± 0.3a 357 ± 19bc 441.8 ± 5.1ab
D5 18.9 ± 0.7b 13.2 ± 0.3a 340 ± 32c 442.1 ± 22.2ab

2018 ZD958 D0 17.6 ± 2.8ab 9.6 ± 1.3abc 493 ± 42a 368.4 ± 18.7a
D1 18.6 ± 1.7a 8.1 ± 0.1c 535 ± 10a 390.4 ± 31.3a
D2 17.8 ± 2.1a 9.5 ± 1.0abc 501 ± 13a 359.8 ± 12.6a
D3 19.3 ± 1.9a 8.8 ± 0.5bc 502 ± 23a 365.1 ± 12.6a
D4 17.8 ± 1.0a 10.3 ± 0.7ab 501 ± 47a 332.3 ± 1.0a
D5 15.1 ± 0.5b 10.7 ± 0.6a 496 ± 32a 363.0 ± 68.1a

DH618 D0 19.4 ± 2.1a 10.7 ± 0.2ab 453 ± 56a 405.4 ± 5.0b
D1 18.7 ± 1.4a 11.6 ± 0.7ab 404 ± 44ab 413.7 ± 15.2b
D2 17.5 ± 1.3a 12.8 ± 0.1a 385 ± 3ab 400.8 ± 19.4b
D3 18.9 ± 0.9a 12.4 ± 0.9a 394 ± 9ab 401.6 ± 15.1b
D4 19.8 ± 1.2a 10.3 ± 0.3b 449 ± 21ab 403.8 ± 10.2b
D5 17.8 ± 0.9a 12.7 ± 2.3a 369 ± 68b 488.9 ± 60.9a

Source of variation
Year (Y) ** ** ** *

Cultivar (C) ** ** ** **
Leaf removal (L) ** ** ** *

Y × C ns * ns ns
Y × L ns ns ns ns
C × L ns * ** *

Values were means ± standard deviation (STD). Within each year, different lowercase letters of the same cultivar in
the same column showed the significant difference between each datum at P < 0.05. KNP, kernel number per ear;
TKW, thousand kernel weight. * Significant at P ≤ 0.05; ** Significant at P ≤ 0.01; ns, non-significant.

3.2. Maximum Leaf Area Index (LAI)

In 2017, the LAIs of ZD958 in D0, D1, D2, D3, D4, and D5 were 9.1, 8.8, 8.2, 5.6, 5.4, and 4.5,
respectively, and were 7.8, 7.2, 5.6, 6.3, 5.9, and 4.5, respectively, for DH618 (Figure 2). In 2018, the
LAIs (D0, D1, D2, D3, D4, and D5) were 8.4, 7.9, 6.7, 5.8, 5.2, and 4.1, respectively, for ZD958 and were
8.2, 7.6, 6.5, 6.7, 6.1, and 4.9, respectively, for DH618. The LAIs of ZD958 and DH618 were 5.4 and 6.3,
respectively, when the highest grain yield was obtained in 2017, but LAIs were significantly less than
those in D0. The LAIs of ZD958 and DH618 were 5.8 and 6.1, respectively, when the highest grain
yields were obtained in 2018, but they were significantly less than the LAIs in D0. Leaf area indexes
were similar (5.4 and 5.8 for ZD958, 6.3 and 6.1 for DH618) when the highest yield were obtained in
2017 and 2018 for both cultivars.

Figure 2. Leaf area index (LAI) of maize cultivars ZD958 and DH618 under different treatments at
silking in 2017 and 2018. Within each year, different lowercase letters of the same cultivar above the
columns showed the significant difference between each treatment at P < 0.05. # denotes treatments
with highest grain yield.
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3.3. Dry Matter Accumulation and Post-Silking Source–Sink Ratio

In 2017, ZD958’s accumulated dry matter at maturity in D4 was not significantly different than
that in D0, but dry matter during both post-silking and the HI in D4 increased significantly compared
to those measures in D0 (Table 2). That year 2017 in D3, DH618’s accumulated dry matter at maturity
and during post-silking, and its HI, were not significantly different with those measures in D0. Dry
matter accumulation at maturity and during post-silking, as well as the HI, of ZD958 in D3 and DH618
in D4 increased in 2018; however, they were not significantly different with those measures in D0.
Optimal leaf removal can increase the post-silking source-sink ratio significantly in 2017, while not
in 2018. Furthermore, we also found that extremely lowered LAI caused by excessive leaf removal
may limit dry matter accumulation during post-silking, which further exacerbates low dry matter
accumulation at maturity. In addition, ZD958’s HI increased significantly after leaf removal in 2017.
Even though there was no significant difference between the ZD958’s HIs in D3 and D0 in 2018, the HI
still increased by 5.4% after leaf removal. However, there was no significant increase in DH618’s HIs in
2017 and 2018. Therefore, cultivar ZD958 was more affected by leaf removal than was DH618.

Table 2. Dry-matter accumulation at three different development stages, harvest index (HI) and
post-silking source–sink ratio of maize cultivars ZD958 and DH618 in different treatments in 2017
and 2018.

Year Cultivar Treatment
Dry Matter (Mg ha−1)

HI
Source–Sink

Ratio (g/kernel)Silking Post-Silking Maturity

2017

ZD958 D0 19.8 ± 1.5a 15.0 ± 2.8cd 34.7 ± 1.5a 0.47 ± 0.02b 0.27 ± 0.01d
D1 19.2 ± 2.3a 13.3 ± 2.3d 32.5 ± 0.0b 0.53 ± 0.01a 0.21 ± 0.03e
D2 16.9 ± 1.5a 17.4 ± 1.5bc 34.3 ± 0.1a 0.53 ± 0.01a 0.32 ± 0.00c
D3 16.9 ± 1.7a 18.5 ± 1.3b 35.4 ± 1.2a 0.56 ± 0.01a 0.32 ± 0.01c
D4 13.9 ± 0.8b 21.9 ± 0.9a 35.8 ± 0.4a 0.55 ± 0.04a 0.41 ± 0.02a
D5 13.6 ± 0.6b 17.9 ± 0.5bc 31.5 ± 0.5b 0.56 ± 0.01a 0.36 ± 0.02b

DH618 D0 17.9 ± 0.6a 20.5 ± 0.5bc 38.3 ± 0.5a 0.53 ± 0.01a 0.36 ± 0.01c
D1 16.0 ± 0.9b 19.9 ± 2.7bc 35.9 ± 3.6a 0.54 ± 0.06a 0.41 ± 0.04b
D2 15.6 ± 1.3b 23.5 ± 1.2a 39.2 ± 0.2a 0.54 ± 0.01a 0.49 ± 0.02a
D3 15.3 ± 0.2b 22.4 ± 0.5ab 37.7 ± 0.3a 0.55 ± 0.01a 0.42 ± 0.02b
D4 13.4 ± 0.3c 24.0 ± 1.0a 37.4 ± 1.2a 0.52 ± 0.02a 0.50 ± 0.03a
D5 13.3 ± 0.8c 18.5 ± 2.1c 31.8 ± 1.7b 0.53 ± 0.01a 0.40 ± 0.04bc

2018

ZD958 D0 14.3 ± 1.1a 23.8 ± 1.3a 38.0 ± 2.2a 0.56 ± 0.00a 0.40 ± 0.04a
D1 14.0 ± 1.0a 20.3 ± 0.7ab 34.3 ± 5.1ab 0.56 ± 0.02a 0.32 ± 0.01bc
D2 13.4 ± 1.0ab 17.6 ± 2.6bc 31.0 ± 1.9b 0.56 ± 0.02a 0.29 ± 0.01c
D3 12.9 ± 0.9ab 25.6 ± 3.9a 38.4 ± 3.1a 0.59 ± 0.02a 0.42 ± 0.02a
D4 12.6 ± 0.9ab 20.7 ± 1.7abc 33.3 ± 0.9ab 0.57 ± 0.02a 0.34 ± 0.03b
D5 12.0 ± 0.9b 16.6 ± 2.8c 28.6 ± 2.0b 0.57 ± 0.04a 0.28 ± 0.02c

DH618 D0 15.0 ± 1.1a 29.6 ± 2.0a 44.6 ± 2.5ab 0.54 ± 0.00b 0.48 ± 0.06ab
D1 14.7 ± 1.1a 25.5 ± 0.9b 40.2 ± 0.1b 0.54 ± 0.01b 0.47 ± 0.05ab
D2 13.9 ± 1.0a 16.2 ± 2.2d 30.1 ± 3.5d 0.51 ± 0.00c 0.31 ± 0.00c
D3 14.2 ± 1.1a 25.3 ± 1.7b 39.5 ± 2.5b 0.56 ± 0.01ab 0.48 ± 0.01ab
D4 13.8 ± 1.0a 32.0 ± 1.2a 45.8 ± 0.3a 0.55 ± 0.01b 0.53 ± 0.02a
D5 13.1 ± 0.9a 20.7 ± 1.5c 33.8 ± 1.4c 0.57 ± 0.00a 0.42 ± 0.03b

Values were means ± STD. Within each year, different lowercase letters of the same cultivar in the same column
showed the significant difference between each datum at P < 0.05.

3.4. Light Distribution

In 2017, light transmission at the bottom green leaves of ZD958 increased significantly in D4,
compared to that in D0; however, there was no significant difference between D3 (treatment with
highest grain yield) and D0 for DH618 (Table 3). However, that same year, light transmission at the
ear, between D4 and D0 for ZD958 and between D3 and D0 of DH618, did not differ significantly.
In 2018, light transmission at the bottoms of ZD958 in D3 and of DH618 in D4 increased significantly
compared to that in D0 of both cultivars. Light transmission at the ear for ZD958 in D3 had also
increased significantly; however, there was no significant difference between D4 and D0 for DH618.
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In addition, although light transmission was high in both years at both the bottoms and at the ears in
D5 for both cultivars, the grain yield was not the highest in D5, a result that may be attributed to low
light interception at the canopy. In summary, the influences of leaf removal on light transmission on
cultivar ZD958 was greater than that on DH618.

Table 3. Light transmission measured at the lowest green leaves and at the ears of cultivars ZD958 and
DH618 under different treatments in 2017 and 2018.

Year 2017 2018

Transmission (%) Bottom Ear Bottom Ear

ZD958 D0 0.6 ± 0.2b 3.6 ± 0.2b 1.1 ± 0.4c 9.4 ± 3.9b
D1 0.2 ± 0.0b 8.5 ± 2.6ab 3.2 ± 0.1b 16.4 ± 2.3a
D2 0.7 ± 0.0b 8.9 ± 1.9ab 3.6 ± 1.4b 21.4 ± 8.0a
D3 5.3 ± 1.7a 9.3 ± 1.4ab 7.1 ± 2.9b 13.9 ± 3.7a
D4 8.3 ± 0.9a 13.3 ± 4.2ab 7.2 ± 3.4b 16.0 ± 1.0a
D5 7.9 ± 2.1a 14.1 ± 3.8a 20.0 ± 2.5a 21.1 ± 1.8a

DH618 D0 0.5 ± 0.2b 2.7 ± 0.6b 1.1 ± 0.6b 14.3 ± 2.5a
D1 0.6 ± 0.2b 6.3 ± 1.7ab 0.8 ± 0.3b 17.7 ± 4.4a
D2 2.5 ± 0.8b 10.8 ± 1.4a 0.7 ± 0.3b 21.3 ± 2.7a
D3 1.7 ± 0.3b 3.6 ± 1.0ab 6.2 ± 2.2a 14.8 ± 0.9a
D4 2.8 ± 0.9ab 8.2 ± 1.4ab 8.4 ± 3.2a 18.7 ± 3.0a
D5 4.7 ± 2.1a 9.3 ± 3.9ab 10.8 ± 6.5a 22.6 ± 8.3a

Values were means ± STD. Within each year, different lowercase letters of the same cultivar in the same column
showed the significant difference between each datum at P < 0.05.

3.5. Photosynthetic Rate and Stomatal Conductance

ZD958’s Pn in treatments D2 and D5, in which the topmost four leaves were removed, increased
significantly compared to that in D0 (Figure 3). Similarly, DH618’s Pn increased significantly in D4
and D5 compared to its Pn in D0. The Pns of ZD958 in D2 and D5 were 16.5% and 15.6% greater,
respectively, than in D0, and the Pns of DH618 in D4 and D5 were 9.8% and 12.6% greater, respectively,
than in D0. Again, the influence of leaf removal on cultivar ZD958 was greater than it was on DH618.

Figure 3. Ear leaf photosynthetic rate (Pn) and stomatal conductance (Cn) at the grain filling stage of
maize cultivars ZD958 and DH618 after six leaf removal treatments in 2018. Different lowercase letters
of the same cultivar above the columns showed the significant difference between each treatment at
P < 0.05.

The stomatal conductances (Cns) of ZD958 increased significantly when the topmost four leaves
were removed in treatments D2 and D5, compared to D0 (Figure 3). However, DH618’s Cns were not
significantly different between treatments, except for D5, which was significantly less than D0. Cns of
both ZD958 and DH618 in D5 were significantly less than in D2, in which the leaves below the third
leaf under the ear leaf were simultaneously removed. Therefore, a very low LAI may have adverse
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effects on Cn. Yet, when we compared Cn responses of both ZD958 and DH618 to the leaf removal
treatments in D2 and D5, cultivar ZD958 was more affected by leaf removal than was cultivar DH618.

4. Discussion

When planted at high density, erect maize plant types improve light conditions in the canopy,
thus improving grain yield [6,36,38]. Decreasing the LAI of densely planted maize can also increase
light intensity in the canopy and the photosynthetic capacity of the leaves, again boosting grain
yield [15,16,26]. In addition, other studies have reported that partially removing vegetative organs can
modify canopy structure, increase the corn plants’ light energy-use efficiency, and maximize grain
yields [16,23,24]. In this study, the highest grain yields in 2017 were 21.5 Mg ha−1 for ZD958 in D4
(LAI = 5.4) and 22.1 Mg ha−1 for DH618 in D3 (LAI = 6.3). Then, in 2018, the highest yields were
19.3 Mg ha−1 for ZD958 in D3 (LAI = 5.8) and 19.8 Mg ha−1 for DH618 in D4 (LAI = 6.1), with an
average LAI of 5.6 and 6.2 for the highest yields of ZD958 and DH618, respectively, in the two years
combined. In both years, average yield increases were greater for ZD958 than for the more compact
DH618 (Table 1), indicating that leaf removal had a greater influence on the less compact hybrid.
However, excessively low LAI may not contribute to grain yields because of a weak sink (lower KNP),
as shown in D5 (Table 1) and in accordance with Liu et al. [15,27].

The yield components were important for the final grain yield [39]. Different cultivars had
different responses to plant density by adjusting yield components. For example, the number of kernels
per row and kernel weight were important under low plant population, while number of rows per
ear and number of kernels per ear were important for a high plant population [40]. However, in the
present study, the yield components had no significant changes compared to D0, therefore, the increase
in yield maybe the result of these small non-significant changes.

Dry-matter production has been closely related to photosynthesis capacity, especially post-silking
dry matter accumulation [20,41]. Also, leaf removal can increase both total dry-matter accumulation,
again especially post-silking dry matter accumulation, and the post-silking source-sink ratio, and thus
also grain yield [15,27]. Optimal reduction of leaf area can increase post-silking source-sink ratio and
canopy apparent photosynthesis [15]. In our study, total dry-matter production for the two cultivars
in the treatments in which they had their highest grain yields were not significantly higher than that
in the control treatments (D0), however, the source–sink ratio significantly increased compared with
D0 (Table 2), which was consistent with a previous study [15]. In addition, harvest index was also
important for grain yield [42], ZD958’s HI increased more than DH618’s after optimal leaf removal in
2017, however, the HI of DH618 had not increased significantly in the highest yield treatment in the
two experimental years, incompletely agreeing with Liu et al. [15], which may be due to the different
influence of leave removal on morphologically different cultivars.

Leaves at the middle strata of the maize canopy contribute more photosynthates to grain than
do other leaves [43], however, leaves at the lower strata may suffer from weak light condition and
increase the consumption of respiration which was related to leaf age [44], therefore, the highest yield
in the leaf removal treatment (D3 or D4) maybe due to the removal of the lower strata leaves after
silking. The middle leaves are the main functional leaves for dry-matter production, and they obtain
more solar radiation when the leaves in the upper canopy are upright [45]. Studies have also shown
that smaller individual leaf area per plant [46] or partially removing vegetative organs can improve
crop structure and raise corn plant energy-use efficiency [23,24]. We found that light transmission
increased significantly after leaf removal, but ZD958’s incremental was greater than that of DH618, thus
demonstrating a greater effect of leaf removal on the less compact ZD958 cultivar (Table 3). In addition,
excessively lower LAI may result in the loss of light intercepted by the canopy, as in treatment D5,
which agrees with Liu et al. [15]. Hao et al. [30] found that as light distribution improved after leaf
removal, the Pn and Cn of the remaining ear leaves also increased. In our study, ZD958’s Pn and
Cn increased significantly in treatments D2 and D5, in which the four topmost leaves were removed.
We also found that the Pn and Cn of the ear leaf in ZD958 had not significantly increased in the highest
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yield treatment, however, the Pn of DH618 had increased significantly, which was not consistent with
the study of Liu et al. [15]. Therefore, leaf removal had a different influence on the Pn an Cn of the ear
leaf, in order to clarify the mechanism of yield increase by leaf removal, further study should consider
the influence of leaf removal on canopy-level photosynthesis. However, excessive leaf removal did not
increase the grain yield, which in this study was mainly related to the number of leaves left above the
ear leaf. Cultivar ZD958 had about six leaves above the ear leaf, which was seven in DH618. Removal
of both the topmost two leaves and the leaves below the third leaf below the ear leaf (D4) in 2017,
and removal of the leaves below the third leaf below the ear leaf (D3) in 2018, significantly increased
ZD958’s grain yield, which was in D3 in 2017 and D4 in 2018 for DH618. Therefore, leaf removal below
the ear for both more and less compact cultivars benefits grain yield, and those leaves would senesce
gradually anyway because of poor light conditions in high density planting [47].

A maize breeder once stated that the maximum LAI of erect maize should be 5.0–5.5 [17], and also
a study indicated that the optimal LAI for high-yield maize was 4.5 under a density of no more than
75,000 plants m−2 [48], while subsequent studies have reported that the optimal LAI for maize is
6.0 [18,19], because when the LAI exceeds 5.0, the maximum fraction of IPAR was 95% and canopy
photosynthesis will not continuously increase by using maize hybrids [32,33]. We found that after
leaf removal the highest grain yields were obtained when the LAIs of ZD958 and DH618 were 5.4
and 6.3, respectively, in 2017, and 5.8 and 6.1, respectively, in 2018 (Figure 2) with an average LAI
of 5.9. Although we used high planting densities, the optimal LAI changed little, a result similar to
those of previous studies that showed that leaf redundancy occurred during recent dense plantings of
maize [6,27]. Therefore, optimizing the LAI, neither too high nor too low, is beneficial to grain yield.

5. Conclusions

Optimal leaf removal improved light distribution, increased photosynthetic capacity and the
post-silking source–sink ratio, and thus the grain yield, with an average LAI of 5.9 (5.6 and 6.2 for ZD958
and DH618, respectively) for the highest yields in each year. Therefore, optimizing the LAI is beneficial
to grain yield. In future maize breeding, less compact cultivars with less upright leaves in the upper
canopy should have smaller or fewer topmost leaves or leaves below ear senesce quickly after silking
to decrease leaf area. This will be beneficial to improve both light distribution and photosynthetic
capacity in the canopy and thus improve grain yield. However, for more compact cultivars with
more upright leaves in the upper canopy, leaves below the ear should senesce quickly after silking
to reduce leaf respiration and improve photosynthetic capacity of the remaining top residual leaves.
In future maize cultivation, compact cultivars with optimal post-silking LAI should be used when
planting densely.
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